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Abstract: This study aimed to investigate the feasibility of positron range correction based on three
different convolutional neural network (CNN) models in preclinical PET imaging of Ga-68. The
first model (CNN1) was originally designed for super-resolution recovery, while the second model
(CNN2) and the third model (CNN3) were originally designed for pseudo CT synthesis from MRI. A
preclinical PET scanner and 30 phantom configurations were modeled in Monte Carlo simulations,
where each phantom configuration was simulated twice, once for Ga-68 (CNN input images) and
once for back-to-back 511-keV gamma rays (CNN output images) with a 20 min emission scan
duration. The Euclidean distance was used as the loss function to minimize the difference between
CNN input and output images. According to our results, CNN3 outperformed CNN1 and CNN2
qualitatively and quantitatively. With regard to qualitative observation, it was found that boundaries
in Ga-68 images became sharper after correction. As for quantitative analysis, the recovery coefficient
(RC) and spill-over ratio (SOR) were increased after correction, while no substantial increase in
coefficient of variation of RC (CVRC) or coefficient of variation of SOR (CVSOR) was observed.
Overall, CNN3 should be a good candidate architecture for positron range correction in Ga-68
preclinical PET imaging.

Keywords: Ga-68 preclinical PET imaging; positron range correction; convolutional neural network

1. Introduction

Positron emission tomography (PET) is widely recognized as a powerful imaging tech-
nique for in vivo quantification and localization of physiological and pathophysiological
functions. Furthermore, PET imaging allows to follow the progression of human diseases in
transgenic and knockout mice noninvasively, so it has been used to study the effectiveness
of new drugs or treatments [1–3]. Due to the small size of experimental animals, high
spatial resolution is mandatory in preclinical PET system, which is associated with positron
physics, scanner design, data correction, and the reconstruction algorithm [4,5]. Among
various positron emission radioisotopes, F-18 is by far the most widely used radionuclide.
Nevertheless, with the increasing interest in theranostic approaches for cancer treatment,
radioisotopes other than F-18 are also considered in PET imaging, such as Ga-68 [6–8].
Using Ga-68 labeled tracers for diagnostics can be effectively followed by targeted ra-
dionuclide therapy performed using the same tracer labeled with Lu-177. Since Ga-68 PET
imaging is used to determine the therapeutic protocols with Lu-177, the dose delivered to
targets and organs at risk through Lu-177 radionuclide therapy is affected by the imaging
performance of Ga-68 PET [9–11]. The mean positron energy of Ga-68 is 0.83 MeV, which
results in a mean positron range of 3.5 mm. Hence, the spatial resolution of PET imaging is
inferior with Ga-68 compared to F-18 [12]. Improving spatial resolution through positron
range correction would increase the accuracy of Ga-68 PET-based treatment planning.
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Convolutional neural network (CNN) has been applied in several medical imaging areas,
and various architectures have been developed for different tasks [13]. This study aimed
to investigate the feasibility of positron range correction based on three different CNN
models in preclinical PET imaging of Ga-68. The first CNN model (CNN1) used in this
study was originally designed to recover high resolution image from low resolution input
image, while the second CNN model (CNN2) and the third CNN model (CNN3) were
originally designed to convert MRI into pseudo CT. The image data for CNN training and
testing were generated by Monte Carlo simulation to prevent experimental errors while
realistically modeling the positron range effects.

2. Materials and Methods
2.1. Monte Carlo Simulation Toolkit

Monte Carlo simulation was performed by using GATE (GEANT4 Application for
Tomographic Emission) version 6.0.0 [14]. GATE comprises four layers of codes, which
is GEANT4 in the innermost layer, followed by the core layer, application layer, and user
layer. GEANT4, a toolkit for the simulation of the passage of particles through matter based
on Monte Carlo method, has been proven to be a proper tool for simulation of positron
transportation. In GATE, the scanner geometry, particle type, position, energy, physical
interactions of particles with matter and run process were defined by using a scripted
language at the user layer to output descriptive data in the form of random number for
running simulation using GEANT4.

