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ABSTRACT

Motivation: Digital reconstruction of 3D neuron structures is an
important step toward reverse engineering the wiring and functions
of a brain. However, despite a number of existing studies, this
task is still challenging, especially when a 3D microscopic image
has low single-to-noise ratio and discontinued segments of neurite
patterns.
Results: We developed a graph-augmented deformable model (GD)
to reconstruct (trace) the 3D structure of a neuron when it has a
broken structure and/or fuzzy boundary. We formulated a variational
problem using the geodesic shortest path, which is defined as a
combination of Euclidean distance, exponent of inverse intensity
of pixels along the path and closeness to local centers of image
intensity distribution. We solved it in two steps. We first used
a shortest path graph algorithm to guarantee that we find the
global optimal solution of this step. Then we optimized a discrete
deformable curve model to achieve visually more satisfactory
reconstructions. Within our framework, it is also easy to define
an optional prior curve that reflects the domain knowledge of a
user. We investigated the performance of our method using a
number of challenging 3D neuronal image datasets of different model
organisms including fruit fly, Caenorhabditis elegans, and mouse. In
our experiments, the GD method outperformed several comparison
methods in reconstruction accuracy, consistency, robustness and
speed. We further used GD in two real applications, namely
cataloging neurite morphology of fruit fly to build a 3D ‘standard’
digital neurite atlas, and estimating the synaptic bouton density along
the axons for a mouse brain.
Availability: The software is provided as part of the V3D-Neuron
1.0 package freely available at http://penglab.janelia.org/proj/v3d
Contact: pengh@janelia.hhmi.org

1 INTRODUCTION
A major engineering challenge recognized by the National Academy
of Engineering is to reverse engineer a brain (Perry et al.,
2008; Roysam et al., 2009). To achieve such a goal, we would
need a number of enabling techniques, of which one of the
fundamental computational techniques is to precisely digitize the
3D morphological structure of a neuron acquired through various
microscopy methods, such as laser scanning microscopy. This
process is often called neuron reconstruction or tracing.

There are a number of existing studies on neuron tracing. One
may use structure elements (spheres, cylinders) as image matching
templates to progressively fit and march along a neuron structure
(Al-Kofahi, et al., 2002, 2003). Wearne et al. (2005) proposed a
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ray-bursting algorithm to cast rays in the bright image regions to
approximate a neuron structure. Zhang et al. (2007) assembled
multiple detected center skeletons of a neuron as the complete
3D structure. Interactive tracing was also considered. The widely
used Neurolucida software (MBF Bioscience) provides a method to
reconstruct a neuron manually in 2D. Meijering et al. (2004) used
the live-wire algorithm in 2D semiautomatic online tracing. In our
V3D system (http://penglab.janelia.org/proj/v3d), we also provide
an efficient 3D semiautomatic, interactive neuron tracing and editing
method (Peng et al., 2010). Fibrous tissue segmentation methods
for other medical images and bioimages (e.g. electron microscopy
images) are also relevant to neuron tracing. For instance, partial
differential equations and mathematical morphology methods for
blood vessel tracing (e.g. Zana et al., 2001; Zhang et al., 2009) can
be used for neurons as well.

In this article, we focus on a hard case of 3D neuron
reconstruction, where a 3D microscopic image had low single-to-
noise ratio, and/or broken and fuzzy neurite patterns that are due
to the intrinsic punctuated neurite structures (e.g. synaptic boutons)
or imperfectness of sample preparation. Such datasets are common
for the nervous systems of different animals. For instance, the
punctuated and thus often broken neurites can be ubiquitously seen
in the single-neuron images of Drosophila melanogaster (fruit fly)
and Caenorhabditis elegans (Fig. 1a and b), and the multiaxon
staining of a mouse brain (Fig. 1c). The high level of background
noise in an image can also lead to broken and fuzzy neurites (e.g.
Fig. 2A). In these challenging situations, the methods summarized
above often fail. Our intuition to solve this problem is to combine
both global and local cues. The global information will guide the
finer-scale optimization using local information. We formulate a
graph-augmented deformable (GD) model based on the geodesic
shortest path, and produce satisfactory tracing by first optimizing a
shortest path graph problem followed by refining a 3D deformable
curve. Within the GD framework, it is also easy to incorporate an
investigator’s prior knowledge, e.g. the starting and ending locations
for tracing, the shape prior of a 3D reconstruction, etc.

