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Abstract. Lung cancer is the most common malignancy 
with the highest mortality worldwide. Emerging research 
has demonstrated that long non-coding RNAs (lncRNAs), 
a key genomic product, are commonly dysregulated in 
lung cancer and have significant functions in lung cancer 
initiation, progression and therapeutic response. lncRNAs 
may interact with DNA, RNA or proteins, as tumor suppressor 
genes or oncogenes, to regulate gene expression and cell 
signaling pathways. In the present review, first a summary 
was presented of the causal effects of dysregulated lncRNAs 

in lung cancer. Next, the function and specific mechanisms 
of lncRNA-mediated tumorigenesis, metastasis and drug 
resistance in lung cancer were discussed. Finally, the potential 
roles of lncRNAs as biomarkers for lung cancer were explored.
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1. Introduction

According to the 2018 cancer statistics, it was estimated 
that 234,030 cases of lung and bronchus cancer were newly 
diagnosed in the United States (1). Lung cancer is the primary 
cause of cancer-related deaths worldwide and results in 
>1.3 million deaths per year (2). Lung cancer mainly includes 
non-small cell lung cancer (NSCLC) and small cell lung cancer 
(SCLC). NSCLC constitutes 85% of all lung cancer cases, 
including lung adenocarcinoma, squamous cell carcinoma and 
large cell lung cancer (3-5). The lung cancer incidence rate is 
increasing worldwide, especially female morbidity (6). Despite 
the discovery of multiple mutations and targeted drugs, such as 
for the genes epidermal growth factor receptor (EGFR), KRAS 
and MET, the prognosis of advanced lung cancer patients 
remains poor, with a 5-year survival rate stagnant at ~5% (7). 
Known risk factors, such as smoking habits, air pollution and 
genetic variations, have an important impact on lung cancer 
development and clinical outcomes (8).

Long non-coding RNAs (lncRNAs) are ~200 nt in length, 
lack the protein coding potential, and constitute ~70% of the 
non-coding RNAs (9,10). Except for their role as competing 
endogenous RNA (ceRNA) to sponge microRNAs (miRNAs), 
lncRNAs have also been shown to interact with DNA, RNA 
and various proteins, thereby having crucial roles in diverse 
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physiological and pathological functions (11). Appropriate 
lncRNA expression is essential for normal cell function and 
is precisely regulated by epigenetic mechanisms and various 
other molecules. Recent reports have found that dysregulation 
of lncRNA expression induces tumorigenesis, invasiveness 
and drug resistance through diverse mechanisms in multiple 
types of cancer (12,13). lncRNAs are also important, complex 
controlling factors in the pathogenesis of lung cancer (14-17). 
In the present review, the behavior and environment-induced 
dysregulation of lncRNA expression was summarized 
in regards to lung cancer, their functions and molecular 
mechanisms were examined, and their potential as biomarkers 
for the diagnosis and prognosis of lung cancer was explored.

2. Regulation patterns of dysregulated lncRNAs in lung 
cancer

Many large‑scale investigations, including microarray profiling 
and deep sequencing data, have revealed that the derangement 
of lncRNA expression is a primary feature in lung cancer 
initiation and progression (18,19). The lncRNA expression 
levels are precisely regulated in the physiological state and 
are potentially disturbed in the pathological state by diverse 
mechanisms. The influence of chemical compounds and the 
local tumor microenvironments responsible for the regulation 
of lncRNA expression should not be ignored. Additionally, 
the function of epigenetic modification in tumor progression 
is likely involved. Abnormal epigenetic regulation can lead to 
aberrant activation of lncRNAs without involving any changes 
in the DNA sequences. Various transcription factors can bind 
within the promoter regions of lncRNAs to activate or inhibit 
their transcription. These regulation patterns of dysregulated 
lncRNAs in lung cancer are summarized in Fig. 1 and Table I.

