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Modularity assumption is central to most theoretical and empirical approaches in

cognitive science. The Bayesian Brain (BB) models are a class of neuro-computational

models that aim to ground perception, cognition, and action under a single computational

principle of prediction-error minimization. It is argued that the proposals of BB

models contradict the modular nature of mind as the modularity assumption entails

computational separation of individual modules. This review examines how BB models

address the assumption of modularity. Empirical evidences of top-down influence on

early sensory processes is often cited as a case against the modularity thesis. In the

modularity thesis, such top-down effects are attributed to attentional modulation of the

output of an early impenetrable stage of sensory processing. The attentional-mediation

argument defends the modularity thesis. We analyse this argument using the novel

conception of attention in the BB models. We attempt to reconcile classical bottom-up

vs. top-down dichotomy of information processing, within the information passing

scheme of the BB models. Theoretical considerations and empirical findings associated

with BBmodels that address the modularity assumption is reviewed. Further, we examine

the modularity of perceptual and motor systems.

Keywords: modularity hypothesis, attention, precision, cognitive penetrability of perception, predictive coding

1. INTRODUCTION

The modularity of cognitive processes is a fundamental principle of the representationalist
paradigm (Fodor, 1983). Information encapsulation, according to Fodor (2001), is a necessary
condition for modularity. It entails the restriction of information flow into a computational
module from another module, referred to as cognitive impenetrability. The assumption of
information encapsulation was critical to the paradigm shift from the behaviorist to a cognitivist
perspective of mental functions as it makes mental processes tractable (Carruthers, 2006) and thus
computationally realizable.

Pylyshyn (1980) extended the concept of modularity to computational systems and posited
that for any theoretical account of mental process to be explanatory, it should have a cognitively
impenetrable functional architecture. For example, the computations in the visual module should
have some domain-specific architecture that enables them to transform information uniquely. The
range of inputs a module can parse and compute defines domain specificity. Further, Pylyshyn
(1980) argued that the modules should be computationally autonomous to make meaningful
propositions about mental faculties. A convincing demonstration of information encapsulation
in early vision is the persistence of visual illusions, even when one is consciously aware of the
illusion. Prinz (2006) counters the argument-from-illusion, by claiming that illusion is an instance
of perception trumping belief in the presence of conflict between perception and belief, and when
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there is no conflict, belief can indeed affect perception.
Churchland (1988) argues that visual illusions can be over-
ridden by voluntary attempt to modify the character of the visual
experience. For instance, when the drawing of a cube lacks visual
cues about its orientation, the farther side is interpreted as the
closer side by the observer. This illusion, called the Necker-cube
illusion, can be overridden by the deliberate “mental” inversion
of the cube.

Higher-order cognitive states, such as desires (Balcetis and
Dunning, 2006), morality (Gantman and Van Bavel, 2014), and
racial category (Levin and Banaji, 2006) is shown to affect
perceptual processing. Such instances of top-down effects on
perception are argued as evidence for cognitive penetration.
In other words, if beliefs affect early visual processes like
color perception, it suggests that the information in the
“belief processing” module penetrates the color perception
module. The strictest form of modularity thesis, known as
MassiveModularity, ascribes absolute information encapsulation
between all modules of cognition, including the central
systems. However, central systems, such as reasoning and
decision-making involve the integration of domain-general
representations, violating modularity. The defense for massive
modularity is that language, with its ability to encode and
transform conceptual representations, integrates information
across modules (Carruthers, 2006). However, there is empirical
support for the notion that content integration is not restricted
to faculty of language (Varley and Siegal, 2000), suggesting non-
modularity of central systems (Rice, 2011). The modest form of
modularity, in contrast, claims that there is a set of common
central functions that do not follow information encapsulation.
For example, analysis of resting-state BOLD activity has shown
the existence of local nodes that are tightly connected within a
specific functional module, and connector nodes that integrates
information across the individual modules (Bertolero et al.,
2015). Modest modularity maintains that input systems, such as
perception are modular, whereas, the domain-general integrative
processes are non-modular.

