
RESEARCH ARTICLE

PfmPif97-like regulated by Pfm-miR-9b-5p

participates in shell formation in Pinctada

fucata martensii

Xinwei Xiong1☯, Bingyi Xie1☯, Zhe Zheng1, Yuewen Deng1,2, Yu Jiao1, Xiaodong DuID
1,2*

1 Fishery College, Guangdong Ocean University, Zhanjiang, China, 2 Guangdong Technology Research

Center for Pearl Aquaculture and Process, Guangdong Ocean University, Zhanjiang, China

☯ These authors contributed equally to this work.

* gdhddxd@hotmail.com

Abstract

Mollusk shell matrix proteins are important for the formation of organic frameworks, crystal

nucleation, and crystal growth in Pinctada fucata martensii (P. f. martensii). MicroRNAs

(miRNAs) are endogenous small non-coding RNAs that play important roles in many biologi-

cal processes, including shell formation. In this study, we obtained the full-length sequence

of Pif97-like gene in P. f. martensii (PfmPif97-like). PfmPif97-like was mainly distributed in

mantle pallial and mantle edge. Correlation analysis indicated that the average shell thick-

ness and weight showed a positive correlation with PfmPif97-like expression (P < 0.05). The

inner surface of the nacreous layer and prismatic layer showed atypical growth when we

knocked down the expression of PfmPif97-like by RNA interference (RNAi). We used a lucif-

erase reporter assay to identify that miR-9b-5p of P. f. martensii (Pfm-miR-9b-5p) downre-

gulated the expression of PfmPif97-like by interacting with the 30-untranslated region (UTR)

while we obtained the same result by injecting the Pfm-miR-9b-5p mimics in vivo. After

injecting the mimics, we also observed abnormal growth in nacre layer and prismatic layer

which is consistent with the result of RNAi. We proposed that PfmPif97-like regulated by

Pfm-miR-9b-5p participates in shell formation of P. f. martensii. These findings provide

important clues about the molecular mechanisms that regulate biomineralization in P. f.

martensii.

Introduction

Biomineralization is a special biological process that achieves precise regulation through

organic matrix [1]. Mollusk shell is a stable organic mineral product consisting of calcium car-

bonate and organic matrices, including proteins, polysaccharides, and lipids [2, 3]. Shell matrix

protein (SMP) is involved in nucleation, polymorphism, orientation, morphology, and organi-

zation of calcium carbonate crystallites in the shell [4]. Nacrein [5], MSI60 [6], N19 [7], N16

[8], Pif80 [9], Pif97 [9], and P10 [10] participate in nacre layer formation. MSI31 [6], MSI7

[11], aspein [12], prisilkin-39 [13], prismalin-14 [14], KRMP family [15], and prismin family

[16] have key effects in prismatic layer. Shematrin family [17], PfY2 [18], and PNU9 [19] are
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involved in nacre and prismatic layers. SMPs are basically clear according to the shell prote-

ome and genome [20]. Pif is a matrix protein consisting of Pif97 and Pif80 [9]. Suzuki identi-

fied Pif homologs from Pinctada margaritifera, Pinctada maxima, Pteria penguin, and Mytilus
galloprovincialis, and found that Pif homologs from mollusks and gastropods contain more

conserved von Willebrand factor type A domain (VWA) and chitin-binding domain (ChtBD)

[9, 21]. Pif97 is involved in the calcification of nacre, including the binding of inorganic phase

and polysaccharide template [22]. The recombinant protein Pif97 could interact with the

recombinant protein N16.3 to form macromolecules under the action of calcium ions [23].

CgPif97 participates in shell formation in Pacific oysters [24]. Multiple pieces of evidence have

denoted the importance of matrix protein containing VWA and ChtBD.

SMPs are not only participants of organic framework but also crystal regulators [9]. On ver-

tebrates, miRNAs act as regulators of extracellular accumulation, osteoclast and osteoblast dif-

ferentiation, transcription factor expression, and growth factor secretion [25]. miRNA

regulators exist not only in vertebrates but also in invertebrates. Several miRNAs in mollusk

were identified by using Solexa deep sequencing or bioinformatics analysis [26]. miR-29a [27],

miR-183 [28], and miR-2305 [29] are involved in shell formation via the downregulation of

matrix protein gene expression. These pieces of evidence signify that miRNAs commonly reg-

ulate the matrix protein gene to participate in shell formation.