Chemical compounds and hypoxia. It has been reported that 
H19 is significantly elevated in the airway epithelium of healthy 
20 pack-year smokers compared with non-smokers (20). 
Mineral dust-induced gene (Mdig) is associated with 
environmental exposure to smoke and dust, which influences 
the progression of lung cancer. Mdig regulates the expression 
of H19 by regulating the levels of trimethylated histone 3 
lysine 9 (H3K9me3) at the promoter region of H19 (21). 
Benzo(a)pyrene (BaP) increases H19 expression and its 
interaction with the S-adenosylhomocysteine hydrolase 
protein. By contrast, H19 knockdown suppresses the 
formation of benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide 
(BPDE)-DNA adducts, which decreases the risk for lung 
cancer (22). Smoke-associated and cancer-associated 
lncRNA-1 (SCAL1) is located on the chromosome 5q14.3 
locus. High expression of SCAL1 in lung cancer cells is 
induced by cigarette smoke extract. SCAL1 is upregulated 
by nuclear factor erythroid 2-related factor 2 (NRF2) and 
serves a functional role in cytoprotection against cigarette 
smoke‑induced toxicity. These findings suggest that SCAL1 
has an important role in the antioxidant pathway (23).

Hypoxia induces upregulation of the lncRNA 
metastasis-associated lung adenocarcinoma transcript 1 
(MALAT1) in lung cancer (24). Hypoxia-inducible factor 1α 
(HIF-1α) can bind to the hypoxia-sensitive elements on the 
promoter region of HOX transcript antisense RNA (HOTAIR) and 

activate the transcription of HOTAIR, as well as promote NSCLC 
proliferation and metastasis under hypoxia conditions (25).

Epigenetic modification. The methylated levels of MALAT1 
promoter are low in lung cancer cells or tissues. Treatment 
with the methyl donor, S-adenosylmethionine, suppresses 
MALAT1 expression in lung cancer cells (26). In such cases, 
the lncRNA sprouty RTK signaling antagonist 4 intronic 
transcript 1 (SPRY4-IT1), located at chromosome 5q31.3, is 
upregulated and promotes proliferation and metastasis of 
cancer cells (27). However, SPRY4-IT1 is expressed at low 
levels in NSCLC tissues and inhibits the proliferation and 
epithelial-mesenchymal transition (EMT) of NSCLC cancer 
cells. Enhancer of zeste homolog 2 (EZH2) can directly bind 
to SPRY4-IT1 and silence its transcription in NSCLCs (28,29).

Transcription regulation. p53 has been shown to bind the 
promoter region of HOTAIR and suppress its transcription. By 
contrast, HOTAIR enhances H3K27me3 modification within 
the p53 promoter and inhibits p53 expression in the lung cancer 
cell line A549. This negative feedback loop of HOTAIR-p53 
promotes the progression of lung cancer (30). On the contrary, 
p53 increases expression of p21-associated non-coding 
RNA DNA damage-activated (PANDAR), which is a tumor 
suppressor gene that is downregulated in human NSCLC 
tissues (31). PANDAR can interact with nuclear transcription 
factor Y subunit α (NF-YA) and low expression of PANDAR 
increases NF-YA binding to the promoter of B cell lymphoma-2 
(Bcl-2); this leads to an increase in Bcl-2 expression, thereby 
inhibiting NSCLC cell apoptosis (32). Binding of c-Myc to the 
E-boxes near the H19 imprinting control region activates the 
transcription of H19 in lung cancer (33). Notably, c-Myc also 
binds to the E-box element upstream of antisense ncRNA in 
INK4 locus (ANRIL) and induces its expression in NSCLC 
cells (34). The transcription factors, c-Myc and Yin Yang 1 
(YY1), can activate transcription of the lncRNA plasmacytoma 
variant translocation 1 (PVT1), by binding to its promoter 
region in lung cancer (35,36). The transcription factor, 
specificity protein 1 (SP1), promotes MALAT1 transcription 
and MALAT1 directly binds to SP1 protein to enhances its 
stability. This MALAT1-SP1 positive feedback loop has been 
demonstrated to promote the progression of lung cancer (37). 
Octamer binding transcription factor 4 (OCT4) has been 
reported to increase MALAT1 transcription by binding to its 
promoter enhancer region, thereby inducing upregulation of 
MALAT1 expression in lung cancer (38). MALAT1 expression 
has also been shown to be regulated by TAR DNA-binding 
protein 43 (TDP43) in lung cancer (39).

