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Abstract

While antimicrobial resistance in Salmonella enterica is mainly attributed to large plas-

mids, small plasmids may also harbor antimicrobial resistance genes. Previously, three

major groups of ColE1-like plasmids conferring kanamycin-resistance (KanR) in various S.

enterica serotypes from diagnostic samples of human or animals were reported. In this

study, over 200 KanR S. enterica isolates from slaughter samples, collected in 2010 and

2011 as a part of the animal arm of the National Antimicrobial Resistance Monitoring Sys-

tem, were screened for the presence of ColE1-like plasmids. Twenty-three KanR ColE1-

like plasmids were successfully isolated. Restriction fragment mapping revealed five

major plasmid groups with subgroups, including two new groups, X (n = 3) and Y/Y2/Y3

(n = 4), in addition to the previously identified groups A (n = 7), B (n = 6), and C/C3 (n = 3).

Nearly 75% of the plasmid-carrying isolates were from turkey and included all the isolates

carrying X and Y plasmids. All group X plasmids were from serotype Hadar. Serotype

Senftenberg carried all the group Y plasmids and one group B plasmid. All Typhimurium

isolates (n = 4) carried group A plasmids, while Newport isolates (n = 3) each carried a dif-

ferent plasmid group (A, B, or C). The presence of the selection bias in the NARMS strain

collection prevents interpretation of findings at the population level. However, this study

demonstrated that KanR ColE1-like plasmids are widely distributed among different S.

enterica serotypes in the NARMS isolates and may play a role in dissemination of antimi-

crobial resistance genes.
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Introduction

In the U.S., the Centers for Disease Control and Prevention estimated 48 million new episodes

of foodborne illness, ~128,000 hospitalizations, and 3000 deaths each year [1]. Salmonella
enterica serovars are among the leading bacterial pathogens, causing 11% of illnesses, 35% of

the hospitalizations, and 28% of deaths [2]. Multi-drug resistant (MDR; resistance to 3 or

more antibiotics) isolates pose a greater threat to human and animal health due to treatment

failure, and thus are a serious food security, food safety, and public health concern [3]. The

prevalence of MDR strains of S. enterica from food animals has been consistent or steadily

increasing since testing began in 1997, with the exception of 2011, based on the National Anti-

microbial Resistance Monitoring System (NARMS) reports [4–7]. Between 2010 and 2011,

the most prevalent S. enterica serotypes isolated at slaughter from chicken, turkey, cattle, and

swine were Kentucky, Hadar, Montevideo, and Derby (2010)/Adelaide (2011), respectively,

[7,8].

The majority of the antimicrobial resistance studies have been focused on chromosomal

cassettes/integrons [9,10] or large conjugative plasmids, such as IncA/C and IncI [11–15].

PCR typing kits have been developed for characterizing the large plasmid replicons [16,17].

Very few studies have been devoted to small plasmids although the low molecular weight plas-

mids were estimated to be present in about 10% of S. enterica field strains [18]. These small

plasmids may carry genes encoding bacteriocins (ColE plasmids), restriction-modification sys-

tems, reverse transcriptase, the O-antigen, and antimicrobial resistance [18–22]. Thus far,

small ColE1-like plasmids have been shown to carry resistance genes against kanamycin (aph)

[19,23–26], quinolones (qnr) [27,28], and extended spectrum β-lactams (blaCMY) [29]. The

ColE1-like plasmids utilize RNA I/II and Rom for plasmid replication/maintenance functions

[30], and most also carry mobilization gene(s) that, although not self-conjugative, allow plas-

mid transfer with the help of other co-resident conjugative plasmids such as F and IncP [31].

Previously we characterized three major small ColE1-like plasmid groups conferring KanR

(encoded by aph(3’)-I gene) in various S. enterica serovars of human clinical isolates and

NARMS animal diagnostic samples from 2005 [23,25]. These plasmids shared moderately high

levels of identity (85–92%) to each other in the RNA I/II- rom region [24,26]; some also carried

IS elements [26]. Different groups of plasmids showed some correlation with certain serotypes

[25]. To determine if these plasmids are also present in S. enterica from other sources, small

plasmid groups conferring KanR from S. enterica isolated from healthy food animals were

characterized. In this study, kanamycin resistant S. enterica isolates collected between 2010

and 2011 as part of NARMS were screened to investigate the occurrence and distribution of

KanR ColE1-like plasmids using PCR-typing with ColE1 primers [25].