Although some SMPs have been identified, the detailed molecular mechanisms of shell

biomineralization remain poorly understood. In this study, we identified a matrix protein

gene PfmPif97-like and focused on the function of biomineralization and miRNA regulation.

Materials and methods

Experimental materials

The experimental animals P. f. martensii (5–6 cm shell length) were sampled from Liushawan,

Zhanjiang, in the South China Sea. The animals were temporarily farmed with circulating sea-

water until use.

RNA isolation, cDNA synthesis, gene cloning, and real-time PCR assay

Total RNA was prepared using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according to

the manufacturer’s instructions with some modification (https://dx.doi.org/10.17504/

protocols.io.9qgh5tw) and cDNA was synthesized by M-MLV reverse transcriptase (Promega,

USA). miRNAs were extracted by using SanPrep Column microRNA Extraction Kit (Sangon

Biotech) and miRNA First-Strand was synthesized by using Mir-X miRNA First-Strand Syn-

thesis Kit (TaKaRa). The 30 and 50 ends of the PfmPif97-like gene were cloned by using rapid

amplification of cDNA ends (RACE) technology. The expression level was detected by Real-

time PCR (RT-PCR) with DyNAmo Flash SYBR Green qPCR kit (Thermo Scientific) on a

Roche LightCycler 480 (Roche, Switzerland). The PCR program was conducted as follows: 5

min at 95˚C and 40 cycles (each cycle was for 30 s at 95˚C, 15 s at 60˚C, and 15 s at 72˚C) The

relative expression level of the target genes was calculated through the 2 (CT β-actin—CT Target

gene) method, and β-actin was used as the reference gene. All primers and mimics sequences

used in this study are listed in Table 1.

Sequence analysis and target gene prediction

The open reading frame (ORF) was obtained using the ORF Finder tool (https://www.ncbi.

nlm.nih.gov/orffinder/). The protein domain was predicted by using the Simple Modular

Architecture Research Tool (http://smart.embl-heidelberg.de/smart/show_motifs.pl). Multiple
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sequence alignment was performed with Clustal Omega website tool (https://www.ebi.ac.uk/

Tools/msa/clustalo/). Target prediction between Pfm-miR-9b-5p and PfmPif97-like was per-

formed using miRanda [30] and RNAhybrid [31] software.

Expression distribution pattern of PfmPif97-like and Correlation analysis

In situ hybridization was used to determine the expression distribution of PfmPif97-like in the

mantle. RNA probes were prepared by in vitro transcription using T7 RNA polymerase and

digoxigenin (DIG) RNA Labeling Mix. RNA probe integrity was detected by using 1% agarose

gel electrophoresis, and the quality of probes was analyzed in conjunction with the RNA con-

centration and purity determined by using a nucleic acid quantifier. The mantle tissues were

fixed with 4% paraformaldehyde for 2 hours at 4˚C. Fixative volume is over 20 times that of tis-

sue on a weight per volume. Then the tissue was dehydrated through a series of graded ethanol

baths to displace the water, and then infiltrated with wax. The infiltrated tissues were then

embedded into wax blocks. Then the mantle tissue were cut into 7 μm in thickness via the

instrument of LEICA RM2235. In situ hybridization was carried out according to the instruc-

tions of Enhanced Sensitive ISH Detection Kit I (POD) (BOSTER) with some modification.

This protocol has been deposited in protocols.io (dx.doi.org/10.17504/protocols.io.9qhh5t6).

Thirty-five normal pearl oysters were select to perform the notching assays. Thirty normal

pearl oysters were select and cut a “V” shaped notch until the nacreous layer of the shell. Col-

lected the mantle edge of every five pearl oysters at 2h, 4h, 6h,12h, 24h and 36h after damage

and harvested the mantle edge of five pearl oysters (no notching) at 0 h. The larval sample is

the same sample as the sample of the developmental transcriptome in the previous genomic

article.

Table 1. The primers and sequence used in the study.