In a number of experiments using both synthetic data and real
neuronal patterns of different model organisms, including fruit fly,
C.elegans and mouse, our method outperforms several comparison
methods in terms of accuracy, consistency, robustness and speed.
We also applied GD to building a 3D neurite pattern atlas for the
fruit fly brain and to estimating synaptic bouton density in a mouse
brain.

2 METHODS
A basic module in most neuron-tracing algorithms is to trace an individual
neurite tract/segment. We consider a similar strategy. Thus, in the following
descriptions we focus on how to trace such a tract. We assemble multiple
tracts by detecting and merging their shared portions (Peng et al., 2010).
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Fig. 1. Examples of highly punctuated neurites, that have broken and often fuzzy structures and low single-to-noise ratio and their 3D reconstructions. (a) A
single lamina neuron of fruit fly (G. Rubin laboratory) along with the 3D reconstruction. In the input image (A and C) the fruit fly neuron has broken and
punctuated neurites. We applied the GD method to trace the neuron morphology (B and D) segment by segment (color-coded neurite models). (b) Punctuated
axon (MEC::YFP) of C.elegans (A) (Chelur et al., 2002), along with the GD tracing (B). (c) Multiaxon staining (A) of a mouse brain region (S. Sternson
laboratory), which displays punctuated structures including synaptic boutons, along with GD reconstructions of several user-specified neurites (B).
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Fig. 2. (A) Reconstruction of a neurite tract in a 3D confocal image of fruit fly brain. The skeleton (B) and the estimated width (C) are assembled as a digital
model (D). In our formulation, this reconstruction has a smooth skeleton and represents the maximum neurite tract information with the shortest length. Since
the neuronal pattern in (A) is broad, the haze regions make it hard to trace the skeleton in (B and D). The GD method overcomes this problem by specifying
a pair of endnodes [two spheres in (A)], or using other ways to incorporate a user’s prior knowledge, as global cues to guide tracing.

2.1 Detect the skeleton of a broken and fuzzy neurite
using GD

A neurite tract (Fig. 2A and D) can be modeled using a curved skeleton
(Fig. 2B), or ‘backbone’, plus the estimated width along the skeleton
(Fig. 2C). Similar examples can be seen in subfigure D of Figure 1a. If in the
image domain such a neurite tract was sufficiently continuous and clear (i.e.
has high contrast to the image background), many methods, e.g. a tube- or
sphere-fitting model (e.g. Al-Kofahi et al., 2002, 2003), anisotropic diffusion
(Perona and Malik, 1990), would produce a reasonably good reconstruction.
Unfortunately, in the case of broken and fuzzy neurites as in Figure 1, and the
noisy image as in Figure 2A, it is hard to directly employ these approaches.
Alternatively, here we intuitively define the ‘optimal’ skeleton as a smooth
curve through as many local centers of high intensity image regions as
possible, and at the same time to minimize the length of this curve as much as
possible, similar to the reconstruction in Figures 1b and 2B. We also require
that a reconstruction should also reflect a user’s domain/prior knowledge (e.g.
the bushy area in Fig. 2A is not part of the tract). We formulate a constrained
variational problem to determine this skeleton.