3. Biologic functions and molecular mechanisms of ln‑
cRNAs in lung cancer

In lung cancer progression, abnormally regulated lncRNAs 
act as vital factors to regulate the gene signaling network at 
the transcriptional, post-transcriptional and post-translational 
level, and thus, alter various malignant behaviors and treatment 
responses of lung cancer (Table II).

Proliferation and survival. MALAT1 can act as a ceRNA to 
regulate miR-124/STAT3 and miR-206/AKT expression to 
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promote NSCLC progression (40,41). MALAT1 binds with 
serine/arginine splicing factor (SR) in the nuclear speckle 
domains and increases SR phosphorylation followed by 
regulation of the alternative splicing of pre-mRNA (42). 
MALAT1 suppresses p53 activity by binding to a minimal 
region of p53 promoter that regulates downstream genes 
influencing the cell cycle progression of lung cancer cells (43). 
Downregulation of MALAT1 has been shown to inhibit 
NSCLC progression by inhibiting autophagy (44). The 5'end 
of HOTAIR binds with the polycomb repressive complex 2 
(PRC2) resulting in histone H3 being trimethylated at 
lysine 27, while the 3'domain binds to the histone demethylase 
complexes (lysine demethylase 1A/REST corepressor 1/RE1 
silencing transcription factor) facilitating histone H3 lysine 4 
demethylation, which causes homeobox D cluster (HOXD) 

gene silencing (45). Silencing of HOTAIR decreases miR-326 
expression, which regulates paired like homeobox 2A 
(Phox2a) and inhibits tumor cell proliferation and migration 
in lung cancer (46). H19 knockdown evidently restrains 
NSCLC cell proliferation (47-49). Notably, H19 functions as 
a ceRNA sponge for miR-17 to modulate signal transducer 
and activator of transcription 3 (STAT3) expression (50), and 
as a ceRNA sponge for miR-484 to regulate the expression 
of Rho associated coiled-coil containing protein kinase 2 
(ROCK2) (51), thereby promoting lung cancer development. 
Finally, H19 sponges miR-196b to elevate LIN28B expression, 
which accelerates the proliferation of lung cancer cells (52).

Another intergenic non-coding RNA, LINC00473, has 
been demonstrated to be the most upregulated lncRNA 
in liver kinase B (LKB1)-inactivated NSCLC tissues. 

Figure 1. Schematic plot of regulation patterns of dysregulated lncRNAs in lung cancer. (A) Chemical compounds and hypoxia affect lncRNA expression to 
promote cancer progression. (B) Changes in epigenetic modification of lncRNAs can regulate the development of lung cancer. (C) Various transcription factors 
can interact with lncRNAs to activate or inhibit their transcription, subsequently affecting cancer progression. lncRNA, long non-coding RNA.
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LINC00473 interacts with non-POU domain-containing 
octamer-binding protein (NONO) and subsequently facilitates 
NONO/CREB regulated transcr iption coactivator 1 
(CRTC1) interaction and CREB-mediated transcription, 
to promote the proliferation of LKB1-inactivated NSCLC 
cells (53). Another lncRNA, DLX6-AS1, is located on the 
chromosome 7q21.3 and has been found to be upregulated 
in lung adenocarcinoma tissues comparted with adjacent 
normal tissues (54). DLX6-AS1 alters JAK/STAT signaling 
to promote proliferation of lung adenocarcinoma cells (54). 
Another study demonstrated that the knockdown of ANRIL 
induced cell cycle arrest at the G1/G0 phase and promoted 
cell cycle apoptosis (34). In addition, depletion of ANRIL 
increased p15 expression and induced cell-cycle arrest at the 
G2/M phase of lung cancer cells (55). Knockdown of ANRIL 
has been found to reduce EZH2 binding with Krüppel-like 
factor 2 (KLF2) and p21 promoter, and to also inhibit the 
proliferation of PC9 NSCLC cells (56). SOX2 overlapping 
transcript (SOX2OT) is encoded on chromosome 3q26.3 
locus, and has been found to be upregulated in 53.01% of 
NSCLCs and significantly associated with poor survival 
in patients lung cancer. Thus, silencing of SOX2OT can 
suppress cell proliferation by causing G2/M arrest via 
regulation of EZH2 expression (57).