2.2. Preclinical PET System

A FLEX Triumph PET/CT scanner (Gamma Medica-Ideas, Nortridge, CA, USA)
was modeled by using the cylindrical PET system in GATE, which was comprised of
5 hierarchic levels: world cylindrical PET, r sector, module, crystal, layer, to produce and
store the hit information that generates the singles and the coincidences of the simulation.
The preclinical PET scanner investigated in this study includes 180 detector blocks that
are arranged into 48 rings, and each block contains an 8 × 8 array of BGO crystals of
2.3 × 2.3 × 10 mm3. This configuration covers a transaxial field-of-view (FOV) of 10 cm
and an axial FOV of 11.6 cm. PET data were simulated with a 250- to 750-keV energy
window and 12-ns timing window in listmode format, which were consequently assigned
into 3D sinograms. The sinograms were Fourier rebinned first and then reconstructed
using 2D ordered subsets expectation maximization with 4 iterations and 10 subsets. The
voxel size used for PET reconstruction was 0.4 × 0.4 × 0.4 mm3.

2.3. Phantom Design

The phantoms shown in Figure 1 were constructed in GATE Monte Carlo simulation
by using the voxelized source and voxelized phantom to define the activity distribution
and photon attenuation, respectively. PHANbrain was the Hoffman 3D brain phantom.
Figure 1a–c demonstrate the axial, coronal, and sagittal view of PHANbrain. To increase the
dataset size and diversity for CNN training, PHANbrain was slightly modified to generate
20 phantom configurations (2 translations× 2 rotations× 5 deformations), where each of
them was filled with activity of 3.7 × 106 Bq. PHAN5rod was a cylinder of dimeter 50 mm,
length of 80 mm and containing 5 rods with diameters of 2, 4, 6, 8, 10 mm. Figure 1d
demonstrates the axial view of PHAN5rod. The target-to-background ratio (TBR) was set at
0, 2, 4, 5, 8, 10, 16, 20 to generate 8 phantom configurations, where the rod inserts within
PHAN5rod were filled with activity concentration of 1.69 × 106 Bq/mL. PHAN1sphere was a
cylinder of diameter 50 mm, length of 80 mm and containing a 10-mm-diameter sphere.
Figure 1e demonstrates the axial view of PHAN1sphere. The sphere within PHAN1sphere was
filled with water (i.e., cold sphere), while the cylinder was filled with activity concentration
of 1.69 × 106 Bq/mL. PHAN20rod was an elliptical cylinder of major axis 55 mm, minor axis
of 50 mm, length of 80 mm, and containing 20 rods with 2, 3, 4, 5 mm diameter. Figure 1f
demonstrates the axial view of PHAN20rod. The white rod inserts within PHAN20rod were
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filled with activity concentration of 1.69 × 106 Bq/mL, while the gray rod inserts were
filled with activity concentration of 8.44 × 105 Bq/mL. Overall, a total of 30 phantom
configurations were modeled in GATE Monte Carlo simulation, where each phantom
configuration was simulated twice with a 20 min emission scan duration, once for Ga-68
(CNN input images) and once for back-to-back 511-keV gamma rays (CNN output images).
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Figure 1. PHANbrain in (a) axial plane, (b) coronal plane, (c) sagittal plane, and the central axial slice
of (d) PHAN5rod, (e) PHAN1sphere, (f) PHAN20rod.

2.4. CNN Models for Positron Range Correction

Figure 2 shows the architectures of CNN models used in this study to compensate
positron range effects of Ga-68 in preclinical PET imaging. CNN1 was a 3-layered model
proposed by Dong et al. for super-resolution recovery [15]. CNN2 was a 4-layered model
proposed by Nie et al. for pseudo CT synthesis from MRI [16]. CNN3 was the deeply
supervised nets (DSN) version of CNN2 to supervise features at each convolutional stage,
enabled by layer-wise dense connections in both backbone networks and prediction lay-
ers [17]. Because the error distribution was expected to be Gaussian, the root mean square
error (RMSE), i.e., the Euclidean distance, was used as the loss function to minimize the
difference between Ga-68 PET images and the corresponding gamma source images. Using
RMSE as the loss function favors a high peak signal-to-noise ratio (PSNR). The input
images were prepared as 32 × 32-pixel sub-images randomly cropped from the original
image. To avoid border effects, all the convolutional layers have no padding, and the
network produces an output image with 20 × 20 matrix size for CNN1 and 18 × 18 matrix
size for CNN2 and CNN3. The training datasets were sub-images extracted from the
PET images of 16 PHANbrain and 4 PHAN5rod (TBR = 0, 4, 5, 8) with a stride of 14. The
testing datasets were sub-images extracted from the PET images of 4 PHANbrain (other
than those used in CNN training) and 4 PHAN5rod (TBR = 2, 10, 16, 20) with a stride
of 21. The training and testing datasets provide roughly 111,078 and 25,774 sub-images,
respectively. The filter weights of each layer were initialized by using Xavier initialization,
which could automatically determine the scale of initialization based on the number of
input and output neurons [18]. All biases were initialized with zero. The models were
trained using stochastic gradient descent with mini-batch size of 128, learning rate of 0.01
and momentum of 0.9. The CNN models were built, trained and tested by using Caffe
(Convolutional Architecture for Fast Feature Embedding) CNN platform (version 1.0.0-rc5
with CUDA 8.0.61) on an Ubuntu server (version 16.04.4 LTS) with two RTX 2080 (NVIDIA,
Santa Clara, CA, USA) graphics cards [19].
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2.5. Quantitative Analysis