Denote the skeleton curve as C, we minimize the following geodesic
length L(C) along it,

L(C)=
∫

C
g(p,I[�(p,r)])‖dp‖ (1)

where g(.) is a geodesic metric function (Section 2.2), p = (x,y,z) represents
a 3D location on the curve, I[�(p, r)] is the distribution of image voxel
intensity in the local region �(p, r) around the position p with radius
r, ||dp|| is the differential Euclidean length along the curve, i.e. ‖dp‖=√

(dx)2 +(dy)2 +(dz)2.
We solve this variational problem using a discrete deformable model,

which converts it to a multivariate optimization problem. We use a cubic-
spline curve with K control point {Ck , k = 1,2, ... ,K} to represent the
continuous curve C. Since each control point corresponds to a 3D location,

there are totally 3K variables to be optimized for a 3D image. Evidently, it
is a non-linear optimization because of the non-linear distribution of image
intensity.

It is well known that non-linear multivariate optimization is very sensitive
to the initialization, and cannot guarantee to converge to the global optima in
finite time using existing local search techniques. However, we note that for a
graph with finite nodes, there exist shortest path algorithms to find the global
solution for the entire graph. This motivates us to use a graph algorithm to
do global coarse searching to find a good solution, which is then used as the
input of a finer-scale local search using the deformable curve. We call this
approach GD model, which has two steps:

• Graph-step (Section 2.3): create an undirected graph G on the
image (graph vertexes are image voxels) with edge weight calculated
according to the geodesic metric function g(.), and then find the shortest
path P with respect to a pair of ‘defined’ endnodes a and b of the
skeleton curve. (See Section 2.6 for ways to ‘define’ the endnodes a
and b.)

• Deforming-step (Section 2.4): take the result of the first step, P, as
the initial control point estimation of the deformable model {Ck , k =
1,2, ... ,K}, and then use local optimization techniques to refine and
smooth the skeleton curve C.

2.2 Geodesic metric function
The geodesic metric function g(.) is the key to the GD algorithm. It contains
three factors to define the skeleton curve.

g(p,I[�(p,r)])=gEgI gC (2)

where p, �(p,r), I[�(p,r)] are the same in Equation (1), gE , gI and gC are
three metrics defined for the Euclidean length, image voxel intensity and the
closeness to the local centers of image intensity distribution, respectively.
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2.2.1 Metric of Euclidean length Since the geodesic length of a curve
should reduce to the ordinary curve length when other constraints were not
considered, we define the Euclidean length metric:

gE =1 (3)

When g is set as gE , we get the curve length
∫

C

√
dx2 +dy2 +dz2.

2.2.2 Metric of image voxel intensity Let us assume bright (but not dark)
image voxels represent the neurite signal. This metric constrains that the
skeleton curve should pass through image voxels with high intensity. We
define

gI =exp
(
λI
(
1−I(p)

/
Imax

)2)
(4)

where I(p) is the intensity value at location p and Imax is the maximum
intensity of the entire image I , respectively. gI (.) can also be made adaptive
to the local image content by replacing Imax using the maximum intensity
of a local area, i.e. Imax[�(p,r)]. We use the exponent of squared inverse
intensity to emphasize the voxel intensity that represents signal. λI is a
positive coefficient to control the contribution of this term. We choose λI = 10
(other big values like 20 lead to similar results).

2.2.3 Metric of skeleton’s closeness to local centers of image intensity
distribution In order to make the skeleton better represent the image
intensity distribution, intuitively we would like to constrain the skeleton
curve to pass through the local centers of mass of an image. Thus, we define

gC (p,I[�(p,r)])=exp

(
λC

∫∫∫
�(p,r)‖p−q‖2 I(q)dq∫∫∫

�(p,r) I(q)dq

)
(5)

where we aggregate the voxel intensity weighted distances between p and
p’s neighboring voxels [within �(p, r)], normalized by the total mass of this
neighboring area. λC is a positive coefficient to control the contribution of
this term (we use λC = 1). Of note, gC can also be understood as the external
‘image’ energy in a deformable curve model.