Similarly, BRAF-activated non-protein coding RNA 
(BANCR) is an antitumor lncRNA of 693 bp, located on the 
chromosome 9q21.11 (58). Knockdown of BANCR induces 
p38 mitogen-activated protein kinase (MAPK) and JNK 
activation, which promotes lung cancer cell proliferation 
and migration (59). By contrast, other lncRNAs, such as p53 
inducible cancer associated RNA transcript 1 (PICART1), 
can inhibit JAK2/STAT3 signaling to suppress lung cancer 
proliferation and induce apoptosis (60). Another lncRNA, 
MIR22 host gene (MIR22HG), also has a tumor suppressive 
role in lung cancer, by inhibiting oncogenes Y-box 
binding protein 1 (YBX1) and MET, while increasing p21 
expression (61). The lncRNA chromatin-associated RNA 10 
(CAR10) can regulate the expression of neighboring genes, 
which was first confirmed in human fibroblasts (62). Previous 
studies have shown that CAR10 can act as an oncogene by 
binding to the transcription factor YBX1 and subsequently 
increase the proliferation of lung cancer cells (63). A schematic 

illustrating the aforementioned lncRNAs and their roles in 
proliferation of lung cancer cells is shown in Fig. 2.

Invasion and metastasis. Liu et al (64) reported that MALAT1 
was upregulated in NSCLC tissues with bone metastasis 
compared with non-metastatic NSCLC. In addition, MALAT1 
downregulation inhibited the metastasis of lung cancer cells 
and upregulated the expression of the metastasis-suppressor 
genes MIA SH3 domain ER export factor 2 (MIA2) and 
roundabout guidance receptor 1 (ROBO1), whereas it 
decreased the expression of the tumor promoter genes glypican 
6 (GPC6), adhesion G protein-coupled receptor L2 (LPHN2), 
and AT binding cassette subfamily A member 1 (ABCA1) (65). 
Furthermore, MALAT1 acts as a sponge for miR-204 and 
enhances the expression of Snail family transcriptional 
repressor 2 (SNAI2, also known as SLUG), to promote 
epithelial-mesenchymal transition and migration of lung cancer 
cells (66). MALAT1 silencing can decrease the migration and 
invasion ability of cells by inhibiting the expression of C-X-C 
motif chemokine ligand 5 (CXCL5) (26,39). MALAT1 can 
cause the dissociation of PTB-associated splicing factor (PSF) 
from the promoter region of the proto-oncogene G antigen 6 
(GAGE6), which promotes the proliferation and invasion of 
A549 cells (24).

HOTAIR also promotes the invasion and metastasis of lung 
cancer cells by regulating homeobox A5 (HOXA5), miR-613 
and 14-3-3σ expression (67-69). Ono et al (70) found that 
patients with elevated expression of HOTAIR were more prone 
to lymph node metastasis and recurrence. HOTAIR interacts 
with lymphoid-specific helicase (HELLS) and affects the 
forkhead box A (FOXA) 2/FOXA1 expression ratio, thereby 
promoting invasion and migration of lung adenocarcinoma 
cells (71). PVT1 has been shown to regulate miR-497 
expression and to competitively bind with miR-200a and 
miR-200b, to upregulate matrix metalloproteinase 9 (MMP9) 
expression and promote the metastasis of NSCLC (72,73). 
ANRIL suppression has been shown to inhibit the invasion 
and migration of lung tumor cells (74,75). LINC00963 
is highly expressed in NSCLC tissues and interacts with 
phosphoglycerate kinase (PGK1) to prevent its ubiquitination, 
leading to activation of the AKT/mTOR oncogenic signaling 
pathway. In addition, LINC00963 interacts with NONO to 

Table I. Molecules and chemical compounds that regulate lncRNA expression in lung cancer. 

lncRNA Expression Regulation (Refs.)

