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A B S T R A C T   

Background: The inability to test at scale has become humanity’s Achille’s heel in the ongoing war against the 
COVID-19 pandemic. A scalable screening tool would be a game changer. Building on the prior work on cough- 
based diagnosis of respiratory diseases, we propose, develop and test an Artificial Intelligence (AI)-powered 
screening solution for COVID-19 infection that is deployable via a smartphone app. The app, named AI4COVID- 
19 records and sends three 3-s cough sounds to an AI engine running in the cloud, and returns a result within 2 
min. 
Methods: Cough is a symptom of over thirty non-COVID-19 related medical conditions. This makes the diagnosis 
of a COVID-19 infection by cough alone an extremely challenging multidisciplinary problem. We address this 
problem by investigating the distinctness of pathomorphological alterations in the respiratory system induced by 
COVID-19 infection when compared to other respiratory infections. To overcome the COVID-19 cough training 
data shortage we exploit transfer learning. To reduce the misdiagnosis risk stemming from the complex 
dimensionality of the problem, we leverage a multi-pronged mediator centered risk-averse AI architecture. 
Results: Results show AI4COVID-19 can distinguish among COVID-19 coughs and several types of non-COVID-19 
coughs. The accuracy is promising enough to encourage a large-scale collection of labeled cough data to gauge 
the generalization capability of AI4COVID-19. AI4COVID-19 is not a clinical grade testing tool. Instead, it offers a 
screening tool deployable anytime, anywhere, by anyone. It can also be a clinical decision assistance tool used to 
channel clinical-testing and treatment to those who need it the most, thereby saving more lives.   

1. Introduction 

By April 28, 2020, there were 3,024,059 confirmed cases of corona 
virus disease 2019 (COVID-19), leading to 208,112 deaths and dis-
rupting life in 213 countries and territories around the world [1]. The 
losses are compounding everyday. Given no vaccination or cure exists as 
of now, minimizing the spread by timely testing the population and 
isolating the infected people is the only effective defense against the 
unprecedentedly contagious COVID-19. However, the ability to deploy 
this defense strategy at this stage of pandemic hinges on a nation’s 
ability to timely test significant fractions of its population including 

those who are not contacting medical system yet. The capability for 
agile, scalable and proactive testing has emerged as the key differ-
entiator in some nations’ ability to cope and reverse the curve of the 
pandemic, and the lack of the same is the root cause of historic losses for 
others. 

1.1. Why might not clinic visit based COVID-19 testing mechanisms alone 
sufficiently control the pandemic at this stage? 

The “Trace, Test and Treat” strategy succeeded in flattening the 
pandemic curve (e.g., in South Korea, China and Singapore) in its early 
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stages. However, in many parts of the world the pandemic has already 
spread to an extent that this strategy is not proving effective anymore 
[2]. Recent studies show that it is virus often transmitted when an un-
diagnosed population coughs, that contributes to its much rapid and 
covert spread [3]. Data shows that 81% of COVID-19 carriers do not 
develop severe enough symptoms for them to seek medical help, and yet 
they act as active spreaders [4]. Others develop symptoms severe 
enough to prompt medical intervention only after several days of being 
infected. These findings call for a new strategy centered on “Pre--
screen/test proactively at population scale, self-isolate those tested 
positive for self-healing without further spreading and channel medical 
care towards the most vulnerable”. 

As per World Health Organization (WHO) guidance, Nucleic Acid 
Amplification Tests (NAAT) such as real-time Reverse Transcription 
Polymerase Chain Reaction (rRT-PCR) should be used for routine 
confirmation of COVID-19 cases by detecting unique sequences of virus 
ribonucleic acid (RNA). This test method, while being the current gold 
standard, is not an adequate way to control the pandemic for reasons 
that include but are not limited to:  

1) The limited availability of testing due to geographical and temporal 
factors.  

2) The scarcity and expense of clinical tests needed to cover the massive 
time-sensitive demand.  

3) The requirement of in-person visits to a hospital, clinic, lab or mobile 
lab. Such visits expose more members of the public to COVID-19. 
This is not a trivial problem given the recent studies that show 
how highly stable and hence contagious COVID-19 appears to be. For 
example [5], shows that the aerosol stability of COVID-19 is up to 3 h 
in aerosols and up to seven days on different surfaces.  

4) The turnaround time for current tests is several days, recently 
stretching to 10 days in some countries as labs are becoming over-
whelmed [6,7]. By the time a patient is diagnosed using current 
methods, the virus has already been passed to many.  

5) The in-person testing methods put the medical staff, particularly 
those with limited protection, at serious risk of infection. The 
inability to protect our medics can lead to further shortage of medical 
care and increased distress on the already stressed medical staff. 

To make tests more readily accessible, on March 28th the United 
States Food and Drug Administration (FDA) approved a faster test that 
can yield results in 15 min [8]. The test works similar to Polymerase 
Chain Reaction (PCR) by identifying a portion of the COVID-19 RNA in 
the nasopharyngeal or oropharyngeal swab. The FDA also recently 
approved another rapid molecular-based test, which delivers positive 
results in as little as 5 min and negative results in 13 min [9]. However, 
the FDA warns that there is a high probability of false negative results 
using this test [10]. While a leap forward, this test still requires an office 
visit and thus the breaching of social distancing and self-isolation. 
Though much faster, the newly approved test still does not solve many 
of the aforementioned problems. Furthermore, emerging reports of 
shortages of critical equipment used to collect patient specimens, like 
masks and swabs, could blunt its impact on controlling the pandemic 
[11,12]. In order to protect others from potential exposure, the FDA has 
also approved at-home sample collection [13]. However, once a patient 
collects a nasal sample, they need to put it in a saline solution and ship it 
overnight to a certified lab authorized to run specific tests on the kit. 
Hence, this approach also introduces delays and could compromise on 
the quality of samples if the sample is stored for too long. In addition, it 
could also introduce the chances of errors while collecting the sample, 
since the patients collect the sample themselves, rather than trained 
doctors or healthcare professionals. 

More recently, two alternative approaches for COVID-19 infection 
diagnosis leveraging analysis of either X-ray [14–26] or CT Scan 
[27–33] images have been proposed in the literature. These techniques, 
either through an examination by a radiologist, or when combined with 

AI-based image processing, are able to diagnose COVID-19 with even 
higher accuracies, and in some cases even better than the rRT-PCR based 
test. Recent studies report a pooled sensitivity of 94% (95% confidence 
interval: 91%–96%), but a low specificity of 37% (95% confidence in-
terval 26%–50%) for CT-based diagnosis [34]. Therefore, CT based 
diagnosis may help to overcome the sub-optimal sensitivity of PCR tests 
[35]. However, while both of these approaches reduce the burden on 
radiologists to perform the diagnosis, they still require a visit to a 
well-equipped clinical facility. As a result, these approaches also inherit 
the issues of office visit based tests that are highlighted above. 

It is mainly due to the inability to test large swaths of populations 
timely, safely and cost effectively and exactly track the actual spread 
that even the richest nations on earth are finding it difficult to contain 
the pandemic. 