2.3 Graph-step: shortest path in graph
We create a graph G = (V , E) for image voxels, where V is the set of
vertexes and E the set of edges among vertexes. In V , each vertex stands
for an image voxel. A pair of vertexes, which correspond to image voxels
at locations v0 = (x0, y0, z0) and v1 = (x1, y1, z1), have an undirected edge
between them only when the two vertexes correspond to immediate spatial
neighbors, i.e. their spatial coordinates simultaneously satisfy |x0 −x1|≤ 1,
|y0 −y1|≤1 and |z0 −z1|≤ 1 (and of course at two different locations).
The edge weight is determined using our geodesic metric function. In the
graph step, since we have not yet produced an estimation of the optimal
neighborhood �(p,r) of each skeleton point p, we set r = 0. Thus from the
following Equations (2)–(5), we define the edge weight between vertexes v0

and v1 as

e(v0,v1)=‖v0 −v1‖·
(

gI (v0)+gI (v1)

2

)
(6)

In our implementation, we use an edge lookup table in Figure 3 to speed up
the creating of the graph. This lookup table, shown in C language, is defined
as a cube of eight neighboring nodes. With it we need to do only one pass
of gI (.) computation and directly set up the graph.

Obviously, our geodesic metric function outputs only positive value. Thus,
we use the Dijkstra algorithm (Dijkstra, 1959) to find the shortest path in G.
Its time complexity is O(|E|+|V |log(|V |)) using a Fibonacci heap. For a 3D
image with totally N voxels, |E| = 13|V | and |V | = κN , where κ(0 < κ ≤ 1) is
a subsampling factor controlling if only a portion of image voxels are used in
the computation. Thus, the time complexity of the graph-step is O(N logN). It
can also be significantly accelerated by choosing a small κ via downsampling
a large image, or using only image voxels that are bright enough (e.g. voxel
intensity larger than the mean intensity of the entire image). Removing the
diagonal edges in Figure 3, i.e. those with sqrt(2) (orange colored edges) and
sqrt(3) (green colored edges), can also speed up the computation significantly,
at the cost of a less optimal initialization for the subsequent deforming-step.

Fig. 3. The edge lookup table for creating the shortest path finding graph.

2.4 Deforming-step: energy minimization for local
optimization

We use the shortest path P obtained in the graph-step to initialize the control
point locations {Ck , k = 1, ...,K} of the deformable curve C, which is
further refined and smoothed using a local search. Using the geodesic metric
definitions in Equations (1)–(5), we define three energy terms EE (k), EI (k)
and EC (k),

EE (k)=‖Ck −Ck+1‖(k =1,...,K −1) (7)

EI (k)=λI

(
1− I(Ck)

maxI[�(Ck,r)]
)2

(8)

EC (k)= λC
∑

q∈�(Ck ,r)‖Ck −q‖2 I(q)∑
q∈�(Ck ,r) I(q)

(9)

The overall energy function for the discrete deformable curve has the
following form

EGD =
K−1∑
k=1

exp(EI (k)+EC (k))‖Ck −Ck+1‖ (10)

We note that the deforming-step is a local search around the optimal skeleton,
thus we can reasonably assume EI (k)+EC (k) is close to zero. Thus, we
further consider the Taylor expansion of this term at 0 and get

exp(EI (k)+EC (k))≈1+EI (k)+EC (k) (11)

To achieve further convenience in the local search, we minimize an upper
bound of Equation (10), where we replace the exponential term using
Equation (11) and also substitute the total curve length (which is larger
than 1) with the sum of squared piece-wise distances of control points.

EGD =
K−1∑
k=1

‖Ck −Ck+1‖2 +max
k

‖Ck −Ck+1‖
K∑

k=1

(EI (k)+EC (k)) (12)

In this manner, we indeed can rewrite the energy function as Equation (13),
which is similar to the backbone detection without boundary (BDB)
algorithm we developed for detecting the skeleton of a curved C.elegans
body (Peng et al., 2008),

EGD =αEimage +βElength +γEsmoothness (13)
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Eimage =
∑K

k=1
(EI (k)+EC (k)) (14)

Elength =
∑K−1

k=1
‖Ck −Ck+1‖2 (15)

Esmoothness =
∑K−1

k=2

∥∥∥∥Ck − Ck−1 +Ck+1

2

∥∥∥∥
2

(16)

where α, β, γ are three positive weighting factor (e.g. α = 1, β = γ = 0.2),
Esmoothness is an additional constraint term to make the control points to be
evenly spaced on the curve. Equation (13) can be minimized via iterative
updating of control points based on the gradient descent (Peng et al., 2008).
Of note, after the graph-step, I(Ck) in Equation (8) almost reaches its local
maximum, in another word EI (k) ≈ 0. Thus in the deforming-step we can
ignore it to make the computation even faster.