Materials and methods

Salmonella NARMS strain collection and characterization

KanR S. enterica isolates (n = 223) from slaughter samples collected by the animal arm of

NARMS between 2010 and 2011 [32] were selected for screening of ColE1-like plasmids (S1

Table). All S. enterica strains were stored at -80˚C in LB Lennox (Hardy Diagnostics, Santa

Maria, CA) with 15% glycerol or stored at room temperature on tryptic soy agar (Hardy Diag-

nostics, Santa Maria, CA) slants until use.

Serotyping, antimicrobial resistance profile, and pulsed-field gel electrophoresis (PFGE)

analysis were performed per NARMS criteria as previously described [14,33]. Briefly, all iso-

lates were tested for susceptibility to 15 antimicrobials as defined by the NARMS program [32]

using a semi-automated broth microdilution system (Sensititre, Trek Diagnostic Systems,
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Inc.). Each isolate was classified as resistant, susceptible, or intermediate using the Clinical and

Laboratory Standards Institute (CLSI; formerly National Committee for Clinical Laboratory

Standards) breakpoints when available; otherwise, breakpoint interpretations as defined by

NARMS were used [32,34,35]. PFGE (XbaI) and cluster analysis was conducted as previously

described [14] at the USDA VetNet Laboratory (Athens, GA) using the PulseNet 24-h Salmo-
nella PFGE protocol [36]. BioNumerics software program (Applied Maths Scientific Software

Development, Saint-Martens-Latem, Belgium) was applied for cluster analysis using the Dice

coefficient and the unweighted pair-group method (UPGMA).

ColE1-like replicon and aph gene screening

Whole-cell lysates from all KanR isolates were prepared by inoculating 200 μl of sterile water

with a single isolated bacterial colony and heating at 95˚C for 10 min, followed by 5 min incu-

bation on ice. The lysates were then centrifuged at 10,000 ×g for 3 min, and the supernatants

were transferred to fresh tubes. The presence of the ColE1-like replicon and the kanamycin-

resistance gene, aph3’-I, were sequentially tested by PCR using ColE1 typing primers CC7059F

and CC7062R, and APH-F1 and APH-R1 primers, respectively (S2 Table) [25]. Primers were

synthesized by Integrated DNA Technologies, Inc. (Coralville, IA). Reactions were prepared

in a 20 μl final volume with 1.5 μl of 10-fold diluted lysates or 0.5 μl 10-fold diluted genomic

DNA prep (see below), 1× TopTaq PCR Buffer, 0.5 μM of each primer, 0.2 mM each of dNTP,

1× Q-solution and 1 U of TopTaq DNA polymerase (Qiagen). PCR samples were initially

incubated for 3 min at 94˚C, followed by 35 cycles of 30 sec at 94˚C/ 60 sec at 57˚C/ 60 sec at

72˚C, and 10 min at 72˚C. Primer pairs CC7059F/CC7062R and APH-F1/APH-R1 generated

351-bp and 814-bp products, respectively. An isolate was presumed to carry a KanR ColE1-like

plasmid if both amplicons of the expected size were observed. Total genomic DNA from the

66 presumptive ColE1-plasmid (+) S. enterica isolates was purified using Gentra Puregene

Yeast/Bacteria kit (Qiagen) and used for further characterization.

Plasmid purification, classification, and sequencing

Total DNA (1.5 μl) from ColE1-positive S. enterica strains was used for transformation of

Escherichia coli NEB5-alpha high efficiency competent cells (New England BioLabs, Ipswich,

MA) and colonies were selected on LB agar supplemented with 50 μg/ml kanamycin A

(Sigma-Aldrich, St. Louis, MO). Plasmids were prepared from up to six transformed KanR E.

coli colonies using the QIAprep Spin Miniprep kit. Candidate KanR ColE1-like plasmids were

categorized by restriction digests using the following enzymes: Bgl II, EcoR V, Hind III, Nco I,

Nde I, Nla III, Pvu I, Pvu II, Sal I, Sca I, Sma I/Xma I, Spe I, Xba I, and Xho I singularly or in

combination. Approximately 100 ng of DNA was digested with Nla III for 2 h at 37˚C and sep-

arated on 1.8% agarose 3:1 (ISC BioExpress, Kaysville, UT) containing 1:10,000 GelRed (Bio-

tium Inc., Hayward, CA) in 1× Tris-acetate-EDTA (TAE) buffer, 160 volt-h. All restriction

enzymes were purchased from New England BioLabs and digestions followed the manufactur-

er’s recommendation.