MALAT1 Upregulation Hypoxia induces MALAT1; SAM suppresses MALAT1; SP1, OCT4 (24,26,37,38)
  and TDP-43 promote MALAT1 transcription
HOTAIR Upregulation HIF-1α activates HOTAIR; P53 suppresses HOTAIR expression (25,30)
H19 Upregulation  MDIG and benzo(a)pyrene increase H19 expression; c-Myc increases (21,22,33)
  H19 transcription
PVT1 Upregulation MYC and YY1 increase PVT1 transcription  (35,36)
ANRIL Upregulation C-Myc increases ANRIL transcription (34)
SCAL1 Upregulation Cigarette smoke extract increases SCAL1; NRF2 upregulates SCAL1  (23)
PANDAR Downregulation P53 increases PANDAR expression; (31)
SPRY4-IT1 Downregulation EZH2 silences SPRY4-IT1 transcription (28,29)
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activate CRTC/CREB-mediated transcription promoting 
the metastasis of lung cancer cells (76). Knockdown of the 
lncRNA ACTA2 antisense RNA 1 (ACTA2-AS1, also known 
as ZXF1) inhibits the invasion and migration of lung cancer 
cells (77). Finally, Ge et al found that CAR10 acted as a ceRNA 
for miR-30 and miR-203 and induced EMT by regulating 
Snail family transcriptional repressor 1 (SNAI1) and SNAI2 
expression (78). A schematic illustrating the aforementioned 
lncRNAs and their roles in invasion and metastasis of lung 
cancer cells is shown in Fig. 3.

Drug and radiation resistance. Medical treatment for lung 
cancer mainly includes platinum-based chemotherapy and 
molecular-targeted drugs, such as epidermal growth factor 
receptor tyrosine kinase inhibitors (EGFR-TKIs) (79,80). 
However, drug resistance at many instances leads to failure of 
treatment (81,82). Previous studies have shown that multidrug 
resistant (MDR) A549/DDP cells were primarily caused by 
changes to the cell membrane transporters, abnormal target 
enzymes and irregular apoptosis pathway (83-85). In recent 
years, there has been evidence that some lncRNAs are also 
involved in the drug resistance mechanism of lung cancer 
(Fig. 4).

The levels of several lncRNAs, including MALAT1, H19 
and HOTAIR, have been demonstrated to be upregulated in 
cisplatin-resistant lung cancer (86-88), whereas maternally 
expressed 3 (MEG3) and AK126698 are downregulated in 
drug-resistant A549/DDP lung cancer cells (89,90). MALAT1 
acts as a ceRNA to sponge miR-101 and then regulates 
SRY-box transcription factor 9 (SOX9) and MCL1 to enhance 
cisplatin resistance (91,92). Furthermore, MALAT1 induces 
cisplatin resistance via STAT3 activation, and upregulation 
of multidrug resistance-associated protein 1 (MRP1) and 
multidrug resistance 1 (MDR1) expression (86). HOTAIR 
increases cisplatin resistance in A549 cells by decreasing p21 
expression and activating the Wnt signaling pathway (93). 
HOTAIR upregulates HOXA1 by decreasing the expression of 
DNA methyltransferase (DNMT) 1 and DNMT3b, resulting in 
chemoresistant SCLC (94,95). By contrast, MEG3 expression 
is decreased in cisplatin-resistant A549/DDP lung cancer cells 
and cisplatin-insensitive lung adenocarcinoma tissues (89). 
Overexpression of MEG3 has been reported to mediate 
re-sensitization to cisplatin in drug resistant A549/DDP cells 
and animal models (89). MEG3 affects cisplatin sensitivity 
partially via regulation of the p53 and WNT/β-catenin 
signaling pathways (89). AK126698 is also found at high 
expression levels in DDP-sensitive A549 cells compared with 
the drug resistant A549/DDP cells. As a result, AK126698 
knockdown has been demonstrated to decrease the apoptosis 
of A549 cells following cisplatin treatment via activation of 
Wnt signaling (90).