The difference between Ga-68 PET images corrected by CNN-based positron range
correction (IPRC) and the corresponding gamma source images (Igamma) was quantified by
calculating the RMSE and PSNR:

RMSE =

√
∑V

i=1
(
Igamma − IPRC

)2

V
(1)

where V is the number of voxels within the whole image,

PSNR = 20 log10
Imax

RMSE
(2)

where Imax is the maximum intensity value of the image. RMSE and PSNR provide a
measure of image quality over the whole image.

The ability of Ga-68 PET images (IGa68), Igamma, and IPRC to recover contrast in small
targets was quantified by calculating the recovery coefficient (RC), which was defined as:

RC =
AVGtarget

AVGuniform
(3)

where AVGtarget is the average of a small target, and AVGuniform is the average of a uniform
region. The coefficient of variation of RC (CVRC) was defined as:

CVRC =

√(
SDtarget

AVGtarget

)2
+

(
SDuniform

AVGuniform

)2
(4)

where SDtarget is the standard deviation of a small target, and SDuniform is the standard
deviation of a uniform region. To calculate AVGtarget and SDtarget, the image slices of
PHAN5rod over the central 50 mm length were averaged to obtain one average image,
which was used to determine the voxel coordinate with maximum intensity for each rod.
The pixel coordinates were then used to create a line profile along the axial direction. The
AVGtarget and SDtarget were the average and standard deviation of pixel values in the line
profile. As for AVGuniform and SDuniform, the image slices of PHAN1sphere over the central
50 mm length were averaged to obtain one average image. A circular region-of-interest
(ROI) with 10 mm diameter was placed on the cylinder of the average image to calculate
AVGuniform and SDuniform, corresponding to the average and standard deviation within the
circular ROI, respectively.

The spill-over of activity in IGa68, Igamma and IPRC was quantified by calculating the
spill-over ratio (SOR), which was defined as:

SOR =
AVGcold
AVGhot

(5)

where AVGcold is the average of a cold spot, and AVGhot is the average of a hot spot. The
coefficient of variation of SOR (CVSOR) was defined as:

CVSOR =

√(
SDcold

AVGcold

)2
+

(
SDhot

AVGhot

)2
(6)

where SDcold is the standard deviation of a cold spot, and SDhot is the standard deviation
of a hot spot. A 10-mm-diameter ROI was placed on the cold sphere of PHAN1sphere in the
slice of the sphere center to calculate AVGcold and SDcold, corresponding to the average and
standard deviation within the cold ROI, respectively. For the same image slice, a 10-mm-
diameter ROI was placed on the cylinder of PHAN1sphere to calculate AVGhot and SDhot,
corresponding to the average and standard deviation within the hot ROI, respectively.
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3. Results

Figure 3 demonstrates Igamma, IGa68, and Ga-68 PET images after positron range
correction based on CNN1 (ICNN1

PRC ), CNN2 (ICNN2
PRC ) and CNN3 (ICNN3

PRC ) of PHANbrain. With
naked eye observation, boundaries in Ga-68 PET images became sharper after correction.
Figure 4 demonstrates Igamma, IGa68, ICNN1

PRC , ICNN2
PRC , ICNN3

PRC of PHAN5rod with TBR = 0 and 10.
The 2-mm rod in PHAN5rod with TBR = 0 that was barely seen in IGa68 became visible in
ICNN2
PRC and ICNN3

PRC . The RMSE and PSNR between Igamma and IPRC are shown in Figure 5a for
PHANbrain and Figure 5b for PHAN5rod with TBR = 10. Lower RMSEs and higher PSNRs
were observed in Figure 5b than those in Figure 5a. For either phantom configuration, the
lowest RMSE and the highest PSNR were found in CNN3-based correction, followed by
CNN2- and CNN1-based correction.
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CNN3-based correction).