Primer Sequence Application

PfmPif97-like-S ATGGGTATAGTTGTCTACAGCAGCA CDS

PfmPif97-like-A TTATCTAAGATGTGTAGGACGACACATG CDS

PfmPif97-like-478-5’ CAGAGATTGGTGCCTGCGTGGGTG RACE

PfmPif97-like-706-5’ GGTAGGAGAGTAATCTGGGATGGCGGC RACE

PfmPif97-like-1174-3’ GCCAATGTGGAGCACTACTCGGAC RACE

PfmPif97-like-1418-3’ AGAAGGCAAAGTaAATGGAATAGGGATG RACE

pmiR-UTR-S ggactagtccAACACACTGGTCAACCCAATCAT subclone

pmiR-UTR-A cccaagcttgggAGAGGCGACATCCATTCAAAAG subclone

Pfm-miR-9b-5p UCUUUGGUUACCUAGCUGUAUGA mimics

microRNA N. C. UUCUCCGAACGUGUCACGU mimics

RT-PfmPif97-like-S CAAGCCCCAGACCAGGAGTT RT-PCR

RT-PfmPif97-like-A CAGAGGACGCAATGCCGAT RT-PCR

U6 Forward GGAACGATACAGAGAAGATTAGC RT-PCR

U6 Reverse TGGAACGCTTCACGAATTTGCG RT-PCR

RTPfm-miR-9b-5p TCTTTGGTTACCTAGCTGTATGA RT-PCR

NUP AAGCAGTGGTATCAACGCAGAGT RACES

UPM-Short CTAATACGACTCACTATAGGGC RACE

UPM-Long CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT RACE

ISH- PfmPif97-like-S CCATCCCAGATTACTCTCCTACC ISH

ISH- PfmPif97-like-A TAATACGACTCACTATAGGGCCCATCCAAAACCATACACG ISH

The bases of lowercase letters are restriction enzyme sites. The underlined bases are the T7 promoter sequence.

https://doi.org/10.1371/journal.pone.0226367.t001
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The Pearson correlation coefficient between PfmPif97-like expression in mantle edge and

growth traits was examined using Pearson test in SPSS 22.0. A total number of 21 normal pearl

oyster were used for Pearson correlation coefficient analysis. Shell parameter contains shell

length, shell width, shell height, shell weight and shell thickness.

PfmPif97-like function interference experiment in vivo

Double-stranded RNA (dsRNA) was synthesized using the T7 High-Efficiency Transcription

Kit (TransGen Biotech, JT101) and purified using EasyPure RNA Purification Kit (TransGen

Biotech, ER701). Fifteen P. f. martensii individuals of similar size (5–6 cm shell length) were

randomly divided into three groups. Double-stranded RNA (dsRNA) (60 μg/100 μL) and

diethyl pyro carbonate (DEPC) water were injected into the adductor muscle. 100 μL of

dsRNA-PfmPif97-like was injected as the experimental group. For control groups, 100 μL of

DEPC water was injected and 100 μL of dsRNA-Red Fluorescent Protein (RFP) was injected.

On the sixth day after injection, the mantle tissue was collected, frozen rapidly in liquid nitro-

gen, and stored at −80˚C. The shells were cut into 0.5 cm × 1.5 cm size and washed with ultra-

pure water. The shell samples were air dried, and the inner surface of the shell was observed by

using scanning electron microscope (SEM) in 15 kV.

Target verification between Pfm-miR-9b-5p and PfmPif97-like in vitro and

in vivo
The PfmPif97-like 30UTR containing the target site was cloned by using PrimeSTAR HS DNA

Polymerase (purchased from takara). Then the sequence was inserted into a pMIR-reporter

plasmid (purchased from Ambion) (pMi-UTR) by using restriction enzyme. We also con-

structed a mutant plasmid (pMi-MUTR) as the control. The Pfm-miR-9b-5p mimics and neg-

ative control mimics (N. C.) were compounded from GenePharma. The pMi-UTR and pMi-

MUTR groups were blank control group. The N. C. and pMi-UTR co-transfection group, N.