EGFR-TKIs are used to treat NSCLC patients with EGFR 
mutations (96-98). When comparing gefitinib-sensitive to 
gefitinib‑resistant human lung cancer cells, 1,731 lncRNAs 
were found to be upregulated and 2,936 lncRNAs 
downregulated in drug resistant cell lines (99). HOTAIR 
induces gefitinib resistance by activating transforming 
growth factor (TGF)-α/EGFR signaling and inhibiting the 
Bax/caspase-3 pathway (100). Similarly, urothelial cancer 
associated 1 (UCA1) expression is increased in lung cancer 
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patients with EGFR-TKI resistance and thereby affects patient 
prognosis. Knockdown of UCA1 retrieves gefitinib sensitivity 
in drug-resistant cells not harboring an EGFR T790M 
mutation, via regulation of the AKT/mTOR pathway (101). 
Additionally, upregulation of growth arrest-specific 5 
(GAS5) has been detected in EGFR-TKI sensitive lung 
cancer cells. GAS5 enhances the sensitivity of lung cancer 
cells to EGFR-TKIs by regulating the EGFR pathway and 
insulin-like growth factor 1 receptor (IGF-1R) (102). Finally, 
crizotinib is an inhibitor of receptor tyrosine kinases and 
is mainly used for ALK positive lung cancer patients (79). 
HOTAIR increases crizotinib resistance of NSCLC cells 
via enhancing the phosphorylation of ULK1 and stimulating 
autophagy (103).

In addition, HOTAIR increases the radiation resistance 
in lung cancer via downregulation of Wnt inhibitory factor 1 
(WIF-1) and activation of the Wnt signaling pathway (104). 
Similarly, PVT1 also decreases the radiosensitivity of NSCLC 
cells via sponging of miR-195 (105). BANCR was demonstrated 
to be highly expressed in Lewis lung tumor-bearing mice after 
radiation therapy (106). Knockdown of BANCR expression 
promoted cancer cell viability after radiation therapy, and mice 
with lower BANCR expression had larger tumor sizes (106). 
These studies could help predict which patients may best 
respond to radiotherapy.

4. lncRNAs as biomarkers in lung cancer

lncRNAs have complex roles in the initiation and progression 
of lung cancer, thereby affecting the prognosis of patients. 
lncRNAs are prevailing in the plasma with relative stability, 
which is suitable for early diagnosis of lung cancer. Recently, 
abundant lncRNAs have also been detected in serum exosomes 
with specific and characteristic expression markers in patients 
with lung cancer, suggesting that they could be utilized as 
potential clinical biomarkers.

Several reports have found that increased HOTAIR levels 
in patients with lung cancer and upregulation of HOTAIR 
expression correlates with the pathological staging and 
poor prognosis of lung cancer (107,108). Plasma HOTAIR 
expression levels could be a biomarker for the diagnosis 
and monitoring of NSCLC patients (109). Similarly, H19 
is upregulated in NSCLC tissues and negatively correlated 
with the survival of lung cancer patients (21,49). PVT1 has 
been shown to be overexpressed in NSCLC tissues, and 
elevated PVT1 expression levels have been demonstrated 
as an independent prognostic factor for NSCLC (110-112). 
Wu et al (110) reported that PVT1 was also overexpressed 
in lung squamous cell carcinoma. Notably, overexpression of 
the lncRNA ZXF1, positioned at chromosome 10q23.31 with 
a length of 3,985 bp, was found to be significantly related 

Figure 2. Roles of lncRNA‑mediated regulatory pathways in proliferation of lung cancer cells. According to their functions, lncRNAs were classified into two 
categories: Oncogenic lncRNAs (orange) are upregulated in lung cancer, enhancing growth and proliferation of lung cancer cells; whereas tumor suppressor 
lncRNAs (purple) are downregulated in lung cancer, inhibiting proliferation. lncRNA, long non-coding RNA.
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to lymph node metastasis and poor prognosis in patients 
with lung adenocarcinoma (77). ANRIL is overexpressed 
in NSCLC tissues and cell lines and elevated ANRIL levels 
are correlated with poor prognosis in NSCLC patients (74). 
ANRIL can be found in the plasma of NSCLC patients and 
acts as an extremely sensitive diagnostic tool with an area 
under ROC curve (AUC) value of 0.798 (113). Circulating 
ANRIL expression may be used as a predictor in the early 
diagnosis of NSCLC (113). Similarly, SOX2OT is upregulated 
in serum samples of NSCLC and its expression is significantly 
associated with the overall survival (OS) rate of lung cancer 

patients (114). Several studies have reported overexpression 
of MALAT1 in tumor tissue as well as peripheral blood 
of NSCLC patients (115-118). Weber et al (119) found that 
MALAT1 expression in the peripheral blood of NSCLC 
patients was higher compared with healthy controls and was 
characterized by high specificity and sufficient sensitivity 
(AUC=0.79). Similarly, Zhang et al (120) indicated that 
abundant expression of serum exosomal MALAT1 in 
NSCLC patients was positively associated with tumor stage 
and lymph node metastasis, suggesting that MALAT1 can act 
as a tumor biomarker for prognosis and diagnosis in NSCLC.