1.2. Proposed cough based COVID-19 screening approach 

The idea of using cough for possible preliminary diagnosis of COVID- 
19, and the need to investigate its feasibility is motivated by the 
following key findings: 

1) Prior studies have shown that cough from distinct respiratory syn-
dromes have distinct latent features [36–43]. These distinct features 
can be extracted by appropriate signal processing and mathematical 
transformations of the cough sounds. The features can then be used 
to train a sophisticated AI engine for performing the preliminary 
diagnosis solely based on cough. Our in-depth analysis of the path-
omorphological alternations caused by COVID-19 in the respiratory 
system (reported in Section 2.1), shows that the alternations are 
distinct from those caused by other common non-COVID-19 respi-
ratory diseases. This finding is corroborated by the meta-analysis of 
several recent independent studies (reported in Section 2.1) that 
show that COVID-19 infects the respiratory system in a distinct way. 
Therefore, it is logical to hypothesize that cough caused by 
COVID-19 is also likely to have distinct latent features and the risk of 
these features overlapping with those associated with other respi-
ratory infections is low. These distinct latent features can be 
exploited to train a domain aware AI engine to differentiate 
COVID-19 cough from non-COVID-19 cough. Our experiments 
(Fig. 1, Section 2.2) show that this is indeed possible.  

2) Cough manifests as a symptom in the majority (e.g., 67.7% as per 
[44]) but not all COVID-19 carriers. However, studies show that 
coughing is one of the key mechanisms for the social spreading of 
COVID-19 [3]. Droplets containing the virus emitted through cough 
landing on surfaces where the virus has been shown to survive for 
long periods of time has been reported as the most prolific 

Fig. 1. Visualization of features for the four classes via t-SNE (gray triangles 
correspond to normal, blue circles correspond to bronchitis, black stars corre-
spond to pertussis and orange diamonds represent COVID-19 cough. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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mechanism of spreading the COVID-19 [45]. Hence, if a COVID-19 
patient is not showing cough as a symptom, the patient is most 
likely not spreading as actively as a coughing COVID-19 patient. In 
other words, cough-based testing, even if far from being as sensitive 
as clinical testing, can actually directly help in reducing R0 [4].  

3) Due to the ease of measurement, a temperature scan is currently the 
predominant screening method for COVID-19, e.g., used at the 

airports. However, between cough and fever, the number of non- 
COVID-19 medical conditions that can cause fever are much larger 
than the non-COVID-19 conditions that can cause cough. Our anal-
ysis shows that cough contains COVID-19 specific features even if it 
is non-spontaneous, i.e., when the COVID-19 patient is asked to 
cough. This means cough can be used as a pre-screening method by 
asking the subject to simulate cough. 

Fig. 2. Proposed system architecture and flow diagram of AI4COVID-19, showing snapshot of Smartphone App at user front-end and back-end cloud AI-engine blocks 
consisting of Cough Detector block (further elaborated in Fig. 4 and Section 2.3) and COVID-19 diagnosis block containing Deep Transfer Learning-based Multi-Class 
classifier (DTL-MC), Classical Machine Learning-based Multi-Class classifier (CML-MC) and Deep Transfer Learning-based Binary-Class classifier (DTL-BC) (further 
elaborated in Fig. 5 and Section 2.3). 

Fig. 3. A flow chart highlighting the steps of the proposed system.  

Fig. 4. Cough detection classifier.  
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1.3. Contributions and paper contents 

The contributions and contents of this paper are outlined below:  

1) We analyze the pathomorphological changes caused by COVID-19 in 
the respiratory system from the studies examining X-rays and CT 
scans of alive COVID-19 patients. Our analysis also includes the 
autopsy report studies of deceased patients. The purpose of this 
analysis is to apply first principle-based approach. The goal is to see if 
the pathomorphological alterations caused by COVID-19 in the res-
piratory system (i.e., the part of body that produces a cough sound) 
are different from those caused by other common bacterial or viral 
infections. This is to determine if it is even theoretically possible for 
the COVID-19 cough to have any distinct latent features. The in- 
depth study of pertinent pathomorphological alterations suggests 
that it is possible.  

2) Building on the insights from first principle-based approach and our 
prior work [46], as well as several other independent studies [36–43] 
that suggest distinct latent features in cough sounds can be used for 
successful AI-based diagnosis of several respiratory diseases, we 
hypothesize that “Cough sound can be used at least for preliminary 
diagnosis of the COVID-19 by performing differential analysis of its 
unique latent features relative to other non-COVID-19 coughs.”  

3) Continuing the medical literature review, we further identify and 
shortlist the non-COVID-19 respiratory syndromes that are relatively 
common and are known to cause similar-sounding cough as that of 
COVID-19 patients. The shortlist includes pertussis, bronchitis, 
influenza, asthma, pneumonia, bronchiolitis and croup.  

4) Given that even the shortlist is too long to gather reliable data for this 
time sensitive project, we reduce the size of our data gathering 
campaign to a manageable one by leveraging the findings from 
literature which show that cough caused by the last five medical 
conditions in the shortlist above does have features unique to each 
condition. Therefore, in the interest of time, we go on to focus on the 
differential analysis of COVID-19 cough, and coughs associated with 
pertussis and bronchitis as these two conditions are not examined 
earlier. 

5) We gather cough data of COVID-19, pertussis and bronchitis pa-
tients. Cough samples from COVID-19 patients include both spon-
taneous cough (symptomatic) and non-spontaneous (i.e., when the 
patient is asked to cough). This is to make the test applicable to those 
who may not be showing cough as a symptom yet but are already 
infected. We also gather cough samples from otherwise healthy in-
dividuals with no known medical condition, hereafter referred to as a 
normal cough. The normal cough is included in the analysis to see if 
it can be differentiated from the simulated cough produced by the 
COVID-19 patients. Using these data, we test the hypothesis using a 
variety of data analysis and pre-processing tools. Multiple alternative 
analysis approaches show that COVID-19 associated cough does have 
certain distinct features, at least when compared to pertussis, bron-
chitis and a normal cough.  

6) Building on the insights from medical domain knowledge and cough 
data analysis, we develop an AI engine for preliminary diagnosis of 
COVID-19 from cough sounds. This engine runs on a cloud server 
with a front-end programmed as a simple user-friendly mobile app 
called AI4COVID-19. The app listens to cough when prompted, and 
then sends it to the AI engine wirelessly. The AI engine first runs a 
cough detection test to see if the recorded sound is a cough or not a 
cough. In case the sound is not a cough, it commands the app to 
indicate so. The cough detection part of the AI engine is designed to 
detect cough even in the presence of background noise. This is to 
make the app a useful screening tool even at public places such as 
airports and crowded shopping malls. If a cough is detected, it is 
passed on to the diagnosis part of the AI engine. After the AI engine 
completes the analysis, the app renders the result with three possible 
outcomes:  

• COVID-19 likely.  
• COVID-19 not likely.  
• Test inconclusive.  

7) To make the results as reliable as possible with the limited data 
available at the moment, we propose and implement a risk-averse 
architecture for the AI engine. It consists of three parallel classifi-
cation solutions designed independently by three teams. The classi-
fiers’ outcomes are consolidated by an automated mediator. In the 
current design, each classifier has veto power, i.e., if all three clas-
sifiers do not agree, the app returns ‘Test inconclusive’. This archi-
tecture employs the “2nd opinion” practice in medicine and reduces 
the rate of misdiagnosis, compared to stand alone classifiers with 
binary diagnosis, albeit at a cost of an increased rate of returning 
‘Test inconclusive’ result. 