C. and pMi-MUTR co-transfection group, and Pfm-miR-9b-5p mimics and pMi-MUTR co-

transfection group were negative control group. The Pfm-miR-9b-5p mimics and pMi-UTR

co-transfection group was the experimental group. Each group was co-transfected with 22.5

ng of the pRL-TK vector as internal quality control to determine the relative activity in a dual-

luciferase report system. Luciferase activity was detected using the dual-luciferase assay kit

(Promega) with a microplate reader at 48 h after transfecting to HEK-293T cells cultured in

48-well plate. HEK-293T cells were cultured at 37˚C in DMEM/HIGE GLUCOSE medium

containing 10% fetal bovine serum in a CO2 incubator with 5% CO2.

Pfm-miR-9b-5p mimics and N. C. mimics were diluted to 0.1 μg/μL of RNase-free water,

and 100 μL was injected into the adductor muscles. The N. C. group served as the negative

control. Five P. f. martensii individuals (5–6 cm shell length) were used for each group. The

mantle tissue and shell of each sample were collected correspondingly and the expression level

was detected using RT-PCR. The inner surface of the nacre and prism layer was observed by

using an SEM.

Results

Cloning and characterization of PfmPif97-like
The full-length cDNA of PfmPif97-like (GenBank accession numbers: MK962312) was 2356

bp, containing an 1821 bp ORF encoding a putative protein of 606 aa, 50UTR of 47 bp, and

30UTR of 458 bp (Fig 1). PfmPif97-like contains a VWA domain and two ChtBD type 2

(ChtBD2). The local BLASTp search indicated that the amino acid sequence of PfmPif97-like
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showed 26%–41% identity to those of PfmPif97, PmPif97, PmxPif97, PpPif97, and CgPif97 (S1

File). Sequence alignment of VWA and ChtBD2 domains from PfmPif97-like, Pif, and Pif

homologs from several mollusks revealed the conservation functional site in the domain (Fig

2).

Expression distribution, expression pattern and correlation analysis

Result of in situ hybridization demonstrated that PfmPif97-like was mainly distributed in the

mantle pallial, mantle edge and was little distributed in the central zone of mantle (Fig 3).

PfmPif97 expression was significantly increased at 2 h, 4 h and 36 h after shell damage (Fig 4A)

while PfmPif97-like expression was significantly increased at 6 h, 12 h and 36 h (Fig 4A). In lar-

val development stage, PfmPif97 was highly expressed in gastrula, eye-spotted larvae and post-

veliger stage (Fig 4B) while PfmPif97-like were highly expressed in blastula and eye-spotted lar-

vae (Fig 4B).

The Pearson correlation coefficient showed PfmPif97-like expression exhibited significant

correlation with wet shell weight (R = 0.753, P< 0.05), dry shell weight (R = 0.762, P< 0.05),

the average thickness of the left shell (R = 0.751, P< 0.05) and the average thickness of the

right shell (R = 0.762, P< 0.05) (Table 2). However, no significant correlation was observed

between PfmPif97-like expression and shell width, height, and length.

PfmPif97-like interference disrupted shell biomineralization

The interference experiment showed PfmPif97-like expression levels in the mantle pallial,

mantle edge and central zone of mantle were significantly downregulated compared with

those of the control group (P< 0.05) (Fig 5A). The nacre of the corresponding shell grew dis-

orderly and slowly (Fig 5B), and the prismatic layer changed from angular to fragmented (Fig

5B).

Pfm-miR-9b-5p negatively regulated PfmPif97-like expression

The potential target site between the 30UTRs of PfmPif97-like and Pfm-miR-9b-5p was

obtained by using miRanda and RNAhybrid software (Fig 6A). In vitro, luciferase activity was

downregulated in Pfm-miR-9b-5p mimics and pMi-UTR co-transfection group compared

with that in the control groups (P< 0.05) (Fig 6B). The expression of Pfm-miR-9b-5p was sig-

nificantly upregulated after injecting the Pfm-miR-9b-5p mimics, whereas that of PfmPif97--
like was significantly downregulated (Fig 6C). The surface of the nacre and prism layer was

disordered (Fig 6D).

Discussion

SMPs are considered structural and functional macromolecules [6, 7, 11]. The function of

matrix protein in shell formation has been extensively studied, including nacrein [5], Pif [9],

ACCBP [32], PNU7 [19], Pfy2 [18], and N19 [7]. However, the mechanism of shell formation

is not fully understood. In this study, we obtained the full-length sequence of PfmPif97-like
which is similar to PfmPif97. Whether in the nacre or in the prismatic layer, chitin serves as

the key component of the organic framework [3], building compartment structures and

Fig 1. Nucleotide and amino acid sequence of PfmPif97-like. The amino acid sequences are shown below the nucleotide sequence.