The RCs of Igamma, IGa68, ICNN1
PRC , ICNN2

PRC , ICNN3
PRC are shown in Figure 6a for PHAN5rod

with TBR = 0 and Figure 6b for PHAN5rod with TBR = 10. The RCs of positron range
corrected images were higher in TBR = 0 than those in TBR = 10 for 4- and 6-mm rods,
while the difference was less obvious in 8- and 10-mm rods. Among three corrected images,
the highest RCs were observed in ICNN3

PRC for 6-, 8-, and 10-mm rods in TBR = 0, while the
highest RC for 4-mm rod was observed in ICNN2

PRC . With regard to TBR = 10, the highest
RCs were observed in ICNN3

PRC for 4-, 6-, and 8-mm rods, while the highest RC for 10-mm
rod was observed in ICNN2

PRC . The CVRCs of Igamma, IGa68, ICNN1
PRC , ICNN2

PRC , ICNN3
PRC were shown

in Figure 7a for PHAN5rod with TBR = 0 and Figure 7b for PHAN5rod with TBR = 10. The
CVRCs of positron range corrected images were lower in TBR = 0 than those in TBR = 10
for 4-, 6-, 8-, and 10-mm rods. Among three corrected images, the CVRCs of ICNN1

PRC were
slight lower than those from ICNN2

PRC and ICNN3
PRC for either phantom configuration.

With regard to the spillover effect determined by using PHAN1sphere, the SORs of
Igamma, IGa68, ICNN1

PRC , ICNN2
PRC , ICNN3

PRC were 0.017, 0.026, 0.021, 0.020, and 0.020, respectively,
while the corresponding CVSORs were 0.454, 0.424, 0.406, 0.416, and 0.441. Figure 8
demonstrates IGa68, ICNN1

PRC , ICNN2
PRC , ICNN3

PRC of PHAN20rod and comparison of intensity profiles
through the dashed line. Sharper boundaries were observed in 4- and 5-mm rods after
positron range correction. On the other hand, the image quality improvement was limited
in 2- and 3-mm rods, except for the 3-mm rod with 8.44 × 105 Bq/mL in ICNN2

PRC and ICNN3
PRC .
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4. Discussion

The quantitative capabilities of PET are confounded by a number of degrading fac-
tors, whereas the most prominent factors are low signal-to-noise ratio and intrinsically
limited spatial resolution [20]. Tumor-targeted theranostic approaches have high lesion-to-
background ratio. For example, PET imaging with Ga-68 labeled somatostatin analogues
shows high affinity for tumors expressing somatostatin receptors [7,8]. However, the image
blurring caused by the positron range effect of Ga-68 may impact the accuracy of treatment
planning based on Ga-68 PET imaging. Fourier devolution techniques have been applied
to compensate the positron range effects in PET imaging [21], which inspired us to inves-
tigate the possibility of using CNN methods for positron range correction. According to
Herraiz et al. [22], their study published in 2021 was the first work to successfully combine
deep learning and positron range correction in a coherent framework. In our opinion, more
studies are needed in this field. Hence, we investigated the feasibility of positron range
correction based on three different CNN models in preclinical PET imaging of Ga-68.

Song et al. have presented a work to recover high-resolution PET image from its low-
resolution version by using CNN-based approaches for F-18 FDG exams [23]. A 3-layer
CNN model proposed by Dong et al. [15], i.e., CNN1, and a 20-layer CNN model proposed
by Kim et al. [24] were adapted in their work. The low-resolution images used as the CNN
inputs were acquired with Siemens HR+ scanner, while the high-resolution images used as
the CNN labels were acquired with Siemens HRRT scanner, a high-resolution dedicated
brain PET scanner. Two simulation studies using the BrainWeb digital phantom and a
clinical patient study were conducted. They concluded that adding additional channels
that extract anatomical features from MRI could improve the performance of CNN-based
resolution recovery methods, whereas deep CNNs outperform shallow CNNs. Since the
positron range effect would result in image blurring, it is intuitively reasonable to expect
that CNN models designed for resolution recovery may be potential candidate for positron
range correction in Ga-68 PET imaging. Hence, CNN1 was adapted in our study.