Firestone and Scholl (2016) presented an extensive critique
of the studies that report top-down effects on early sensory
processing. The paper argues that various empirical pitfalls
cause the change in perceptual state reported in studies
demonstrating top-down effects. Furthermore, the studies that
report “valid” top-down effects are explained as peripheral
attentional effects. Attention is the mechanism that guides
the selection of relevant information from the environment.
Attentional mechanisms are found to be responsible for the
both enhancement (Carrasco et al., 2000) and inhibition (Tipper,
1985) of sensory representations. The attention-mediation
argument for modularity is the proposition that attention affects
early perception by selecting one/few representations over others.
Consequently, attentional guidance cannot imply penetration as
attention is merely changing the output of the early sensory
processes. According to Pylyshyn (1999), “[attentional guidance
does] not count as cognitive penetration because they do not
alter the contents of perception.” Thus, attention is believed
to perform the function of integrating the outputs of the
impenetrable early sensory processing.

On the contrary, there is another view that the classical
models of attention are built on the assumption of modularity,
and consequently, attention is not solving the problem of
modularity, rather, modularity solves the problem of attention
(Van der Heijden, 1995). For instance, the Feature Integration
Theory (FIT) (Treisman and Gelade, 1980), a widely accepted
model of attention, proposes a dichotomy between bottom-
up and top-down processing. In this account, the bottom-up
processing involves the computation of fundamental featural
dimensions, such as color and orientation by domain-specific
units. These bottom-up units are believed to be implementing
its natural constraints and are automatic to the extent that
it does not engage in an inferential processing (Pylyshyn,
1999). The top-down information, such as goals and desires
has no access to these “feature detectors” that processes the
fundamental dimensions of the sensory signal. The dichotomy
of bottom-up/top-down processing is defined in terms of how
each mode of processing is affected by cognitive state. Bottom-
up processing is invariant to cognitive states, and top-down
processing is influenced by cognitive states. Thus, the evidence
that corroborates the proposed distinction between bottom-up
and top-down processing (for a review, see Theeuwes, 2010)
points to the cognitive impenetrability of the early perceptual
processing. Furthermore, the automatic nature of bottom-up
units is a defining feature of modular systems (Fodor, 1983).
The classical formulation of attention is challenged by the
recent models classified as Bayesian Brain (BB) models. In
the next section, we review how attention is defined in BB
models and place the bottom-up/top-down dichotomy within
the information passing scheme of the BB models.

2. WHAT IS BOTTOM-UP IN BAYESIAN
BRAIN?

According to Helmholtz (1925), perception is an inference on
the sensory states. This inferential process is necessitated by the
absence of one-to-one mapping of the external environment and
the information encoded by the senses. Any given sensation
could give rise to many possible interpretations. However, we
solve what is termed as the “inverse problem” of many-to-
one-mapping of the sensory state to internal representation
and perceive a relatively stable reality. The inherent ambiguity
in the data gathered by the senses necessitates a hypothesis-
testing process to build a singular percept (Gregory, 1980).
BB models solve the inverse problem by generating optimal
prediction about the causes of sensory state. The predictions are
compared against incoming information. The information that
matches the prediction is “explained away,” and the deviation
from the prediction (prediction-error) updates the generative
model, which optimizes future predictions (Rao and Ballard,
1999; Friston et al., 2006; Clark, 2013).

BB models posit that the predictive nature of mind entails
dissemination of top-down information that affects early stages
of perceptual processing. For example, in the version of the BB
model developed in Lee and Mumford (2003), the higher-order
contextual beliefs interact with early visual processing and the
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early visual areas are not only doing feature extraction but are also
involved in image segmentation and figure-ground segregation.
Whether the predictive top-down influence amounts to cognitive
penetration is debated. Lupyan (2015) provides an extensive
review on how BBmodels present a case for cognitive penetration
of perception based on evidence from cross-modal effects and
perceptual illusions. According to Lupyan (2015), the extent of
penetrability can be defined in terms of the contribution of a
perceptual process toward the minimization of the system level
prediction-error (PE).

BB models redefine the classic notions about the nature of
bottom-up and top-down information (for a review, see Rauss
and Pourtois 2013). According to BB models, the bottom-up
information carries prediction-error and top-down information
caries predictions about the sensory causes. In the literature,
prediction is often referred to as anticipation (Butz and Pezzulo,
2008), expectation (Summerfield and Egner, 2009), preparation
(Brunia, 1999). These terms are generally conceptualized in
a domain-specific manner in individual studies. Prediction in
the BB model involves domain-general signaling about the
sensory states and is estimated from the “model-of-the-world.”
This generative model encodes the statistical regularities in the
environment. The sensory signals that are consistent with the
prediction of the generative model are silenced (Summerfield
et al., 2008). It is hypothesized that predictions are encoded
by the deep pyramidal cells and PEs are encoded in superficial
pyramidal cells (Bastos et al., 2012).