2.5 Dynamically estimate local region radius
While we optimize the skeleton curve of a neurite tract (Fig. 2B), we also
dynamically estimate the width around each of its control points (Fig. 2C).
We use a simple method. We define a radius-adjustable spherical region
centered at a control point, and therefore adjust the radius from small to large
until 0.1% of the image voxels within this sphere are darker than the average
voxel intensity of the entire image. In most cases, the choice of 0.1% makes
estimated boundary of a neurite have clear contrast to the image background.
Optionally, we also allow a mean-shift type adjustment of the 3D location
of a control point, based on the optimal radius detected. In such a case, we
discard the tangent-direction movement of a control point, and thus constrain
the movement of a control point only in the orthogonal plane. In this way,
both the width of the neurite tract and the location of control points can be
well detected.

2.6 Consider prior knowledge and global cues
At least two types of prior knowledge, i.e. the prior locations of the two
endnodes and the prior skeleton curve, can be conveniently incorporated in
the GD model. They serve as the global cues to guide the tracing. In our
framework, the locations of two endnodes of a neurite tract specify where
the shortest path starts and ends. This is similar to the ‘seeding’ step in earlier
methods (e.g. Wearne et al., 2005) so that the tracing program knows where
to start the search. In addition, given a prior curve Cprior, we extend the
energy function of the deformable model as

E =EGD +ηEprior (17)

Eprior =
K∑

k=1

∥∥d(Ck,Cprior)
∥∥2

(18)

where d(.) is the shortest Euclidean distance between the control point Ck

and the prior curve Cprior, and η is a positive coefficient. Equation (17) can
be easily minimized via gradient descent.

We have recently developed a real-time 3D visualization-assisted image
analysis system, called V3D, for very large bioimages (Peng et al., 2010).
One advantage of this system is to allow highly ergonomic interaction of
3D image content using an ordinary computer mouse, but not much more
expensive stereo view or even virtual reality hardware. With V3D it is easy
to supply the prior knowledge. A user can directly pinpoint any 3D image
location in the 3D space, with only one or two mouse clicks, and thus specify
the locations of endnodes of a neurite tract. The user can also draw directly
in the 3D space using the mouse, with just one stroke, to produce a 3D prior
curve that follows a neurite tract.

The prior information can also be produced automatically. For instance,
V3D provides an Auto-Marker function to seed the GD tracing. We can also
use the graph-step result as the prior curve, which will balance with the
energy of the deformable model.

3 EXPERIMENTS AND DISCUSSIONS
We evaluated GD using both synthetic and real images, and
compared it to other tracing tools including manual tracing

Fig. 4. Comparison of automatic GD reconstructions and manual
reconstructions. (a) Visualizing the GD reconstruction and two independent
manual reconstructions (N1, N2) using Neurolucida. Location pointers A–G
indicate where GD significantly outperforms manual tracing. For clearer
visualization, only the skeletons of traced neurites are displayed on top of
the raw image. (b) SSD scores (in voxels) for the manual reconstructions
compared to those between GD results and the respective best-matching
manual reconstructions (i.e. SSD (N*, GD) = min{SSD (N1, GD), SSD
(N2, GD)}.

(Neurolucida) and automatic tracing (NeuronStudio). We also
applied GD to nervous systems of different animals, including fruit
fly, C.elegans and mouse. Finally, we applied GD to cataloging
different morphology in a fruit fly brain, building a 3D digital atlas
of neurites in the fly brain, and estimating the distribution of synaptic
boutons along axons in a mouse brain; these applications represent
challenging tasks that have not been previously quantitatively
studied, and thus also demonstrate the strength of GD.