Herraiz et al. have presented a work which adapts the U-Net network to correct
positron range effects of Ga-68 in preclinical PET imaging [22]. In their work, the input data
to CNN were Ga-68 images, while the label data were the F-18 images. The PET images for
CNN training and testing were generated by using the Monte Carlo simulator MCGPU-PET
to model data acquisition in an Inveon PET/CT scanner. Their results demonstrated that
their proposed method was able to restore the PET images going from 60% up to 95% while
maintain low noise levels. They concluded that it is sufficient to use PET images without
the corresponding CT as input for the neural network, and including not only the reference
slice but also some additional neighbor slices could improve the CNN-based positron
range correction method. In our opinion, Herraiz et al. demonstrated that CNN models
suitable for positron range correction were not only limited to those designed for resolution
recovery, because the U-Net network was originally designed for image segmentation [25].
Positron range correction is inherently an ill-posed problem, because there are multiple
Ga-68 activity distributions that may correspond to the same blurred image. Pseudo
CT synthesis from MRI is also proposed to solve ill-posed problem, because there are
multiple MRI values that may correspond to the same CT value. It was hypothesized that
CNN models designed for pseudo CT synthesis from MRI may be potential candidate for
positron range correction, so CNN2 and CNN3 were adapted in our study.

In Reference [22], it was assumed that the reconstruction method already incorporated
positron range correction for F-18, and their image data for CNN training, testing, and
validation were generated from numerical models of mice from a repository. In this
work, the CNN output images were back-to-back 511-keV gamma rays, which were not
affected by the positron range effects. Hence, our method can be used in PET scanners
without F-18 positron range correction. NEMA performance measurements have been
well accepted by the manufacturers, and most major companies now specify their product
performance in terms of these standardized and traceable specifications. This approach
to performance documentation facilitates quantitative comparison of cameras by the user
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with the assurance that all reported values are measured in the same way and, therefore,
are directly comparable [26,27]. Hence, a modified NEMA protocol was used in this study
to evaluate the performance of CNN-based positron range correction in terms of resolution
recovery and spill-over. Our results demonstrated that the image quality of Ga-68 images
was improved after positron range correction based on the 3 CNN models investigated in
this work, while CNN3 outperformed CNN1 and CNN2 qualitatively and quantitatively.
With regard to qualitative observation, it was found that boundaries in Ga-68 images
became sharper after correction (see Figures 3, 4 and 8). As for quantitative analysis, the RC
and SOR were increased after correction, while no substantial increase in CVRC or CVSOR
was observed. Overall, CNN3 should be a good candidate architecture for positron range
correction in Ga-68 preclinical PET imaging.

Several limitations to this study need to be acknowledged. First, the data acquisition,
processing and reconstruction approaches can influence the study results. The protocol
parameters used in this study were suggested by the manufacturers and are currently
employed in a real scanner installed in our institution. Second, all images were generated
from Monte Carlo simulations. Since it is difficult to obtain PET images without positron
range effect from real experiments, Monte Carlo simulation was used to generate Ga-68
images and corresponding gamma source images for CNN training and testing. Third,
the impact of image blurring caused by positron range effect on the accuracy of treatment
planning based on Ga-68 was not investigated. Assessments of the proposed methods in
real Ga-68 images and the resulting impact on treatment planning for Lu-177 radionuclide
therapy need to be further investigated.

5. Conclusions

This study investigated the feasibility of positron range correction based on three
different CNN models in preclinical PET imaging of Ga-68. CNN1 was a model originally
designed for super-resolution recovery, while CNN2 and CNN3 were models originally
designed for pseudo CT synthesis from MRI. Monte Carlo simulation was used to generate
Ga-68 images and corresponding gamma source images for CNN training and testing.
According to our results, CNN3 outperformed CNN1 and CNN2 qualitatively and quan-
titatively. With regard to qualitative observation, it was found that boundaries in Ga-68
images became sharper after correction. As for quantitative analysis, the RC and SOR were
increased after correction, while no substantial increase in CVRC or CVSOR was observed.
Overall, CNN3 should be a good candidate architecture for positron range correction in
Ga-68 preclinical PET imaging.
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