2. Methodology 

2.1. Hypothesis formulation and the devising a manageable validation 
strategy guided by relevant clinical findings 

Our hypothesis in question is: “Cough sounds of COVID-19 patients 
contain unique enough latent features to be used as a diagnosis medium”. In 
this section, we describe our first principle-based approach that estab-
lished the theoretical possibility of our hypothesis to be true. Then we 
describe the deep domain knowledge-based approach we take to reduce 
the amount of data required to test this hypothesis, thereby making this 
project feasible in a constrained time. 

1) Is COVID-19 cough unique enough to yield AI-based diagnosis? Unfor-
tunately, cough is a very common symptom of over a dozen medical 
conditions caused by either bacterial or viral respiratory infections 
not related to COVID-19 [47-49]. Several non-respiratory conditions 
can also cause cough. Table 1 summarizes the non-COVID-19 med-
ical conditions which are known to cause cough. Theoretically, a 
cough based COVID-19 diagnosis, therefore, must take into account 
the cough sound data associated with all of the conditions listed in 
Table 1. 

Trained physicians have been using cough sounds to perform a 
differential diagnosis among several respiratory conditions such as 
pneumonia, asthma, COPD, laryngitis and Tracheitis [49–54]. This is 
possible because in all these diseases the nature and location of the 
underlying irritant in the respiratory system is quite different leading 
to audibly distinct cough sounds. However, an unaided human ear is 
not capable of differentiating coughs caused by the conditions listed 
in Table 1. Even with AI, in case there are no unique latent features in 
the cough sound of COVID-19 patients, there is a risk for a 
cough-based AI diagnosis tool to confuse the cough caused by any of 
the diseases identified in Table 1 with the cough caused by 
COVID-19. A brute force-based approach to evaluate this risk would 
require gathering cough data from a large number of patients for 
each of the conditions listed in Table 1. This deluge of data can be 

Fig. 5. Classical Machine Learning-based Multi-Class classifier (CML-MC).  

A. Imran et al.                                                                                                                                                                                                                                   



Informatics in Medicine Unlocked 20 (2020) 100378

5

then used to train a powerful AI engine, such as very deep neural 
network to see if it can differentiate COVID-19 cough from those 
caused by all of the other medical conditions listed in Table 1. This 
approach is not practical at the moment given that the gathering 
such all-encompassing data will take too much time, rendering this 
approach of no help for the current pandemic. 

To ensure that our developed solution works in practice with 
useful accuracy while being trainable with timely available data, we 
take another approach that we call domain-aware AI-design. 
Domain-aware here refers to the fact that the proposed AI engine 
does not solely rely on blind big data churning, e.g., through a deep 
neural network. Instead it relies on the deep domain knowledge of 
medical researchers trained in respiratory and infectious diseases to 
assess and narrow down the hypothesis testing scope, and to mini-
mize the amount of data needed to test our hypothesis. By deep 
domain knowledge of medical researchers, we mean the use of 
medical knowledge of medical experts in this field to analyze path-
omorphological changes caused by COVID-19 in the respiratory 
system and thus to evaluate the feasibility of an AI-based approach 
using cough-based analysis. It also means identifying the location of 
irritant in different types of coughs and using that information for 
smart feature extraction and faster training. 

To this end, the medical researchers in our team began with an 
in-depth analysis of the pathomorphological changes caused by 
COVID-19 in the respiratory system by examining the data reported 
in numerous recent X-rays and CT-scans based studies of COVID-19 
patients. The goal here is to see if the pathomorphological alter-
ations caused by COVID-19 are distinct from that of other common 
medical conditions, particularly the ones identified in Table 1, that 
are well known to cause cough. If this turns out to be the case, then in 
cough caused by COVID-19 we should have latent features distinct 
from the cough caused by the other medical conditions. An appro-
priately designed AI should then be able to pick these cough feature 
idiosyncratic to COVID-19 infection and yield a reliable diagnosis, 
given enough labeled data. In the case of no such differences at 
pathomorphological level, the idea of cough based COVID-19 diag-
nosis should be dropped. In that case, any AI-based diagnosis yielded 
from cough is more likely to be a frivolous correlation and not a 
meaningful causal relationship. Such AI-based diagnosis will be an 
artifact of the training data rather than unique latent features of 
COVID-19 caused cough. Such a domain oblivious solution irre-
spective of its performance in lab will not be useful in practice.  

2) Distinct pathomorphological alternations in respiratory system caused by 
COVID-19: In a recent study, it has been discovered that in COVID-19 

infected people, there are distinct early pulmonary pathological 
signs even before the onset of the symptoms of COVID-19, such as dry 
cough, fever and some difficulty in breathing [55]. Early histological 
changes include evident alveolar damage with alveolar edema and 
proteinaceous exudates in alveolar spaces, with granules; inflam-
matory clusters with fibrinoid material and multinucleated giant 
cells; vascular congestion. Reactive alveolar epithelial hyperplasia 
and fibroblastic proliferation (fibroblast plugs) were indicative of 
early organization. 

Contrary to the above observation of no early symptoms, it has also 
been noted that in some patients, COVID-19 leads to onset of pneu-
monia and pneumonia is marked by a peculiar cough [44]. However, 
pneumonia can also be caused by many other factors including 
non-COVID-19 viral or bacterial infections. Therefore, the question 
arises: is there a difference between COVID-19 caused pneumonia 
and other types of pneumonia that can be expected to translate into a 
difference in associated cough’s latent features? Recent study in 
Ref. [56] shows that compared to non-COVID-19 related pneumonia, 
COVID-19 related pneumonia on chest CT scan was more likely to 
have a peripheral distribution (80% vs. 57%), ground-glass opacity 
(91% vs. 68%), vascular thickening (59% vs. 22%), reverse halo sign 
(11% vs. 9%) and less likely to have a central + peripheral distri-
bution (14% vs. 35%), air bronchogram (14% vs. 23%), pleural 
thickening (15% vs. 33%), pleural effusion (4% vs. 39%) and 
lymphadenopathy (2.7% vs. 10.2%). Hence, these findings clearly 
suggest that cough sound signatures with COVID-19 caused pneu-
monia are likely to have some idiosyncrasies stemming from the 
distinct underlying pathomorphological alterations. 

Moreover, CT scan-based studies also show that in the early stage 
of COVID-19 disease, it mainly manifests as an inflammatory infil-
tration restricted to the subpleural or peribronchovascular regions of 
one lung or both lungs, exhibiting patchy or segmental pure 
ground-glass opacities (GGOs) with vascular dilation. There is an 
increasing range of pure GGOs and the involvement of multiple lobes 
of the lung, consolidation of lesions, and crazy-paving patterns 
during the progressive stage. There are diffuse exudative lesions and 
lung “white-out” during an advanced stage [57]. Furthermore, 
AI-based analyses of X-ray [14–17] and CT scan [27,28] of the res-
piratory system have also shown to exploit the differences in path-
omorphological alternations caused by COVID-19 to perform 
differential diagnosis among bacterial infection, non-COVID-19 viral 
infection and COVID-19 viral infection, with good accuracy. This 
further implies that COVID-19 affects the respiratory system in a 
fairly distinct way compared to other respiratory infections. There-
fore, it is logical to hypothesize and investigate that the sound waves 
of cough produced by the COVID-19 infected respiratory system may 
also have distinct latent features. 