3.1 Accuracy and speed of GD
We used 3D confocal images of 10 single neurons in a fruit fly brain
(courtesy of T. Lee laboratory). An image has a size 512×512×Z
voxels (Z is about 70). A neuron in this dataset has 12–21 tracts
(branches) in its full reconstruction. In total, there are 160 tracts.
The punctuated structures in these neurons lead to uneven brightness
and fuzzy structures in the respective images (Fig. 4a). In addition,
morphologically these neurons have a lot of sharp turns and dense
arborization (Fig. 4a), which make them hard to reconstruct even
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manually. Indeed with the Neurolucida software, we spent 2 weeks
in manually tracing their structures in two independent trials. The
manual reconstructions were used as the ‘ground truth’ to evaluate
the accuracy of GD reconstructions. When we used GD tracing,
once the seeding step was done, each neuron was reconstructed
within 20–30 seconds on a MacBook Pro laptop with 4 GB of
memory.

We used the two independent trials of manual reconstructions as
the baseline control to evaluate the accuracy of the automatic GD
reconstructions. As shown in Figure 4a (locations A, B, C, E, F and
G), GD produced a more accurate and also smoother reconstruction
than the manual tracing. GD also correctly detected a missing branch
that the human tracer missed twice (location D in Fig. 4a). Why
is the automatic method better? It is because GD considers the 3D
information comprehensively while it was quite difficult for a human
to do so using Neurolucida.

We also quantified the reconstruction accuracy. Because any two
reconstructions (denoted as R1 and R2) of the same neuron may have
some difference in their structures and locations, we computed the
‘distance’ between R1 and R2 by averaging the reciprocal minimal
spatial distances of their reconstruction nodes (Peng et al., 2010). A
larger distance means the greater discrepancy between R1 and R2. In
addition, we noted that when such a minimal distance of individual
reconstruction nodes was less than 2 voxels, visually it was hard
to tell which reconstruction fit the image signal better. Thus, we
averaged the reciprocal distances that were no less than 2 pixels.
We called this score the significant spatial distance (SSD) between
two reconstructions. Figure 4b shows that for 8 out of 10 neurons,
the SSD of a pair of manual reconstructions is bigger than that of the
automatic GD reconstruction and its best matching of the two manual
reconstructions. The SSD scores of GD and manual reconstructions
in the two ‘failure’ cases (neurons 3 and 4) are indeed comparable.
Therefore, we have provided evidence that GD will produce an
automatic tracing that is close to a good manual reconstruction, thus
GD is very accurate; in addition, GD tracing is more stable than the
manual reconstruction as the variation is smaller. Of note, changing
the threshold for SSD computation, i.e. 2 voxel, did not change the
conclusion (results omitted).

3.2 Robustness and consistency of GD
While Figure 4 already shows that GD can well trace punctuated
neurites in real images, for a complete test of GD’s ability in tracing
a broken and fuzzy/noisy neurite, we produced synthetic test images
that contained ‘contaminated’ structures. For an input image I(p),
where p is a pixel (or voxel), we generated a contaminated image
J(p) by multiplying I(p) with a synthetic broken image mask Bn(p;
σ), followed by adding to it the white noise δN(0,1) drawn from a
normal distribution with mean 0 and SD 1:

J(p;σ,δ)= I(p)Bn(p;σ)+δN(0,1) (19)

Bn(p;σ)= n
min
i=1

{
1−exp

(
− ‖p−qi‖2

2(σmax(SW ,SH ,SD))2

)}
(20)

where σ and δ are two factors controlling how broken and fuzzy
the synthetic image is, n is the number of ‘breaking’ kernels used
to produce such an image (n = 100 in this article), qi is the center of
breaking kernel i, SW ,SH ,SD are the width, height and depth (i.e.
number of z-slices) of the image I(p). With a greater σ we obtained
a more severely broken image. Bigger δ leads to a fuzzier image.