The aph(3’)-I genes and RNAI/II regions were sequenced from the PCR products or the

plasmid DNA, respectively, using custom primers and the BigDye Terminator v3.1 on an ABI

3730 sequence analyzer (Life Technologies) following the manufacturer’s recommendations.

Nucleotide sequences were assembled using the Sequencher program (Gene Codes, Ann

Arbor, MI). Sequence similarity was compared to GenBank and custom databases using the

BLAST programs [37,38]; pairwise or multiple sequence alignment was performed using Gen-

eious (v. 6.1; Biomatters, Ltd., Aukland, NZ).
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NCBI GenBank accession numbers

RNA II region between primers CC7059F and CC7062R of the X and Y plasmid groups (repre-

sented by pX-Kan and pY2-Kan) were deposited in NCBI GenBank under accession numbers

KX863344 and KX863345, respectively.

Results

KanR ColE1-like plasmid screen

From the 2010 and 2011 NARMS studies, a total of 223 S. enterica isolates (resistance ranging

from to 2 to 11 antibiotics tested) were resistant to kanamycin, consisting of 30 serotypes.

Serotypes Dublin, Heidelberg, Typhimurium, Senftenberg, and Schwarzengrund were the top

five serotypes, representing 41.3%, 16.1%, 8.5%, 4.9%, and 3.1% of the KanR isolates; 14 sero-

types were only represented by one isolate each. The composition of the animal source was as

follows: 113 (50.6%) from cattle (cattle, ground beef, boneless beef), 68 (30.5%) from turkey

(ground turkey, turkey carcass, turkey burger), 27 (12.1%) from chicken (young chicken,

ground chicken), and 15 (6.7%) from swine (market hog). Among the 223 KanR isolates

screened, 66 (29.6%) tested ColE1(+) by PCR, 57 (25.6%) were both ColE1(+) and Aph(+).

DNA from 46 of the 66 ColE1(+) strains was able to transform NEB5-alpha to KanR. Most

of the transformations resulted in over five hundred colonies following the standard proce-

dure; however, some DNA preps only resulted in one to a few dozen transformants. Up to six

colonies were selected from each transformation experiment, and plasmids were purified for

further analyses. Small high-copy-number plasmids were isolated from 22 original S. enterica
strains, correlating well with the high efficiency of transformation by DNA obtained from

these strains. Genomic DNA from the remaining strains resulted in fewer than four colonies

from each transformation. Plasmid minipreps purified from the transformants of 10 strains

resulted in smears by restriction digestions and the undigested plasmid prep did not reveal a

low molecular-weight (MW) band, suggesting that high MW plasmids carrying KanR genes

may be involved. These 24 strains were thus excluded from further study. A PFGE-based den-

drogram generated from the 66 ColE(+) strains is shown in Fig 1.

All 22 S. enterica strains carrying KanR ColE1-like plasmids were isolated from turkey or

cattle, and none from swine or chicken (Table 1). None of the Dublin and Heidelberg strains

were found to carry KanR ColE1-like plasmids using this procedure. All six KanR Hadar strains

carried KanR ColE1-like plasmids.

Classification of the KanR ColE1-like plasmids

Based on the restriction pattern analyses using approximately 12 enzyme combinations, we

identified two new plasmid groups: X (n = 3) and Y/Y2/Y3 (n = 4), in addition to the previ-

ously characterized groups A (n = 7), B (n = 6), and C/C3 (n = 3). Two different plasmid pat-

terns (Y2 and Y3) were identified from the E. coli transformants resulted from the DNA of the

Senftenberg isolate BEAR101182 (Table 1). Restriction patterns of the representative plasmid

from each group/subgroup are shown in Fig 2. Plasmids Y and Y2 showed nearly indistin-

guishable Nla III patterns except for an extra ~900-bp band from plasmid Y (Fig 2A); however,

they were easily separated by other enzyme combinations. Digestion patterns from Xho I +

EcoR V and Xho I + Bgl II are shown in Fig 2B. The diffused bands in Fig 2 were likely undi-

gested plasmids.