Figure 4. lncRNAs mediate drug and radiation resistance. Tumor suppressor lncRNAs can regulate EGFR, IGF-1R, the Wnt signaling pathway and p53 to 
inhibit resistance of cancer cells towards drug and radiation therapy. Oncogenic lncRNAs promote resistance via multiple pathways, target genes and miRNAs. 
lncRNA, long non-coding RNA; EGFR, epidermal growth factor receptor; IGF-1R, insulin-like growth factor 1 receptor; miRNA, microRNA.

Figure 3. Roles of lncRNA-mediated regulatory pathways in invasion and metastasis of lung cancer. lncRNAs act as sponges for miRNAs or regulate their 
downstream target genes, thereby promoting invasion and metastasis of lung cancer cells. lncRNA, long non-coding RNA; miRNA, microRNA.
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Furthermore, Sun et al (121) analyzed 113 cases of NSCLC 
tissue samples and found that expression of BANCR was 
remarkably decreased in NSCLC patients with shorter survival 
time. Similarly, the lncRNA MIR22HG was significantly 
downregulated in lung cancer compared with normal tissues, 
and low expression was correlated with poor survival of the 
patients (61). Liang et al (122) examined a total of 123 human 
blood sample, which included blood from 90 NSCLC patients 
and 33 healthy controls prior to surgery and therapy. The 
levels of GAS5 were notably downregulated in the plasma 
of NSCLC patients. Of note, the expression levels of GAS5 
were associated with 82.2% sensitivity and 72.7% specificity 
via ROC analysis. Moreover, combination of the GAS5 with 
the carcinoembryonic antigen marker had a higher AUC of 
0.909 (95% confidence interval, 0.857‑0.962; P 0.0001) (122). 
Tantai et al found that compared to a single lncRNA, the 
combination of the lncRNAs X‑inactive specific transcript 
(XIST) and HIF-1α antisense RNA 1 (HIF1A-AS1) was also 
a prospective marker for the diagnosis of NSCLC with an 
AUC of 0.931 via ROC analysis (123). A study on SPRY4-IT1, 
ANRIL and nuclear enriched abundant transcript 1 (NEAT1) 
demonstrated that the combination was a significant marker in 
the diagnosis of lung cancer (AUC=0.876) (113).

5. Conclusion and perspectives

Emerging substantial research has confirmed that abnormally 
regulated lncRNAs have crucial roles in the malignant biology 
of lung cancer. However, available information about lncRNA 
dysregulation mechanisms in lung cancer remain limited. 
Further research into the mechanisms by which smoking and air 
pollution regulate lncRNA expression and by which lncRNAs 
affect lung cancer initiation and progression will provide valuable 
information to improve our understanding of lung cancer.

lncRNAs demonstrate diverse and dynamic functions 
depending on their subcellular localization and interacting 
molecules. At present, lncRNA remains a poorly understood 
genomic product; especially their functions in the nucleus as 
chromatin architecture regulators are unclear. In the future, the 
construction of a lncRNA-mediated gene expression network 
and associated signaling pathway network will further reveal the 
function and molecular mechanisms of lncRNA in proliferation, 
metastasis, and therapeutic response of lung cancer.

lncRNA‑specific expression patterns in cancer subtypes 
and their stability in body fluid provides a valuable choice 
as biomarkers for lung cancer. Existing studies of lncRNAs 
as biomarkers in lung cancer have laid the foundation for 
clinical application, but require further wider screening and 
validation in large cohorts. Such studies will further elucidate 
the potential of lncRNAs as diagnostic markers and treatment 
targets for lung cancer.
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