With this synthetic image model, we produced many comprehensive
test cases (e.g. 2nd column of Fig. 5) for evaluating GD.

We used a 3D confocal image stack of a single fruit fly
neuron (size = 512 × 512 × 60 voxels) as the input. Figure 5 shows
comparison results of GD and NeuronStudio (Wearne et al., 2005)
on test images of different broken and fuzzy levels. We can see
that some test images are very challenging even for human (e.g.
the last two test images of Fig. 5). In most tests, NeuronStudio
only detected the continuous pieces and failed to produce complete
neurite tracts (e.g. σ = 0.05 and δ = 0.15). Differently, GD produced
complete reconstructions for all test images. This demonstrates the
robustness of GD.

We also quantified the consistency of GD tracing using data with
different noise levels. We computed the spatial distance between the
reconstruction of a contaminated image and the reconstruction of
the original image without noise. As this is not a visual comparison,
we set the SSD threshold as 0 (changing the threshold to 2 voxel
as in Section 3.1 did not change the conclusion). As shown in
Table 1, for different broken and fuzzy levels, GD produced a
consistently smaller distance score than NeuronStudio in most cases,
especially when the noise level was high. Indeed the average and
SDs of these scores are 0.874 ± 0.324 for GD and 1.354 ± 0.673 for
NeuronStudio, which are significantly different. Of note, since with
a few seeds NeuronStudio could not produce a full reconstruction,
we repeatedly added many seeds to make it be able to produce a
comparable result to the GD reconstruction. Thus, the comparison
in Table 1 very much favors NeuronStudio; yet, GD produced better
reconstructions.

3.3 Applications in fruit fly: catalog neurite patterns,
and build a 3D digital atlas of neurite patterns for
the fruit fly brain

GD is a general method for tracing neurite tracts and any similar
fibrous structures in an image, such as microtubule fibers. For neuron
tracing, we have applied GD to a number of microscopic images of
different model animals. Examples for fruit fly, C.elegans and mouse
can be seen in Figure 1.

In a nervous system of a particular animal, usually there
are multiple different types of neurons. In addition, with the
development and aging of an animal, the morphology of the neurons
in the same brain area also undergoes some level of change. With
the GD tool, we are now able to catalog the morphology of different
types of neurons, assess their morphological variations and study
the distribution and connection of neurons more easily. A number
of related biology problems could be quantitatively tackled, such as
the stereotypy of whole-brain scale neurite distribution (Peng et al.,
2010) and the symmetry of a brain’s wiring.

As a proof of principle study, we used GD to reconstruct the
space-filling neurite patterns from 3D confocal images of 200 fruit
fly GAL4 lines (collaborations with J. Simpson and G. Rubin
laboratories) that have relatively distinctive expression patterns in
the central nervous system. Each image was 3D aligned using
our BrainAlinger pipeline (unpublished data of Peng laboratory),
and thus has a size of 400 MB. The GAL4 pattern in an image,
however, has a lot of background noise in the image data (e.g.
Fig. 2A). This makes it hard to trace the neurite tracts. As far as
we tested various tracing tools, GD was the only one that was able
to produce reasonable reconstructions quickly (e.g. Fig. 2D). We
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Fig. 5. Comparison of GD and NeuronStudio using synthetic images of different broken and fuzzy levels. For NeuronStudio, we used its default setting. Since
a NeuronStudio tracing in most cases did not return a complete structure, we repeated multiple times at different seed locations to produce an as complete as
possible reconstruction. For GD, we used the same set of seed locations in all tests. GD segments were color coded for better visualization.

thus cataloged these GAL4 patterns as demonstrated in examples
of Figure 6A–E. Since the images containing these patterns were
already registered in 3D, we conveniently assembled these patterns
in a ‘standard’ coordinate system, and produced the first digital atlas
of these patterns (Fig. 6F). We are currently analyzing the wiring
diagram of GAL4 patterns derived from this atlas, based on which
we hope to gain new insights into the structure of a fruit fly brain.