The amino acid sequence with the black bold font is signal peptide and with gray background is VWA domain. The underlined

amino acid sequences are two ChtBD2 domains. The nucleotide with a frame represents the start and stop codons. The sequence

before ATG is the 50UTR region. The sequence after TAA is the 30UTR region.

https://doi.org/10.1371/journal.pone.0226367.g001
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linking with matrix protein to the morphology of calcium carbonate crystals [33,34]. In addi-

tion to chitinase [35], the matrix protein with the chitin-binding domain is related to chitin

[22]. The chitin-binding domain is an extracellular domain that contains six conserved cyste-

ines that probably form three disulfide bridges [36], which are also found in PfmPif97-like.

The recombinant PfmPif97 is a framework protein for the association of chitin-aragonite [22].

Similar to PfmPif97, PfmPif97-like has two ChtBD2, indicating that PfmPif97-like may be

involved in the formation of the organic framework by binding β-chitin. PfmPif97-like also

has a VWA domain which is a family of 200-amino-acid residues and works as an interaction

module [37]. VWA-containing proteins are widely found in P. margaritifera [38], Mytilus cor-
uscus [39], Crassostrea gigas [40], Lottia gigantea [41], and P. f. martensii [20]. In molluscks,

VWA-containing proteins may be involved in protein-protein interactions, providing initial

hydrogel properties for biomineralization [20, 37]. Thus, PfmPif97-like may act as a medium

for connecting chitin and SMP like PfmPif97.

We found PfmPif97-like was mainly expressed in the mantle pallial, mantle edge and had a

small distribution in the central zone of mantle, which are regions responsible for the nacreous

layer and prismatic layer formation. And the PfmPif97-like expression level in mantle edge was

Fig 2. The alignment result of VWA and Chitin-binding domain. A: Amino acid sequence alignment of the VWA

domains. B: Amino acid sequence alignment of the chitin binding domain. The amino acid marked with a square

indicated the MIDAS motif, DXSXS. Wires indicate the completely conserved six cysteine residues among all chitin-

binding domains. “�” showed the same amino acid. The black background indicates the conserved amino acid; “:” with

a gray background shows the amino acid with strong similarity; “.” with a gray background indicates amino acid with

weak similarity. P. f. martensii: Pinctada fucata martensii; P. margaritifera: Pinctada margaritifera; P. maxima:

Pinctada maxima; C. gigas:; BMSP has four VWA domains, namely, BMSP-1, BMSP-2, BMSP-3, BMSP-4; LG228264

and LG232022 have one VWA domain.

https://doi.org/10.1371/journal.pone.0226367.g002
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significantly correlated with shell weight and thickness. This showed that PfmPif97-like may

participate in oyster shell formation. PfmPif97 expression was significantly increased at 2 h, 4

h, and 36 h after shell notching. However, PfmPif97-like expression was significantly increased

at 6 h, 12 h and 36 h. The expression pattern of PfmPif97-like in the notching experiment is

similar to that of alveoline-like protein [42], which plays essential role in shell formation. Shell

notching causes mantle tissue retraction, causing an immune response and disturbing shell

protein secretion.[43]. After that, the shell regeneration process is mainly carried out [43].

Thus, PfmPif97-like and PfmPif97 participate in shell regeneration, and Pfmpif97-like might

be less related to immune response after shell notching than PfPif97. PfmPif97-like were highly

expressed in the blastula and PfmPif97 was highly expressed in the gastrula. This indicates that

they have the different function at the early larval development stage. Li found that a large

number of genes involved in the calcium signaling pathway and synchronization with the shell

formation were upregulated during the eye-spotted stage [44]. Thus, PfmPif97-like and

PfmPif97 are highly expressed in the eye-spotted larvae suggesting that they play a role in shell

formation. To directly determine whether PfmPif97-like is involved in shell formation, we

knocked down the expression level of PfmPif97-like by using RNAi and found that the nacre

and prism layers grew disorderly. Therefore, PfmPif97-like participates in shell formation, pos-

sibly by linking chitin and other SMPs.