The feasibility of diagnosing several common respiratory diseases 
using cough is not only supported by prior studies [58–60] but also in 
a recent clinically validated and widely publicized study [61]. In 
Ref. [61], a large team of researchers showed that cough alone can be 
used to diagnose asthma, pneumonia, bronchiolitis, croup and lower 
respiratory tract infections with over 80% sensitivity and specificity. 

Recently, many machine learning teams around the world have 
started working on the idea of using cough sound for possible diag-
nosis of COVID-19, some interdependently and others inspired by 
our preliminary results in Ref. [46] and pre-print version of this 
work1. However, to the best of authors’ knowledge, this is the first 
work to propose and evaluate the feasibility of this idea, and develop 
and test the prototype of an AI engine powered mobile app based 
solution for anytime, anywhere tele-testing and pre-screening for 
COVID-19. 

Table 1 
Non-COVID-19 medical conditions that can cause cough.  

RESPIRATORY NON-RESPIRATORY 

Upper respiratory tract infection (mostly 
viral infections) 

Gastro-esophageal reflux 

Lower respiratory tract infection 
(pneumonia, bronchitis, bronchiolitis) 

Drugs (angiotensin converting enzyme 
inhibitors; beta blockers) 

Upper airway cough syndrome Laryngopharyngeal reflux 
Pertussis, parapertussis Somatic cough syndrome 
Tuberculosis Vocal cord dysfunction 
Asthma and allergies Obstructive sleep apnea 
Early interstitial fibrosis, cystic fibrosis Tic cough 
Chronic obstructive pulmonary disease 

(emphysema, chronic bronchitis) 
Smoking 

Postnasal drip Foreign body 
Croup Mediastinal tumor 
Laryngitis Air pollutants 
Tracheitis Tracheo-esophageal fistula 
Lung abscess Left-ventricular failure 
Lung tumor Congestive heart failure 
Pleural diseases Psychogenic cough 
Interstitial lung disease Idiopathic cough  
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2.2. Data description and practical viability of the solution with available 
data 

As mentioned earlier, ideally cough data associated with all diseases 
listed in Table 1 is desirable for such a project. However, gathering such 
mammoth data is not possible in this time-constrained project, as the 
COVID-19 pandemic needs rapid response. To achieve meaningful re-
sults in the constrained time, we leverage domain knowledge, instead of 
just seeking big data. From Table 1, using the insights from Section 2.1, 
we shortlist cough causing infections that are most likely to confuse our 
AI engine due to similar pathomorphological changes in the respiratory 
system as of COVID-19 and, hence, similar cough signatures. The 
shortlist includes pertussis, bronchitis, asthma, pneumonia, bronchioli-
tis, croup and influenza. We further note that the prior study [61] has 
shown that cough associated with all of these seven medical conditions, 
except pertussis and bronchitis, have unique latent features. We use 
findings from this earlier study to reduce the scope of our data gathering 
campaign and differential analysis to only the respiratory diseases, the 
cough for which has not been analyzed before for having unique fea-
tures, i.e., pertussis and bronchitis.  

1) Data used for training cough detector: In order to make AI4COVID-19 
app employable in a public place or where various background 
noises may exist (e.g., airport), we design and include a cough de-
tector in our AI-Engine. This cough detector acts as a filter before the 
diagnosis engine and is capable to distinguish cough sound from 50 
types of common environmental noises. To train and test this de-
tector, we use the ESC-50 dataset [62] and the cough and non-cough 
sounds recorded from our own smartphone app. The ESC-50 dataset 
is a publicly available dataset that provides a huge collection of 
human and environmental sounds. This collection of sounds is 
categorized into 50 classes, one of these being cough sounds. We 
have used 1838 cough sounds and 3597 non-cough environmental 
sounds for training and testing of our cough detection system.  

2) Data used for training COVID-19 diagnosis engine: To train our cough 
diagnosis system, we collected cough samples from COVID-19 pa-
tients as well as pertussis and bronchitis patients. We also collected 
normal coughs, i.e., cough sounds from healthy people. At the time of 
writing, we had access to 96 bronchitis, 130 pertussis, 70 COVID-19, 
and 247 normal cough samples from different people, to train and 
test our diagnosis system. Obviously, these are very small numbers of 
samples and more data is needed to make the solution more gener-
alizable. New COVID-19 cough samples are arriving daily, and we 
are using these unseen samples to test the trained algorithm.  

3) Data pre-processing and visualization to evaluate the practical feasibility 
of AI4COVID-19: In Section 2.1, by applying medical domain 
knowledge, we analyzed the theoretical viability of our hypothesis. 
However, in AI-based solutions, theoretical viability does not guar-
antee practical viability as the end outcome depends on the quantity 
and quality of the data, in addition to the sophistication of the ma-
chine learning algorithm used. Therefore, here we use the available 
cough data from the four classes, i.e., bronchitis, pertussis, COVID-19 
and normal, to first evaluate the practical feasibility of a cough based 
COVID-19 diagnosis solution. 

All audio files used in our study are in uncompressed PCM 16-bit 
format with a sampling rate of 44.1 kHz and a fixed 3-s length. We 
convert the cough audio samples for all four classes into the Mel scale 
for further processing. The Mel scale is a pitch categorization where 
listeners judge changes in pitch to be equal in distance from one 
another along this scale. It is meant to make changes in frequency, 
such as with a spectrogram, more closely reflect audible changes. We 
used the Mel spectrogram over a typical frequency spectrogram 
because the Mel scale in the Mel spectrogram has unequal spacing in 
the frequency bands and provides a higher resolution (more infor-
mative) in lower frequencies and vice versa, as compared to equally 
spaced frequency bands in normal spectrogram [63]. Since cough 

sounds are known to have more energy in lower frequencies there-
fore, the Mel spectrogram is a naturally suitable representation for 
cough sounds. There are several methods for converting the fre-
quency scale to the Mel. Here, we convert frequency f into Mel scale 
m as: 

m= 2595 × log10

(

1+
f

700

)

(1)  

We perform Cepstral analysis on the Mel spectrum of audio cough 
samples to compute their Cepstral coefficients, commonly known as 
Mel Frequency Cepstral Coefficients (MFCC) [64]. The extracted 
MFCC features for every sample result in an M × N matrix, where 
each column represents one signal frame and each row represents 
extracted MFCC features for a specific frame. The number of frames 
N can vary from sample to sample. There are several possible ways to 
use these extracted features for classification. In our approach, we 
extract two M × 1 MFCC based feature vectors for each input cough 
sample and concatenate them into a single final 2M × 1 feature 
vector for that sample. For the first feature vector, we take the mean 
of MFCC features corresponding to all the frames. For the second 
feature vector, we take the top P M × 1 Principle Component Anal-
ysis (PCA) projections [65] of the MFCC features across all the frames 
and combine them into a single M × 1 vector by taking their 
magnitude. Finally, we concatenate both feature vectors into a single 
2M × 1 feature vector. This approach is further illustrated in Fig. 5 in 
Section 2.3. 

