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We report the first genome sequence for Leucobacter sp. 4J7B1, a newly described desiccation-tolerant strain. The complete ge-
nome sequence of Leucobacter sp. 4J7B1 has been sequenced and is estimated to be around 3.5 Mb in size, with an average GC
content of 62.18%. We predict 2,953 protein-coding sequences.
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The genus Leucobacter belongs to the class of high-GC-content,
Gram-positive, nonsporulating Actinobacteria. Species of

Leucobacter have been recovered from diverse ecological niches,
including plants’ phyllosphere (1). Leucobacter sp. 4J7B1 is a
desiccation-tolerant bacterium isolated from a Nerium oleander
rhizosphere subjected to severe drought (2). Isolation of other
desiccation-tolerant microorganisms from this environment, in-
cluding the new species Arthrobacter siccitolerans 4J27, has been
reported recently (3, 4). The production of xeroprotectants, such
as glycerol, by many desiccation-tolerant microorganisms pro-
tects themselves against damage caused by drought and salts (5–
11) and other stressors (12). Thus, the combination of soy plants
and Leucobacter sp. 4J7B1 in the presence of 200-mM NaCl results
in significant protection of the plant by the microorganism. This
protection effect might be the result of glycerol production, a well-
known osmoprotectant. To our knowledge, the complete genome
sequence of the genus Leucobacter sp. 4J7B1 has not been depos-
ited in the DDBJ/EMBL/GenBank databases. In this research, we
determine the whole-genome sequence of Leucobacter sp. 4J7B1
with pyrosequencing technology as implemented at the 454 Life
Science-Roche platform with a combined approach of shotgun
and 8-Kb mate-pair sequencing (12).

A total of 150,575 reads were produced, with an average read
length of 603 bases for the shotgun and 123,838 sequences with an
average read length of 389,53 bases for the mate-pair sequencing
strategy. The total number of sequenced bases is 129,339,181, rep-
resenting a sequencing depth of around 38�. De novo assembly
was performed with default parameters by using the Newbler ver-
sion 2.6 assembler. The assembly resulted in 432 contigs, 149 of
which were larger than 500 bp. The N50 of the contig assembly was
871,355 bp, and the largest contig was 1,030,920 bp. Most of these
contigs were ordered in two scaffolds (based on mate-pair infor-
mation), where the largest scaffold was 3,069,722 bp. This combi-
nation of scaffolds and contigs resulted in an estimated genome
size of 3.5 Mb. Gap closure was attempted using gap-spanning
clones and PCR products. Putative coding sequences were pre-
dicted and genes were annotated with a pipeline implemented at
Lifesequencing S.L. (Valencia, Spain). Briefly, protein-coding se-

quences were predicted by the combined use of Glimmer (13–15),
RNAmmer (16), tRNAScan (17, 18), and BLAST (19, 20). The
complete genomic information for Leucobacter sp. 4J7B1 was
found to contain 2,953 protein-coding genes, 5 rRNA operons,
and 49 tRNA genes, with an average GC content for that chromo-
some of 62.18%.

Analysis of this genome sequence data led to propose the pres-
ence of several genes involved in glycerol metabolism in bacteria,
such as tagD, glpF, or glpQ1, among others. This knowledge can
lead to advance biotechnological applications in osmoprotection
engineering (6, 8, 21).

In summary, the complete genome sequence of Leucobacter sp.
4J7B1 will contribute to improving the knowledge of plants’ os-
moprotection by microorganisms.

Nucleotide sequence accession numbers. The complete ge-
nome sequence of Leucobacter sp. 4J7B1 has been deposited in
the TBL/EMBL/GenBank databases under accession numbers
CDWJ01000001 to CDWJ01000432.
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