According to Free Energy Principle (FEP), which is a
generalization of predictive coding, the top-down prediction is
weighted by the precision of the PE. Precision quantifies the
amount of uncertainty about the information at each level of
the cortical hierarchy and is functionally modulated by attention.
The metaphor Feldman and Friston (2010) uses for attention
is that of Standard Error (SE) in statistical decision-making.
The test statistic, on which the statistical inference is made, is
obtained by dividing the Mean Difference with the SE. When
the SE is high, the test statistic will be low, and thus, the
hypothesis is more likely to be rejected. Attention does to
perceptual inference what SE does to statistical inference. When
implemented as a hierarchical information passing scheme,
attention affects perception by optimizing precision. So, signals
with higher precision are weighted over signals with low
precision. Consequently, at every level in the hierarchy, the
signals conveying prediction and attention (precision-weighted
PE) information influence perception. In sum, the top-down
information is the precision-weighted prediction, referred to as
hyper priors (Hohwy et al., 2008) and the bottom-up information
is the precision-weighted PE.

The effects of attention observed in studies subscribing to the
classical models of attention conflate attention and prediction
(Summerfield and Egner, 2009). Hence, the extent to which the
effects of prediction and attention are separately contributing to
early perceptual effects is mostly unexplored. Empirical evidence
corroborating the dissociation of attention, and prediction is
demonstrated by orthogonal manipulation of spatial attention
and feature prediction. Wyart et al. (2012) found that increase
in the prior probability of the occurrence of signal leads to

an increase in the baseline performance, whereas the attention
cueing lead to increased signal-to-noise-precision at the attended
location. Similar manipulation of attention and prediction has
shown that attention can reverse the sensory silencing of
prediction on BOLD responses (Kok et al., 2011). The difference
in BOLD response to expected and unexpected percepts was
pronounced in the presence of attention, corroborating the idea
that attention improves the precision of PE (Jiang et al., 2013).

O’Callaghan et al. (2017), argued that the top-down effects on
early perceptual processing could be considered as penetration by
the predictive information, referred to as predictive penetration.
This argument is corroborated by neurophysiological evidence
reporting the rapid access of top-down information by the early
perceptual processing. Orbitofrontal Cortex (OFC) responds
to low spatial frequency information of the object ≈ 50 ms
before the recognition-related activity started in the Inferior
Temporal (IT) area. Early activity in OFC was also better
predictive of successful recognition of the object than the
activity in the IT region (Bar et al., 2006). Does this suggest
that predictions are changing the contents of perception? It is
argued that when attention and prediction are separated, the
influence of prediction on early sensory processing is restricted
to response selection (Rungratsameetaweemana and Serences,
2019). Prediction is found to change the criterion, a signal
detection measure of the response bias (Bang and Rahnev,
2017), but not the sensitivity (d′) of the perceptual inference
(Summerfield and Egner, 2016). This suggests that prediction
alone does not significantly affect early sensory processing.

The bottom-up information, according to the information
passing scheme described by the FEP, is not the output of
“feature detectors,” but contains the information deviating from
the top-down prediction; PE. Empirically, this suggests that
classical bottom-up effects are susceptible to the uncertainty
(precision) attached to the bottom-up cues. The bottom-
up information is continuously modulated by the real-time
estimation of precision. Evidence corroborating this has
been demonstrated using the irrelevant singleton paradigm
(Vatterott and Vecera, 2012), where the attentional capture
by color singletons (a classic bottom-up cue) changed as a
function of time. Similarly, neural activity associated with
“pop-out” like saliency was induced through experience
and behavioral relevance (Lee et al., 2002). Observation of
experience-dependent changes to classic bottom-up cues
shows that precision-weighting dynamically alters early
components of perception.

The claim that bottom-up units are not invariant to top-
down effects also violates the “automaticity assumption” of
modular systems. There have been suggestions that automaticity
is conditional on the set of circumstances available to the
agent (Bargh, 1989). Anderson and Folk (2014) reported that
involuntary response inhibition could be modulated by the
mechanisms of goal-directed processing. The Stroop effect was
shown to be eliminated when a single letter was colored instead of
the whole word (Besner et al., 1997). Future studies investigating
precision-dependent changes to classic bottom-up cues can
corroborate the information passing scheme proposed by BB
models and reconcile the bottom-up/top-down dichotomy.
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In the next section, we examine the penetrability of the
perceptual systems by the motor systems. Modularity is assumed
by many of the influential models that explain perception-
action interaction, such as the Optimal Control Theory (OCT)
(Wolpert, 1997) and the dorsal-ventral model of vision (Mishkin
et al., 1983). We attempt to analyze the modularity assumption
within OCT and the alternate proposal by FEP based on a
non-modular approach to explain perception-action interaction.