All three X plasmids were in serotype Hadar isolated from turkey (ground or carcass). All

group Y/Y2/Y3 plasmids were isolated from serotype Senftenberg strains. Plasmids Y2 and

Y3 were isolated from colonies transformed with DNA from the same S. Senftenberg turkey

Kanamycin-resistance ColE1-like plasmids in S. enterica from food animals
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Fig 1. PFGE-based dendrogram, serotype, antibiotic resistance profile, and KanR ColE1-like plasmid group of the ColE(+) isolates.

The dendrogram is based on PFGE analyses using BioNumerics software. Abbreviation for antimicrobial resistance phenotype:

ampicillin (Amp), amoxicillin-clavulanic acid (Aug), cefoxitin (Fox), ceftiofur (Tio), ceftriaxone (Axo), chloramphenicol (Chl),

gentamicin (Gen), kanamycin (Kan), nalidixic acid (Nal), sulfisoxazole (Fis), streptomycin (Str), tetracycline (Tet), Trimethoprim/

sulfamethoxazole (Cot). KanR ColE1-like plasmid group is indicated in the “Plasmid” column.

https://doi.org/10.1371/journal.pone.0193435.g001
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isolate BEAR101182; the Y3 plasmid was only represented by one colony and Y2 by three colo-

nies. Serotype Typhimurium strains (n = 4) were found to only carry group A KanR ColE1-like

plasmids in this study. Three Newport strains each carried a different KanR ColE1-like plasmid

group (A, B and C). Except for the four Typhimurium strains and two of the three S. Newport

strains, all other KanR plasmid-carrying strains (~73%; n = 16) were turkey isolates including

serotypes I 4,12:i,v: (n = 1), Brandenburg (n = 1), Hadar (n = 6), Newport (n = 1), Orion var.

15+ (n = 1), Schwarzengrund (n = 2), and Senftenberg (n = 4). Serotype Hadar was the most

prominent serotype comprised of>27% of the strains carrying KanR ColE1-like plasmids.

Sequencing of the aph gene and RNA I/II region of the novel X and Y

plasmid groups

The aph gene was amplified from the plasmid DNA purified from the E. coli strain and

sequenced using the primers listed in S2 Table. All aph(3’)-I genes from plasmids X, Y, Y2,

and Y3 were identical to that of pU302S (GenBank Accession# AY333433) (data not shown).

The primers CC7059F and CC7062R were used to sequence all new X and Y/Y2/Y3 plasmids

directly. All Y/Y2/Y3 plasmids in this study were identical between the CC7059F and

CC7062R primer binding sites, and were very similar to that of pSN11/00Kan (GQ470395;

99.1%), pU302S (AY333433; 94.3%) and pSe-Kan (HQ230976; 94.3%) (Fig 3A). Conversely,

sequences of X plasmids generated from primer CC7059F showed only moderate similarities

to plasmids pU302S (71.2%), pSN11/00Kan (70.2%), and pSe-Kan (71.7%) and Y/Y2/Y3

Table 1. S. enterica isolates carrying kanamycin-resistance ColE1-like plasmids: Serotype, antibiotic resistance profile, year of isolation and KanR ColE1-like plas-

mid group.