Since the features extracted from cough audio are 
multi-dimensional, in order to visualize the features, a nonlinear 
dimensionality reduction technique, t-distributed Stochastic 
Neighbor Embedding (t-SNE) [66] is applied, as it is well-suited for 
embedding high-dimensional data in a low-dimensional space of 
two-dimensions. In particular, this technique models each 
high-dimensional object by a two-dimensional point such that 
similar objects are modeled by nearby points and dissimilar objects 
are modeled by distant points with high probability. This visualiza-
tion allows us to interpret the features in the form of clusters or 
classes with classification decision boundaries. Fig. 1 illustrates the 
2-D visualization of these features for the four classes through t-SNE 
with classification decision boundaries/contours. It can be observed 
from the figure that different cough types possess features distinct 
from each other, and the features for COVID-19 are different from 
other cough types, such as bronchitis and pertussis. Hence, this 
observation suggests the practical viability of AI-powered cough 
based preliminary diagnosis for COVID-19 encouraging us to proceed 
towards an AI-engine design for maximum accuracy and efficient 
implementation to enable app-based deployment. 

2.3. The AI4COVID-19 AI-Engine 

In this section we explain the system architecture and the details of a 
two-stage solution that we developed for: 1) detection of cough sound 
from mixed cough, non-cough and noisy sounds; and 2) diagnosis of 
COVID-19 from the cough sound. 

The training data is used to train different variants of deep learning 
and one classical machine learning algorithm as described in this sec-
tion. After these models are trained, the pre-trained models for both 
cough detection and COVID-19 diagnosis are then implemented at the 
cloud server. The app then provides a user interface for using these pre- 
trained models. Another advantage of cloud-based implementation is 
the possibility of refining the model continuously as more data becomes 
available, as no update in the app is required for the refinement in the 
back-end AI-based diagnosis engine. 
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1) System architecture: The overall system architecture is illustrated in 
Fig. 2 and a flow chart highlighting the complete steps is shown in 
Fig. 3. The smartphone app records sound/cough when prompted by 
the press and release button. The recorded sounds are forwarded to 
the server when the diagnosis button is pressed. At the server, the 
sounds are first fed into the cough detector. In case, the sound is not 
detected as cough, the server commands the app to prompt so. In 
case, the sound is detected as a cough, the sound is forwarded to 
three parallel, different classifier systems, i.e., Deep Transfer 
Learning-based Multi Class classifier (DTL-MC), Classical Machine 
Learning-based Multi Class classifier (CML-MC) and Deep Transfer 
Learning-based Binary Class classifier (DTL-BC). The results of all 
these three classifiers are then passed on to a mediator. The app re-
ports a diagnosis only if all three classifiers return identical classifi-
cation results. If the classifiers do not agree, the app returns ‘test 
inconclusive’. This tri-pronged mediator centered architecture is 
designed to minimize the probability of misdiagnosis. With this ar-
chitecture, results show that AI4COVID-19 engine predicting 
‘COVID-19 likely’ when the subject is not suffering from COVID-19 
or vice-versa is extremely low when validated on the testing data 
available at the time of writing. The multi-pronged architecture is 
inspired by the “second opinion” practice in health care. The added 
caution here is that the three (diagnosis) opinions are solicited, each 
with veto power. How this architecture manages to reduce the 
overall misdiagnosis rate of the AI4COVID-19 despite the relatively 
higher misdiagnoses rate of individual classifiers is further explained 
in Section 3.3 through (4) and (5). 

For app implementation in real-time, to ensure stricter quality 
control, we plan to run these pre-trained algorithms on at least three 
cough samples from the same patient and then make a preliminary 
diagnosis based on majority voting. Also, the cough detector, 
implemented before COVID-19 diagnosis (see Figs. 2 and 3) is 
ensuring some quality control by passing only those cough samples 
to the COVID-19 diagnosis engine that are of satisfactory quality. If 
samples are of poor quality, for example, a lot of background noise or 
the sound is too low, it rejects those samples by not detecting them as 
cough and therefore, not passing them on for diagnosis. In this case, 
the user is prompted to re-record the cough sample. 

The details of detection and diagnosis classifiers are presented below.  

2) Cough detection: The recorded cough sample is forwarded to our 
cloud-based server where the cough detector engine first computes 
its Mel-spectrogram (as explained in Section 2.2) with 128 Mel- 
components (bands). This image is then resized and converted into 
grayscale to unify the intensity scaling and reduce the image di-
mensions, resulting in a 320 × 240 × 1 dimensional image. The 
resultant image is then fed into our Convolutional Neural Network 
(CNN) based classifier to decide whether the recorded input sound is 
of cough or not. 

An overview of our used CNN structure is shown in Fig. 4. As the 
input Mel spectrogram image is of high dimensions, it’s first passed 
through a 2 × 2 max-pooling layer to reduce the overall model 
complexity before proceeding. This is followed by two blocks of 
layers, each block comprising two convolutional layers followed by a 
2 × 2 max pooling layer and a 0.15 dropout. Convolutional layers in 
first block use 16 filters and a 5 × 5 kernel size, whereas the second 
block uses 32 filters each in both convolutional layers. The learned 
complex features from these 4 convolutional layers are flattened and 
then passed to a fully connected layer of 256 neurons followed by a 
0.30 dropout layer to prevent overfitting. Finally, the output layer 
with 2 neurons and a softmax activation function is used to classify 
between cough and not cough for the given input. ReLU is used as the 
activation function for all convolutional layers in this model, while 
Adam [67] is used as the optimizer due to its relatively better 

efficiency and flexibility. A binary cross entropy loss function com-
pletes the detection model.  

3) COVID-19 diagnosis: When the input sound is detected to be cough by 
the cough detection engine, it is forwarded to our tri-pronged 
mediator-centered AI engine to diagnose between COVID-19 and 
non-COVID-19 coughs. In order to produce results with maximum 
reliability, with the limited data available at the moment, the three 
classifiers used in the system use different approaches and are 
designed independently by three teams and cross-validated [68]. 

The three classification approaches are described below.  
a) Deep Transfer Learning-based Multi Class classifier (DTL-MC): The 

first solution leverages a CNN-based four class classifier, using 
Mel spectrograms (described above) as input. The four classes 
here are cough caused by 1) COVID-19, 2) pertussis, 3) bronchitis 
or 4) normal person with no known respiratory infection. Similar 
CNN architecture used for cough detection is used here with a 
slight modification to make it a four class classifier (instead of 
binary classifier previously) by changing the number of neurons 
in output layer to four neurons for classifying the input between 
four possible output classes. Deep transfer learning [69] is used 
here to transfer the knowledge (features) learned by cough 
detection model (trained using relatively more data) to the 
similar diagnosis model. This allowed us to train a deep archi-
tecture (see Fig. 4) using limited amount of training data, as the 
basic features of the input Mel-spectrogram characterizing cough 
are already learned and only fine-tuning is required to learn more 
subtle features using new disease data. In this DTL-MC model, we 
froze the initial weights of the first convolutional layer, as the 
initial layers learn low-level latent features, and only allowed 
other layers to fine-tune their weights. This transfer learning 
approach allowed us to get better performance (reported in Sec-
tion 3) than training on disease data from scratch.  

b) Classical Machine Learning-based Multi Class classifier (CML-MC): A 
second parallel diagnosis test uses classic machine learning 
instead of deep learning. This to mitigate the over-fitting that may 
still be happening in the deep learning-based classifier due to 
small amount of training data. To maximize independence among 
the classifiers that together constitute the AI diagnosis engine, the 
2nd classifier begins with a different pre-processing of cough 
sounds. Instead of using a spectrogram like the first classifier, it 
uses MFCC and PCA based feature extraction as explained in 
Section 2.2. These smart features are then fed into a multi-class 
support vector machine (SVM) for classification. Class balance 
is achieved by sampling from each class randomly such that the 
number of samples equals to the number of minority class sam-
ples, i.e., class with the lowest number of samples. Using the 
concatenated feature matrix (of mean MFCC and top few PCAs) as 
input, we perform SVM with k-fold validation for 100,000 itera-
tions. This approach is illustrated in Fig. 5.  

c) Deep Transfer Learning-based Binary Class classifier (DTL-BC):The 
third parallel diagnosis test also uses deep transfer learning based 
CNN on the Mel spectrogram image of the input cough samples, 
similar to the first branch of the AI engine, but performs only 
binary classification of the same input, i.e., is the cough associ-
ated COVID-19 or not. The CNN structure used for this technique 
is similar to the one used for the cough detector (see Fig. 4). 