3. MODULARITY OF PERCEPTION AND
ACTION

The separation of perceptual and motor systems as modules
that work independently and sequentially is a classic notion in
cognitive science. In the classical “sandwich” model (Hurley,
2002), the perceptual system builds the internal representation
of the external environment and the motor system derives
the motor commands based on the output of the perceptual
system, mediated by the integrative cognitive processes. Studies
reporting dynamic interaction between action and perception
have questioned the classical sandwich model. Estimation of the
physical aspects of the environment, such as size, distance, and
the slope is found to be modulated by factors, such as effort (Witt
et al., 2004), handedness (Linkenauger et al., 2009), graspability
(Linkenauger et al., 2011), and skill (Witt and Proffitt, 2005).
When participants had to exert more effort to throw a ball at
a target, their perceived distance to the target also increased.
Objects presented near the hand is also shown to improve
perception, manifested as better change detection performance
(Tseng et al., 2012), and faster perceptual processing (Thomas
and Sunny, 2017).

On the one hand, the enactive theories (Varela et al., 2017)
posit that such effects can be understood as emerging from the
agent-environment interaction, where perception and action are
coupled together in a non-modular, non-sequential, and non-
encapsulated manner (Baltieri and Buckley, 2018). However, the
enactive approach rejects the idea that the agent engages in an
inferential process or generate an internal representation of the
environment. On the other hand, the optimal control theory
of action and motor control assumes that the agent constructs
an internal representation of the environment. Importantly,
perception and action are considered as separatemodules in OCT
(Wolpert and Kawato, 1998). In OCT (Wolpert et al., 1995),
motor control depends on two computationally independent and
informationally encapsulated modules; the estimator and the
controller. The estimator predicts the future sensory state based
on the current sensory state given the motor command and is
referred to as the forward model. The controller provides the
motor command that causes the sensory state predicted by the
estimator and is referred to as the inverse model. Thus, in OCT,
perception, and action are computationally separated as forward
and inverse models (Figure 1).

FEP, while maintaining that perception involves inferential
processing, proposes a non-modular approach to understand
perception-action coupling. Friston (2011) questions the
separation of forward and inverse models by OCT and propose

an alternative formulation where the Bayesian inversion of the
forward model replaces the inverse model. That is, the top-down
projections in this framework are not the motor commands,
but the predictions about the proprioceptive sensations. PE
minimization is achieved in two ways; one, by making accurate
predictions about the sensations, two, by acting in such a way
that sensations which match the predictions are selectively
sampled. This is called active inference (Feldman and Friston,
2010). In active inference, the action minimizes the precision
of sensory PE so that the predictions are fulfilled (Friston et al.,
2011). This conception views perception and action as inferential
processes that are not computationally separated and thus,
non-modular. Friston et al. (2010) notes, “the central nervous
system is not divided into the motor and sensory systems but is
one perceptual inference machine that provides predictions of
optimal action, in terms of its expected outcomes.”

FEP combines the non-modular approach of the enactive
theories with Helmholzian inferential representations. This
representationalist non-modular approach of FEP could be
argued as a trivialization of the idea of representation. According
to Ramsey (2007), formulating representation as a mediating
structure between the external environment and behavior
amounts to trivialization. Gładziejewski (2016) argues that
the representation in the BB models is as much “action-
guiding” as the representation of a cartographic map, and it
non-trivially “recapitulates” the causal-probabilistic structure
of the environment. Although OCT and FEP maintain
a representationalist approach to describe perceptual and
motor systems, FEP rejects the separation of forward and
inverse models.