ID Serotype Product class Antimicrobial resistance profilea Year KanR ColE1-like plasmid

BEAR097607 Hadar Ground Turkey Amp Kan Tet 2010 A

BEAR097612 Senftenberg Ground Turkey Aug Amp Fox Tio Axo Kan 2010 Y

BEAR097614 Hadar Ground Turkey Amp Kan Tet 2010 X

BEAR097719 Brandenburg Turkey Carcass Aug Amp Fox Tio Axo Kan 2010 C3

BEAR097733 Hadar Turkey Carcass Amp Kan Str Tet 2010 B

BEAR097738 Schwarzengrund Turkey Carcass Aug Amp Fox Tio Axo Kan 2010 B

BEAR098990 Hadar Turkey Carcass Amp Kan Str Tet 2010 B

BEAR099006 Schwarzengrund Ground Turkey Aug Amp Fox Tio Axo Kan 2010 A

BEAR099415 Newport Ground Beef Aug Amp Fox Tio Axo Chl Kan Str Fis Tet 2011 B

BEAR099509 Hadar Ground Turkey Amp Kan Tet 2011 X

BEAR099641 I 4,12:l,v: Ground Turkey Aug Amp Fox Tio Axo Kan 2011 B

BEAR099717 Orion var. 15+ Ground Turkey Aug Amp Fox Tio Axo Kan 2011 C

BEAR099878 Typhimurium Ground Beef Amp Chl Kan Str Fis Tet 2011 A

BEAR099953 Typhimurium Ground Beef Amp Chl Kan Str Fis Tet 2011 A

BEAR099954 Typhimurium Ground Beef Amp Chl Kan Str Fis Tet 2011 A

BEAR099955 Typhimurium Ground Beef Amp Chl Kan Str Fis Tet 2011 A

BEAR099972 Senftenberg Ground Turkey Aug Amp Fox Tio Axo Kan 2011 Y2

BEAR099982 Newport Ground Beef Aug Amp Fox Tio Axo Chl Kan Str Fis Tet 2011 A

BEAR100358 Hadar Turkey Carcass Kan Tet 2011 X

BEAR101182 Senftenberg Ground Turkey Aug Amp Fox Tio Axo Kan 2011 Y2/Y3

BEAR101192 Newport Ground Turkey Aug Amp Fox Tio Axo Kan Str Fis Tet Cot 2011 C

BEAR101217 Senftenberg Ground Turkey Aug Amp Fox Tio Axo Kan Str 2011 B

aAbbreviations: ampicillin (Amp), amoxicillin-clavulanic acid (Aug), cefoxitin (Fox), ceftiofur (Tio), ceftriaxone (Axo), chloramphenicol (Chl), kanamycin (Kan),

sulfisoxazole (Fis), streptomycin (Str), tetracycline (Tet), Trimethoprim/sulfamethoxazole (Cot)

https://doi.org/10.1371/journal.pone.0193435.t001
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plasmids (70.5%) (Fig 3A). When this region of the X plasmids was compared against the Gen-

Bank database using BLASTN (megablast), they were found to have a sequence identity of

100% to the 5.6-kb pJJ1886-3 plasmid of a MDR E. coli isolate belonging to the ST131 H30-Rx

sublineage (CP006787) [39], 98.5% to the kanamycin resistance plasmid pUB2380 (AJ008006;

8561 bp), and 96.7% to the 6.7-kb pColD-157 plasmid of E. coli serotype O157:H7 isolate CL40

cured (Y10412) [40] (Fig 3B). Unexpectedly, primer CC7062R did not work for sequencing of

X plasmids. Upon further inspection, there were two mismatches on the X plasmids within the

last three nucleotides at the 3’-end of the CC7062R primer binding site. It is unclear exactly

how the primer CC7062R could have worked for screening for X plasmids, although it is possi-

ble that a small proportion of the primers could have lost the last (mismatched) nucleotide, or

the original S. enterica strain carried another ColE1-like plasmid that does not encode the

kanamycin resistance gene.

Discussion

The Salmonella serotypes carrying KanR ColE1-like plasmids identified in this study were very

different from those described in the previous study using 2005 NARMS diagnostic samples

[25]. NARMS isolates from our previous study were diagnostic isolates, obtained from sick

animals from diagnostic labs and the National Veterinary Lab Services. Slaughter isolates

tested in the present study originated from USDA’s Hazard Analysis Critical Control Point

(HACCP) sampling program of federally inspected slaughter and processing facilities across

the United States. Salmonella serotypes and antimicrobial susceptibility in the NARMS

strain collection used in this study may be biased as a result of increased sampling of both

Fig 2. Restriction digests of representative KanR ColE1-like plasmids. A. Nla III digests of representative plasmid groups: A (from