3. Results 

In order to evaluate the model we use the performance metrics of 
accuracy, specificity, sensitivity/recall, precision, F1-score on validation set 
and also cross-validate the models. The accuracy here refers to the 
overall accuracy of the model. We use k-fold cross validation method-
ology, that is well-suited to evaluate the performance of machine 
learning models on limited data [68]. These performance metrics are 
based on mean confusion matrices from cross-validation. In addition, we 
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have used regularization techniques to prevent the problem of 
over-fitting, for example, we tune the regularization parameter of SVM 
against the cross-validation accuracy and choose those parameters that 
gave us the best generalizability of the models. Tuning of the various 
hyper-parameters (number of hidden layers, learning rate, activation 
functions, dropout rate) of deep neural network-based models has also 
been performed, based on the cross-validation accuracy. Furthermore, 
the decay of model loss versus the number of epochs has been investi-
gated to rule out the possibility of over-fitting. 

3.1. Cough detection 

The confusion matrix and performance metrics for detection algo-
rithm are reported in Fig. 6 and Table 2, respectively. Results demon-
strate that our cough detection algorithm can classify between cough 
evet and no cough event with an overall accuracy of 95.60%. 

The error graph of mean loss versus epochs of this neural network 
based model, for both training and validation data sets is shown in 
Fig. 7. The decay of both the training and testing curve shows that this 
model has not been over-fitted. 

3.2. COVID-19 diagnosis 

The performance metrics for the first classifier, that is DTL-MC 
classifier are reported in Table 3. At the moment, with limited data 
available, the overall accuracy of deep transfer learning based multi- 
class classifier is 92.64%. The mean normalized confusion matrix 
resulting from this approach is shown in Fig. 8. Future work will 
continue to improve this model as more training data becomes available 
for CNN. Fig. 9 shows the mean loss versus epochs of the DTL-MC 
classifier, for both training and validation data sets. Both the curves 
start to saturate after around 25 epochs, indicating a reasonable learning 
time, without over-fitting. 

For the second classifier, i.e., CML-MC classifier, the normalized 
mean confusion using 5-fold cross validation is shown in Fig. 10 and the 
CDF of overall accuracy with varying k’s in k-fold cross validation is 
shown in Fig. 11.Table 4 reports the performance metrics for this 
approach, utilizing data available at this moment. Results indicate an 
overall accuracy of 88.76%. 

Performance metrics for the third approach, that is DTL-BC are 

reported in Table 5, with the normalized mean confusion matrix shown 
in Fig. 12. The classification accuracy with this approach is 92.85%. The 
loss versus number of epochs for both training and validation is illus-
trated in Fig. 13. Here, both the curves start to level off after [20] 
epochs, hence depicting a reasonable training time, while avoiding 
over-fitting. Currently, the number of non-COVID cough samples are 
much larger than COVID-19 cough samples when binary classification is 
chosen. Once more data becomes available, the current classification 
accuracy using DTL-BC is likely to increase. 

The performance of the two deep learning-based classifiers (DTL-MC 
and DTL-BC) is superior than the manual feature extraction based classic 
machine learning classifier (CML-MC). This is expected, because with 
shortage of training data circumvented via transfer learning, consider-
able amount of training data and automatic feature extraction capability 
of the deep neural network are expected to extract even more subtle 
distinct features hidden in the data than the manual feature extraction 
used in the second classifier, i.e., CML-MC. 

3.3. Overall performance under independence assumption 

After analyzing the performance of the three different classifiers, we 
now analyze the overall performance of AI4COVID-19 AI engine that 
utilizes a mediator-based architecture. This architecture will yield 
optimal performance when its prongs (i.e., the classifiers) are fully 
independent. 

The independence of the three classifiers depends on dependence 
among the training data fed into these classifiers, as well as the simi-
larity among the classifier’s internal architectures. Therefore, in reality, 
the classifiers will never be truly independent, because of following key 
reasons: (i) Even if we use unique training data for each classifier, there 
will be some dependence (e.g., correlation introduced by age group, 
gender, native language etc). (ii) Even if we manage to choose fully 
independent training data for each classifier, the similarities in the ar-
chitectures of classifiers would introduce some degree of dependence. 

However, lacking absolute independence does not completely 

Fig. 6. Normalized mean confusion matrix for cough detection (in percentage) 
using 5-fold cross validation. 

Table 2 
Performance metrics for cough detection.  

F1-Score 
(%) 

Sensitivity (%) Specificity (%) Precision (%) Accuracy (%) 

95.61 96.01 95.19 95.22 95.60  

Fig. 7. Mean model loss for 5-fold cross validation of cough detector.  

Table 3 
Performance metrics for DTL-MC.   

F1- 
Score 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Precision 
(%) 

Accuracy 
(%) 

Overall – – – – 92.64 
COVID-19 89.52 89.14 96.67 89.91 – 
Pertussis 94.04 93.57 98.19 94.51 – 
Bronchitis 91.63 93.86 96.33 89.50 – 
Normal 95.43 94.00 99.00 96.90 –  
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eliminate the advantages of proposed multi-pronged architecture. This 
is similar to a scenario when a second diagnosis sought from a physician, 
who has the same speciality, reads same medical literature, and has 
correlated neuroanatomy as the first physician, is considered an inde-
pendent opinion for all practical purposes and is known to reduce 
misdiagnosis rates, though in strict theoretical sense it is not fully 

independent diagnosis. 
Acknowledging that the three classifiers are not fully independent 

but they will become almost independent by using unique training data 
when more COVID-19 cough data becomes available, in the following, 
we analyze the performance of overall AI architecture under the inde-
pendence assumption. This is to compare the misdiagnosis rate of in-
dividual classifier decisions versus the mediator’s decision. 

Let k1, k2, k3 be the predicted class labels for the three classifiers, 
DTL-MC, CML-MC and DTL-BC, respectively and kf be the predicted 
diagnosis result of the app. The possible values that kf can take are 
‘COVID-19 likely’ (C), ‘COVID-19 not likely’ (C’) and ‘test inconclusive’ 
(I). Then, the probability that the app predicts ‘COVID-19 likely’, when 
the patient actually has COVID-19, can be calculated as: 

P
(
kf =C|C)=P(k1 =C|C

)
t ⋅ P(k2 =C|C) ⋅

P(k3 =C|C)= 0.891 ⋅ 0.917 ⋅ 0.946= 0.773
(2) 

The probability that the app predicts ‘COVID not likely’ when the 
subject actually does not have COVID-19 can be represented as: 

P
(
kf =C’|C’)=P(k1 =C’|C’

)
⋅ P(k2 =C’|C’) ⋅ P(k3 =C’|C’)

= 0.966 ⋅ 0.952 ⋅ 0.911= 0.838 (3) 

The app can also predict ‘COVID-19 likely’ when the subject is not 
suffering from COVID-19 or vice-versa. In these cases, we can write the 

Fig. 8. Normalized mean confusion matrix for cough diagnosis (in percentage) 
for DTL-MC using 5-fold cross validation. 