Mollusk shell formation is a complex process that requires precise regulation [3, 26].

miRNA is a negative regulator [45]. miRNAs target approximately 60% of genes of mammals

[46] showing their important biological functions. miRNAs, such as miR-29a, miR-183, and

miR-2305, were found to participate in shell formation by targeting biomineralization genes

[27–29]. These show that miRNAs are generally involved in shell formation. In the present

Fig 3. In situ hybridization results. The arrows indicate the positive signal. A: The picture of experimental group. The arrows are indicated the positive signal. B: The

picture of control group. Black arrow indicates positive signal. The black line in the image indicates the scale.

https://doi.org/10.1371/journal.pone.0226367.g003
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study, we found that Pfm-miR-9b-5p may be targeting PfmPif97-like 30UTR, and the relation-

ship of regulation was verified by dual-luciferase system in vitro. In vivo, upon the overexpres-

sion of Pfm-miR-9b-5p via injection with Pfm-miR-9b-5p mimics, the expression of

Fig 4. Expression patterns of PfmPif97-like and PfmPif97. A: Expression of PfmPif97-like and PfmPif97 in larval developmental stage. B: Expression of

PfmPif97-like and PfmPif97 at different time points after notching. The averages of the groups with the same lower-case letters (a, b, c) were not significantly

different. Abbreviations in picture A: E: egg; B: blastula; G: gastrula; ET: early trochophore; T: trochophore; D: D-shaped larvae; DF: D-shaped larvae before

feeding; EU: Early umbo larvae; EL: eye-spotted larvae; S: post-veliger stage.

https://doi.org/10.1371/journal.pone.0226367.g004
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PfmPif97-like was downregulated, and the nacre and prism layers exhibited atypical growth,

similar to the results of RNAi. These show that PfmPif97-like is downregulated by Pfm-miR-

9b-5p and participates in shell formation.

Conclusion

We discover a matrix protein gene similar to PfmPif97, named PfmPif97-like, from P. f. mar-
tensii and we ascertained that PfmPif97-like is regulated by Pfm-miR-9b-5p and participates in

Table 2. Correlation analysis between PfmPif97-like expression and growth traits of P. f. martensii.

Shell

length

Shell

width

Shell

height

Total

Weight

Wet shell

weight

Dry shell

weight

Average

thickness

of the left shell

Average thickness of the right

shell

PfmPif97-like R 0.204 0.135 -0.124 0.258 0.753�� 0.762�� 0.751�� 0.762��

Expression

levels

P 0.484 0.646 0.672 0.373 0.002 0.002 0.002 0.002

The number in the table indicated the correlation coefficient (R), R>0 showed positive correlation and R<0 presented a negative correlation. Correlations with “��”

showed significant (P<0.01).

https://doi.org/10.1371/journal.pone.0226367.t002

Fig 5. The relative expression of PfmPif97-like and SEM images of nacre and prismatic layer after injecting dsRNA. A: The relative expression of PfmPif97-like
following inhibition in mantle edge (A1); mantle pallial (A2); the central zone of mantle (A3). “�” means a significant difference (P< 0.05). B: B1 and B2: SEM image of

the nacre layer of experimental group. B3 and B4: SEM image of the nacre layer of control group. B5 and B6: SEM image of the prismatic layer of experimental group. B7

and B8: SEM image of the prismatic layer of control group. The white line in the image indicates the scale.

https://doi.org/10.1371/journal.pone.0226367.g005

PfmPif97-like regulated by Pfm-miR-9b-5p participates in shell formation

PLOS ONE | https://doi.org/10.1371/journal.pone.0226367 December 12, 2019 10 / 14

https://doi.org/10.1371/journal.pone.0226367.t002
https://doi.org/10.1371/journal.pone.0226367.g005
https://doi.org/10.1371/journal.pone.0226367


shell formation, possibly by linking chitin and other SMPs. These findings provide important

clues about the molecular mechanisms that regulate biomineralization in P. f. martensii.

Supporting information

S1 File. The output result of local BLASTp. The version of the local BLASTp program is

BLASTP 2.7.1+. The database is the Pif97 sequence collected from NCBI.
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