BEAR099953), B (from BEAR097733), C (from BEAR101192), C3 (from BEAR097719), X (from BEAR099509), Y (from

BEAR097612), Y2 (from BEAR099972) and Y3 (from BEAR101182). M1, 100 bp ladder (Invitrogen). B. Xho I+EcoR V and Xho I

+Bgl II digests of plasmid groups X, Y, Y2, and Y3; M2, 1kb Extension ladder (Invitrogen).

https://doi.org/10.1371/journal.pone.0193435.g002
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noncompliant processing facilities and facilities with serotypes commonly linked with human

infections [41]. Thus the collection may be more skewed towards contaminating isolates in

the facilities and not the true population of Salmonella in the natural environment or animal

hosts.

In the present study, the KanR plasmid-carrying isolates were predominantly from turkey.

The starting set of 223 kanamycin-resistant isolates were dominated by serotypes Dublin, Hei-

delberg, and Typhimurium, but somewhat evenly distributed among all animal source/species

(20–30%). However, isolates shown to carry the KanR ColE1-like plasmids were mostly from

turkey and some from cattle (ground beef). Among these KanR plasmid-carrying isolates,

serotype Hadar (all six strains from the total isolates screened) made up ~27%, followed by

Typhimurium and Senftenberg (four strains each). This is in strong contrast to our previous

study of the 2005 NARMS diagnostic samples (~50% from cattle/dairy cattle) which showed

that nearly 60% of the KanR plasmid-carrying strains were from serotype Newport, followed

Fig 3. Sequence alignment of the RNA I/II regions between CC7059F and CC7062R primer binding sites. A.

Alignment of representative X and Y plasmids to pU302S (group A), pSN11/00Kan (group B), and pSe-Kan (group C). B.

X plasmid against top 4 BLAST hits (pJJ1886_3, pColD-157, pO111_5, and pUB2380). Non-identical nucleotides are

highlighted in colors.

https://doi.org/10.1371/journal.pone.0193435.g003
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by Typhimurium (31.8%). In addition to changes in the NARMS isolate pool and sampling

scheme (slaughter vs. diagnostic), differences in results are also likely due to the products from

which they were isolated. Additional information on the differences in prevalence of S. enterica
isolates from humans, retail meats, and food animals can be found in the NARMS 2011 Execu-

tive Report [42].

In the previous study of NARMS 2005 samples, strains carrying group A/A2 KanR ColE1-

like plasmids comprised nearly half of the strains (45.5%), followed by group B/B2 (31.8%),

and group C/C2/C3 (22.7%) [25]. The plasmid groups were more evenly distributed in the cur-

rent study of NARMS 2010–2011 samples: 31.8% group A, 27.3% group B, and 13.6% each of

groups C/C3, X, and Y/Y2/Y3. Plasmid groups A, B, and C/C3 were found in S. enterica iso-

lates from different animal species (cattle and turkey) and from different years (2005, 2010/

2011) and sample types (diagnostic vs. slaughter), suggesting that they may be circulating

among different food animal groups, or may have an environmental niche that resulted in

widespread presence over an extended time frame.

Plasmid groups X and Y appeared to be exclusively present in serotypes Hadar and Senften-

berg, respectively, and all were isolated from turkey. Serotype Typhimurium predominantly

carried group A plasmids: all four Typhimurium isolates carried group A plasmids in this

study and six of the seven Typhimurium isolates carried A plasmids (and one carried a group

C plasmid) in the NARMS 2005 collection. In this study, group B plasmids were distributed

among a variety of serotypes, including Newport, Hadar, and Senftenberg, compared to New-

port and Heidelberg in the 2005 study. Also, very few Newport isolates were identified in this

study, whereas approx. half of the KanR ColE1-like plasmid-carrying isolates were Newport in

the previous 2005 study. The differences observed in the plasmid types and serotype distribu-

tion is likely due to the differences in the isolate selection available from the two studies.

All of the KanR ColE-like plasmids carried aph3’-I, encoding aminoglycoside 3’- phospha-

tase, responsible for the kanamycin resistance phenotype. It is possible that the kanamycin

resistance may be conferred by genes other than aph3’-I; however, we did not use PCR results

of the primer pair APH-F1 and APH-R1 as a prerequisite, thus this did not bias our screen.