Fig. 9. Mean model loss for 5-fold cross validation of DTL-MC.  

Fig. 10. Normalized mean confusion matrix for cough diagnosis (in percent-
age) for CML-MC using 5-fold cross validation. 

Fig. 11. Overall accuracy CDF for varying k-fold experiments in CML- 
MC approach. 

Table 4 
Performance metrics for CML-MC.   

F1- 
Score 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Precision 
(%) 

Accuracy 
(%) 

Overall – – – – 88.76 
COVID- 

19 
89.08 91.71 95.27 86.60 – 

Pertussis 88.84 87.64 96.78 90.08 – 
Bronchitis 90.94 91.29 96.84 90.61 – 
Normal 86.09 84.40 96.11 87.86 –  

Table 5 
Performance metrics for DTL-BC.  

F1-Score 
(%) 

Sensitivity (%) Specificity (%) Precision (%) Accuracy (%) 

92.97 94.57 91.14 91.43 92.85  
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probabilities as: 

P
(
kf =C|C’)=P(k1 =C|C’

)
⋅ P(k2 =C|C’) ⋅ P(k3 =C|C’)

= 0.033 ⋅ 0.047 ⋅ 0.088= 1.365× 10− 4 (4)  

P
(
kf =C’|C)=P(k1 =C’|C

)
⋅ P(k2 =C’|C) ⋅ P(k3 =C’|C)

= 0.108 ⋅ 0.082 ⋅ 0.054= 4.782× 10− 4 (5) 

Equations (4) and (5) signify the importance of the mediator in our 
proposed architecture and show how this risk-averse architecture is able 
to reduce the overall misdiagnosis rate of AI4COVID-19. From (4) and 
(5), both the false negative as well as the false positive rate of the overall 
architecture are near zero. Note that none of the classifiers have near 
zero misdiagnosis rate simultaneously for both healthy and COVID-19 
cases. For a given classifier low False Positive Rate (FPR) is at the cost 
of high False Negative Rate (FNR) and vice versa. Mediator counters the 
over sensitivity or under sensitivity of the individual classifiers by 
masking it with the ‘Test inconclusive’ result. i.e., from (f), the lowest 
false positive rate of DTL-MC classifier is the most contributing factor in 
the near-zero probability the app will predict ‘COVID-19 likely’ when 
the subject is not suffering from COVID-19. The most contributing factor 
in the near-zero probability that the app will predict ‘COVID-19 not 
likely’ when the subject is actually suffering from COVID-19, is the 
lowest false negative rate of DTL-BC classifier, as observed from (5). In 
other words, the mediator in AI4COVID-19 architecture complements 
the weakness of one classifier with the strength of other and vice versa, 
resulting in reduced misdiagnosis rate as compared to using these clas-
sifiers independently, i.e., without the proposed mediator. 

In the cases where the reports ‘Test inconclusive’, the test subject can 
either have COVID-19 or not, in reality. The respective probabilities for 
those cases are: 

P
(
kf = I

⃒
⃒C

)
= 1 −

[
P
(
kf = C

⃒
⃒C

)
+ P

(
kf = C’

⃒
⃒C

)]

= 1 −
[
0.773 + 4.782 × 10− 4] = 0.226

(6)  

P
(
kf = I

⃒
⃒C’

)
= 1 −

[
P
(
kf = C

⃒
⃒C’

)
+ P

(
kf = C’

⃒
⃒C’

)]

= 1 −
[
1.365 × 10− 4 + 0.838

]
= 0.161 (7) 

Currently, the app would predict an inconclusive test result 38.7% of 
the time (P(kf = I) = P(kf = I|C) + P(kf = I

⃒
⃒C’)). This percentage can be 

reduced by switching to a mediation scheme where app result reflects 
simple or weighted majority of the N number of classifiers. This scheme 
will be explored once more data becomes available. The results are 
summarized in Table 6. The numbers here just indicate how including 
the proposed mediator-based architecture may reduce the misdiagnosis 
rate compared to using individual classifiers. These probabilities are 
under independence assumption and can change depending on the de-
gree of dependence between the training data and architectures of the 
individual classifiers, as explained earlier. We can capture this de-
pendency factor by introducing a co-efficient, di in each of the above six 
calculated probabilities, where i = 1…6. The values of di ’s can be 
estimated empirically once more data becomes available in the future 
and can in turn be used to determine the weights to be assigned to each 
classifier in weighted average based mediator design. 

4. Discussion 

4.1. Potential utilities of the AI4COVID-19 

The AI4COVID-19 app based on preliminary diagnosis is not meant 
to replace or compete with the medical grade testing by any means. 
Instead, the proposed solution offers the following complementing use 
cases to control the pandemic.  

1) Enabling tele-screening for anyone, anywhere, anytime.  
2) Addressing the shortage of testing facilities. This is particularly 

useful in remote areas of the world where medics have no option but 
to rely on phone based or questioner based tele-screening. In such 
places, the app can act as a clinical decision assistance tool. 

3) Opportunity to protect medics from unnecessary exposure, particu-
larly for non-critical patients where the medical advice for whom 
anyway would be “stay at home” or “self-isolate” to wait for self- 
healing.  

4) Minimizing covert spread that happens to be the biggest problem.  
5) Tracing and monitoring the spread. This is particularly easy with 

AI4COVID-19 as the cough samples can be spatio-temporally tagged 
anonymously, without having to compromise the patient’s privacy.  

6) AI4COVID-19 can be used as a low cost screening tool, instead of or 
in addition to the temperature scanner at the airports, borders or 

Table 6 
The overall current performance of AI4COVID-19 AI engine.  

Event Probability 

App reports ‘COVID-19 likely’ when the subject actually  
has COVID-19 

0.773d1  

App reports ‘COVID-19 likely’ when the subject actually  
does not have COVID-19 

1.365× 10− 4d2  

App reports ‘COVID-19 not likely’ when the subject actually  
does not have COVID-19 

0.838d3  

App reports ‘COVID-19 not likely’ when the subject actually  
has COVID-19 

4.782× 10− 4d4  

App reports ‘test inconclusive’ when the subject actually  
has COVID-19 

0.226d5  

App reports ‘test inconclusive’ when the subject actually  
does not have COVID-19 

0.161d6   

Fig. 12. Normalized mean confusion matrix for cough diagnosis (in percent-
age) for DTL-BC using 5-fold cross validation. 

Fig. 13. Mean model loss for 5-fold cross validation of DTL-BC.  
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elsewhere as needed. This is possible because our tests show that the 
app can diagnose COVID-19 even in a non-spontaneous cough of 
COVID-19 positive people. The cost of using such an app-based so-
lution would be significantly low, since it can be readily installed on 
any existing smartphone using the existing internet connections, by a 
large number of people simultaneously.  

7) The app can help in enabling and maintaining informed social 
distancing and self-isolation.  

8) By default the app can provide centralized record of tests with spatial 
and temporal stamps. Thus, the data gathered from the app can be 
used for long term planning of medical care and policy making. 