The difference between the proposals of the OCT and the
FEP can be understood by examining how sensory attenuation
of action-effects is explained by both frameworks. Sensory
attenuation is the reduction in subjective sensitivity to self-
generated sensory-effects. The classic demonstration of this effect
is the inability to tickle ourselves (Blakemore et al., 1999).
Apart from somatosensation, sensory attenuation of self-caused
action-effect has been reported in visual (Cardoso-Leite et al.,
2010) and auditory modalities (Hughes and Waszak, 2011).
When participants associated a specific sensory outcome (Gabor
patch) with a unique action (keypress), the sensitivity to the
predicted action-effect was reduced (Cardoso-Leite et al., 2010).
According to OCT, the perceived intensity of an action-effect is
proportional to the amplitude of the PE (the difference between
the forward model prediction and sensation). However, in most
of the studies reporting sensory attenuation, the responses are
made on the stimuli applied or generated by the agent and not by
the experimenter. Voss et al. (2008) observed sensory attenuation
for experimenter-generated sensations that occurred while the
participant was preparing amovement. This suggests that sensory
attenuation happens even when the agent does not generate a
forward model (Voss et al., 2008; Brown et al., 2013).

The FEP does not distinguish between the forward and
the inverse models. In FEP, sensory attenuation is an effect
of reducing the precision of sensory PE. Mechanistically, this
is achieved by withdrawing attention from the consequences
of action, thereby reducing the intensity of the sensation
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FIGURE 1 | Simplified outline of the information flow in OCT and FEP that illustrates how perception and action are linked. In OCT, perception involves the generation

of the predicted sensation that feeds into the controller, and the controller feeds the forward model with the efference copy of the motor command. In FEP, the

proprioceptive PE, estimated by comparing the generative model with the sensation, is fed into the controller. Perception and action are separated as forward and

inverse model (efference copy) in OCT. In FEP, the inverse model is replaced by the Bayesian inversion of the forward model.

(Brown et al., 2013). A piece of evidence that points to the role
of attention in sensory attenuation was the reduction of action-
effect learning when participants were paired with more than one
action-effects, suggesting that action-effect association competes
for attentional resources (Watson et al., 2015). The presence of
valid attention cue is shown to result in faster processing of
action-effects (Gozli et al., 2016). In the auditory modality, motor
predictions are shown to modulate the action-effect negativity at
the posterior electrodes when the stimulus is unattended and not
when the stimulus is attended, suggesting an interactive effect
of motor prediction and attention on sensory attenuation (Jones
et al., 2013). This evidence does not sufficiently corroborate
the “withdrawal of attention” hypothesis proposed by FEP.
A convincing test of the predictions of FEP about sensory
attenuation would be achieved by orthogonally manipulating
action-effect prediction and spatial attention to dissociate the
separable contribution of action-prediction and attention on
sensory attenuation (Schröger et al., 2015a,b).

4. SUMMARY

In the current review, we explored the nature of information
processing in the BB models and its implications on the
assumption of modularity. Recent empirical findings question
the classic notion that bottom-up units are invariant to top-
down influences. The proposed nature of bottom-up and top-
down processing in the BB models is corroborated by empirical
findings that report experience-dependent changes to the
perceptual quality of the classical bottom-up information. The
dynamic and real-time changes in the estimated precision affect
perceptual inference. Defining attention as the modulator of

precision/synaptic gain provides a rich and nuanced conception
of attention.

The early sensory processing is influenced not only by
precision-weighting but also by top-down predictions that
carry information about expected sensory states. Top-down
predictions and bottom-up sensory evidence are affected by
attention at each level of the cortical hierarchy. Such a top-
down influence is not equivalent to changing the output of
early sensation. Clark (2016) claims that the formulation of
attention in BB model makes it a mechanism that dynamically
re-configures the cognitive architecture of a given stage. Thus,
the BB model’s definition of attention questions the idea that
attention is merely changing the output of early perception.
In the context of perception-action interaction, the BB models
do not hold a modular view where perception and action are
computationally separated as forward and inverse models. The
estimator in the FEP minimizes PE by comparing the motor
signal with the proprioceptive (sensory) PE, without a separate
forward model.

In order to build a unified epistemology of mental
functions, the BB models need to explain empirical findings
from diverse domains of cognition, emotion, perception, and
action. BB models offer a domain-general formulation of
information passing, where the external environment and
internal representations are defined in terms of their causal-
probability structure. In other words, the model itself is neutral
about the content of perceptual experience. The perceptual
content is determined by the winning hypothesis of the Bayesian
inferential process (Hohwy et al., 2008). This definition of
perceptual content can facilitate the integration of this framework
into the theorizations about diverse mental functions. The
attempts to build a unified theory necessitates a novel approach
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in which the mental function of interest is not ascribed epistemic
boundary at the computational level. The BB models appropriate
the enactive notion of information flow, where epistemic
boundaries between the mind, the body, and the environment are
not necessary to explain the behavior of the system.
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