There was a portion of the strains (10/66 = 15.2%) that appeared to carry large plasmids capa-

ble of conferring resistance to Kan. In the previous 2005 study, 30 were positive for the ColE

replicon by PCR from a total of 102 KanR S. enterica isolates; 23 were capable of transforming

E. coli to KanR, and seven out of 30 ColE(+) strains (23%) were classified as “non-transform-

able” (N/T) [25], possibly due to the resistance genes on the chromosome or large plasmids. In

this study, there were 20 (30%) “non-transformable” and 10 (15%) possible strains carrying

large plasmids. Previously, plasmid minipreps were prepared from the S. enterica strains, while

total genomic DNA was used in the current study. It is likely that DNA from the current pro-

cedure may favor large plasmid isolation, thus resulting in a higher proportion of the “smear”

patterns from the E. coli transformants compared to that of the previous procedure using plas-

mid minipreps that is inefficient in isolating large plasmids. Differences in serotypes and ani-

mal source/species may also be responsible for the observed differences in the success rate of

identifying small KanR ColE1-like plasmids.

The highly conserved region (> 99.5% identity) between X plasmid and pJJ1886-3 spanned

nearly 4 kb, extending beyond the RNAI/II replication region, into rom and a few mobilization

genes (Chen and Strobaugh, unpublished result). Plasmid pJJ1886-3 is one of five plasmids in

the MDR E. coli stain JJ1886 (resistant to beta-lactams, fluoroquinolones, aminoglycosides,

and chloramphenicols) isolated from a patient with fatal urosepsis [43]; however, the only plas-

mid harboring resistance genes in strain JJ1886 is the large 110-kb plasmid pJJ1886-5. Previous

to this study, the similarities between groups A, B, and C KanR ColE1-like plasmids in the S.

enterica isolates and other non-Salmonella plasmids (such as E. coli colicin plasmids pCol-let
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and pColD-157) were restricted to a smaller region (ranging from a few hundred bp to ~

2.5-kb) and/or with moderate levels of identity (~ 80–90%) [24,26]. This is the first incidence

of a KanR ColE1-like plasmid in our studies showing nearly identical sequences in such an

extensive region to a plasmid from a pathogenic E. coli isolate, pointing to the possibility that

the X-like plasmid was recently acquired by either S. enterica or the pathogenic E. coli isolate

via a horizontal transfer event such as those previously described in the literature. Reisner and

colleagues demonstrated that conjugative plasmid transfer promotes biofilm formation in co-

cultures (mixed population) comprised of natural E. coli isolates [44]. Klümper and colleagues

evaluated the mobilization of IncQ plasmid RSF1010 by IncP plasmid RP4 in Pseudomonas
putida via direct mobilization (both plasmids co-reside in the same donor bacterium) and ret-

romobilization, which requires the conjugative plasmid transfers first into the strain carrying

the mobilizable plasmid and then mediates the mobilizable plasmid transfer back through the

established connection; the mobilization potential of non-self-transmissible plasmids in mixed

communities of different plasmid content was also quantified [45]. It is conceivable that the

plasmid content of the microbial community in the natural habitat (GI track of the food ani-

mals, humans, or the environment) will have similar influence on the mobilization of these

ColE1-like plasmids, with or without the co-resident conjugative plasmid. The mobilization

capability of these KanR ColE1-like plasmids by conjugative plasmids, such as F and IncP, is

currently being investigated in our lab. With increasing availability of next-generation whole

genome sequencing data, the small plasmid database is poised to expand significantly, which

will improve our ability to identify and categorize these plasmids and possibly derive their

evolution.

In conclusion, KanR ColE1-like plasmids are widely distributed among different Salmonella
serotypes in 2010–2011 NARMS isolates as in the 2005 isolates. Turkey appeared to be a major

animal source for S. enterica strains carrying KanR ColE1-like plasmids in the current study, in

addition to cattle. Two new plasmid groups were isolated and partially sequenced. Due to the

differences in the isolate selection and selection bias, we cannot derive trend changes between

the two studies. The results from this report warrant further research focusing on small plas-

mids harboring resistance genes.
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