4.2. Comparison and contrast of AI4COVID-19 with existing studies 

Existing methods to screen COVID-19 patients include Nucleic Acid 
Amplification Tests (NAAT), such as real-time Reverse Transcription 
Polymerase Chain Reaction (rRT-PCR). While far more sensitive than 
proposed method, these methods are marked by limitations identified in 
Section 1.1 that includes limited geographical and temporal availability, 
high cost, large turnaround time, requirement of in-person visits to 
hospitals or mobile labs and the need and shortage of protective 
equipment. In contrast, AI4COVID-19 is useable anywhere, anytime for 
anyone. 

Recent AI-based studies towards COVID-19 preliminary diagnosis 
include the use of either X-ray [14–17] or CT Scan [27–29]. These 
methods demonstrate comparable or higher sensitivities, ranging from 
72% to 96%, compared to proposed approach. However, both of these 
approaches still require a visit to a well-equipped clinical facilities and 
does not meet the utilities identified in Section 4.1. In contrast, 
AI4COVID-19 is the only screening method proposed in the literature so 
far that can be used in-situ and eliminates the need for an in-person visit 
to the testing facility or getting out of homes or places of self-isolation, 
thereby meeting all use cases identified in Section 4.1. 

4.3. Key limitations of current version of AI4COVID-19 

At the time of writing, the performance of AI4COVID-19 app is 
limited by the following factors:  

1) The quantity of the training and testing data. Due to time constraints 
and difficulty of getting cough data, we could gather data only from a 
small number of patients for each of the four groups. We tried to 
minimize the impact of this limitation by combining data hungry 
approaches that are capable of extracting more hidden features i.e., 
deep learning, with the ML approaches that can work with a small 
amount of data through manual feature extraction. The shortage of 
training data was also to some extent circumvented by using transfer 
learning in the deep learning based classifiers. Still, the need for 
more data cannot be overemphasized.  

2) The quality of the training and testing data: We have strived to 
ensure that the data is correctly labeled. However, any error in the 
labeling of the data that managed to slip through our scrutiny is 
likely to impact reported performance. Such impact can be particu-
larly pronounced when the data is not that big in the first place.  

3) Our in-depth medical differential analysis suggested that COVID-19 
associated pathomorphological alternations are fairly distinct, and 
hence cough of COVID-19 patients is likely to have at least some 
distinct latent features. However, this does not guarantee the absence 
of overlap in COVID-19 cough features and those of diseases not 
included in the training and testing. The approach we used to combat 
this issue is the clever mediator-based architecture that practically 
eliminates misdiagnosis by declaring test to be inconclusive if the 
cough samples are even slightly confusing i.e., lying very close to 
decision boundaries. Still, we are working to address this limitation 
in future releases of AI4COVID-19 by incorporating cough associated 
with other non-COVID-19 medical conditions identified in Table 1 as 

well as including other dimensions such as age, gender, smoking or 
non-smoking status and certain bio markers. 

4) Large scale trial-based validation to test the generalization capa-
bility: In the end, the only way to evaluate the generalization capa-
bility and practical performance of the proposed AI4COVID-19 based 
testing is a large scale medically supervised validation in real world. 
The findings of this paper provide promising enough preliminary 
results and proof of concept to encourage first systematic large-scale 
cough data gathering campaigns followed by large scale trials. Once 
the testing of the prototype app on a much larger data set is 
completed, the provision of automatic updates will also be enabled.  

5) In the current prototype design, all AI processing happens at the 
cloud. The app is just a thin client that records and sends the audio 
data to the server where the AI engine resides. Due to low 
complexity, the app does not have stringent CPU and RAM re-
quirements and it can run on most smartphones. This cloud-based 
design allows the screening to be done not only via commodity 
smartphones but also via a web portal link accessible in any browser. 
In the future, to enable offline screening using an edge device such as 
smart phone, we plan to investigate edge-based implementation of 
the modified lightweight version of the proposed AI-engine. This will 
be done by edge AI techniques such as distilled deep leering. The 
potential of distilled deep learning for enabling edge device based 
medical diagnoses has been verified in our recent work [70]. 

4.4. Planned future upgrades of AI4COVID-19 

AI4COVID-19 accuracy can be improved by incorporating other 
acoustic data such as breathing sound and speech. Moreover, for higher 
accuracy and better generalization across larger populations, we also 
plan to investigate the impact of incorporating meta-data such as age, 
gender, smoking, non-smoking, ethnicity and medical history. The ac-
curacy is also likely to improve by including multi-sensory data instead 
of relying on only acoustic data and meta-data. For example, recent 
studies show that in a small fraction of COVID-19 patients, cutaneous 
anomalies are part of the symptoms [71]. Therefore, including skin 
images in addition to acoustic data may help improve the diagnosis. 
Another planned upgrade is the inclusion of bio-markers that can be 
measured by wearable sensors such as wristbands, rings and skin 
patches or ambient sensors such as infrared cameras or wireless sensors, 
which can also lead to more reliable results. The examples of 
bio-markers that are worthy of investigation that can be easily collected 
via aforementioned wearable or ambient sensors include respiration 
rate, temperature, blood oxygen saturation, pulse rate, heart rate vari-
ability, resting heart rate, blood pressure, mean arterial pressure, stroke 
volume, sweat level, systematic vesicular resistance, cardiac output, 
pulse pressure and cardiac index. 

5. Conclusion 

Scarcity, cost and long turnaround time of clinical testing are key 
factors behind covert rapid spread of the COVID-19 pandemic. Moti-
vated by the urgent need, this paper presents a ubiquitously deployable 
AI-based preliminary diagnosis tool for COVID-19 using cough sound via 
a mobile app. The core idea of the tool is inspired by our independent 
prior studies that show cough can be used as a test medium for diagnosis 
of a variety of respiratory diseases using AI. To see if this idea is 
extendable to COVID-19, we perform in-depth differential analysis of 
the pathomorphological alternations caused by COVID-19 relative to 
other cough causing medical conditions. We note that the way COVID- 
19 affects the respiratory system is substantially unique and hence, 
cough associated with it is likely to have unique latent features as well. 
We validate the idea further by the visualization of latent features in 
cough of COVID-19 patients and two common infections, pertussis and 
bronchitis as well as non-infectious coughs. Building on the insights 
from the medical domain knowledge, we propose and develop a tri- 
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pronged mediator centered AI-engine for the cough-based diagnosis of 
COVID-19, named AI4COVID-19. The results show that the AI4COVID- 
19 app is able to diagnose COVID-19 with negligible misdiagnosis 
probability thanks to its risk-avert architecture. 

Despite its impressive performance, AI4COVID-19 is not meant to 
compete with clinical testing. Instead, it offers a unique functional tool 
for timely, cost-effective and most importantly safe monitoring, tracing, 
tracking and thus, controlling the rampant spread of the global 
pandemic by virtually enabling testing for everyone. While we are 
working on improving the AI4COVID-19, this paper is meant to present a 
proof of concept to encourage community support for more labeled data 
followed by large scale trials. We hope that the AI4COVID-19 app can be 
leveraged to pre-screen for COVID-19 at a population scale, particularly 
in regions around the world where the pandemic is spreading covertly 
due to the lack of testing. The AI4COVID-19 enabled tele-screening can 
alleviate the crushing burden on the overwhelmed medical systems 
around the world and help save countless lives. 
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