3.4 Application in mouse: estimate the punctuation
rate of a brain area

Figure 1c shows the punctuated neurites in a mouse brain.
Biologically, punctuations along an axon often correspond to
boutons or synaptic terminals. It is of biological significance to
detect these punctuated sites (P-sites) and calculate their density
(punctuation rate). To faithfully capture the density of P-sites along

an axon tract, we need to first reconstruct such a tract. As the
second real application of GD, we used this method to trace 1006
axon tracts in 42 confocal images of a mouse brain (S. Sternson
laboratory; see Fig. 1c for an example image). We also visually
inspected these tracts, shown in Figure 7A and B, and found that
they were meaningful.

We then profiled the regional intensity along each tract,
and detected P-sites as the centers of local intensity maxima
(Fig. 7B). We found this method was more robust than directly
3D segmentation of P-sites using watershed or adaptive template
matching (results omitted due to the page limitation). This result is
reasonable because the search space was constrained better when
we detected P-sites only along neurites. This also makes it easier to
identify the dark P-sites (yellow arrows in Fig. 7B).

The biologically interesting distribution of P-sites is shown in
Fig. 7C. For the brain area in our images, we found the density
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Table 1. Distances between GD/NS (NeuronStudio) reconstructions from
noisy data and from original noise-less image

σ\δ 0.03 0.06 0.09 0.12 0.15

0.01 GD 0.284 0.405 0.526 0.505 0.378
NS 0.257 0.476 0.559 0.592 0.509

0.02 GD 0.566 0.627 0.652 0.990 0.659
NS 0.758 0.587 0.907 1.191 1.302

0.03 GD 0.785 0.992 1.003 0.922 1.003
NS 1.206 1.143 0.847 1.670 1.785

0.04 GD 0.922 1.239 1.048 1.015 1.513
NS 2.089 1.722 1.590 1.965 1.768

0.05 GD 1.208 0.989 1.234 1.206 1.282
NS 1.784 1.928 2.235 2.673 2.273

The NS results were refined using the same method in Figure 5.

is about 0.22 P-sites per micron along an axon. In other words,
the data suggested that along each axon in this mouse brain
area, on average with every 5-micron increment there should
be a putative bouton to accomplish certain synaptic information
transformation.

3.5 Limitations of GD and solutions
While GD tracing is successful in tracing a number of neurite tracts,
for other noisy patterns that have not been discussed here, GD may
still have difficulties. For example, in an image containing two very
close parallel tracts of which one is brighter than the other one,
GD may be biased to find the brighter one. There are at least three
possible solutions for this problem. First, giving a bigger weight
to the smoothness term in our deformable model could produce
a reconstruction with less sharp turns and thus may help detect the
dimmer tract. Second, one can design a special repelling force in the
GD framework to pull the two parallel tracts apart. Third, we can
always use the V3D system (Peng et al., 2010) to provide more prior
knowledge such as the approximate shape information in addition
to the two ends’ locations of a tract, as well as to do post-editing of
the traced structure.

Fig. 6. Reconstruction and cataloging neuronal GAL4 patterns (A–E) of a fruit fly brain, and the 3D digital atlas of neurite patterns (F). In A–E, the space-
filling models of the GAL4 patterns are displayed, where the width correspond to the thickness of a neurite tract or the estimated spanning range of the
arborization. In F, for clearer visualization, only skeletons of the five GAL4 patterns are shown.
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Fig. 7. Reconstruction of axon tracts in a mouse brain and estimation of putative bouton (P-site) density along axons. (A) 3D view of a database of 1006
automatically traced and manually verified axons tracts. The small dot at the tip of a tract indicates where the tract starts. (B) Two axon tracts (cyan and red)
overlaid on the raw image. Green: bright P-sites. Yellow: dark P-sites that would be easy to miss if the neurite tract was not considered. (C) Histogram of
P-site density of all axon tracts.
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