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Abstract

The estimation of the Sample Size Requirement (SSR) when using a binary composite end-

point (i.e. two or more outcomes combined in a unique primary endpoint) is not trivial.

Besides information about the rate of events for each outcome, information about the

strength of association between the outcomes is crucial, since it can determine an increase

or decrease of the SSR. Specifically, the greater the strength of association between out-

comes the higher the SSR. We present Bin-CE, a free tool to assist clinicians for computing

the SSR for binary composite endpoints. In a first step, the user enters a set of candidate

outcomes, the assumed rate of events for each outcome and the assumed effect of therapy

on each outcome. Since the strength of the association between outcomes is usually

unknown, a semi-parametric approach linking the a priori clinical knowledge of the potential

degree of association between outcomes with the exact values of these parameters was

programmed with Bin-CE. Bin-CE works with a recursive algorithm to choose the best com-

bination of outcomes that minimizes the SSR. In addition, Bin-CE computes the sample size

using different algorithms and shows different figures plotting the magnitude of the sample

size reduction, and the effect of different combinations of outcomes on the rate of the pri-

mary endpoint. Finally, Bin-CE is programmed to perform sensitivity analyses. This manu-

script presents the mathematic bases and introduces the reader to the use of Bin-CE using

a real example.

Introduction

The use of a binary Composite Endpoint (CE) in clinical trials, defined as the combination of

two or more dichotomous variables in a unique endpoint, is common[1,2]. Particularly when
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a binary CE is used as the primary endpoint, a patient experiences the primary endpoint if any

of the specific components occurs [2]. The two main reasons for using CE instead of a single

primary outcome [3–6] are a) the utility of the CE to assess the ‘net benefit’ of a therapy and b)

the utility of the CE to reduce the Sample Size Requirement (SSR) by increasing the total num-

ber of observed events [7]. For instance, an intervention designed to decrease the rate of myo-

cardial infarction in primary prevention by reducing LDL cholesterol, may reduce total

cardiovascular mortality but also the rate of cerebrovascular events. Thus, the use of the CE

“Major Adverse Cardiovascular Event (MACE)” including the outcomes myocardial infarc-

tion, cardiovascular mortality, and stroke could better capture the net benefit of the interven-

tion. However, this use of CE can also complicate the interpretation of the results of the trial

[3,5,6,8–10].

The potential of a binary CE to reduce the SSR is closely related to the magnitude of associa-

tion between components[11]. In this sense, not all CE have the same potential in the SSR

reduction. For example, imagine a hypothetic and bizarre binary CE defined as “Acute Coro-

nary Syndrome (ACS)” or “Troponin Elevation above the normal level”. A patient experiences

the CE if any of both events occurs. However, both variables are so strongly associated that

they practically mean the same. Therefore, it is unlikely that the combination of them in a

binary CE increases the number of events and thus its capacity to reduce SSR. On the other

hand, consider a binary CE defined as “ACS” or “stroke”. In this case, although it is anticipated

that a certain number of patients may suffer both events these variables are “moderately corre-

lated”, and the number of patients experiencing at least one of the components would be

expected to be higher than the number of patients experiencing ACS or stroke if they had been

employed as a single primary outcome [12]. In a previous work [12] we assessed the impact of

the strength of the association between two components of a binary CE on the SSR. Specifi-

cally, the stronger the association between both components the lower the potential reduction

of SSR. In addition, the potential impact of the strength of the association between compo-

nents to modulate the SSR is influenced by both the prevalence of outcomes and the effect of

the therapy on each outcome.

In the present work, our previous findings with a binary CE with only two dichotomous

components are generalized to a binary CE with k dichotomous components. Specifically, we

present an Internet accessible computational tool that incorporates a simple method to assess

the SSR and helps a trialist to decide upon combining a set of candidate outcomes in a unique

CE. The algorithm has been programmed in a free tool that, starting from k possible candidate

outcomes, finds the best combination which minimizes the SSR, using or not all k compo-

nents. This tool named Bin-CE is available as a beta version in https://uesca-apps.shinyapps.

io/bincep/. We also present a numeric example to illustrate the inputs and outputs of Bin-CE.

Material and methods

Notation and assumptions

We define a Relevant Endpoint (RE) as the outcome that is assumed to drive the main effect of

the therapy. An Additional Endpoint (AE) is another outcome that the researcher considers to

combine with the RE in a binary CE to reduce the SSR. A CE could be built up from one RE

and k additional endpoints. For simplicity, the statistical test applied by default is the asymp-

totic approximation to the Normal distribution of the difference in the proportion of events

between groups[7,13,14]. However, other approximations could be selected for those SSRs that

are assumed not be large (i.e. arcsine approximation and with/without correction). We shall

consider also for simplicity a RCT with only two treatment arms. The aim of the algorithm is

to compute the SSR of both the CE (SSRCE) and the RE (SSRRE). If the SSR of the CE is smaller

Bin-CE: A sample size requirement calculator for binary composite endpoints

PLOS ONE | https://doi.org/10.1371/journal.pone.0209000 December 13, 2018 2 / 16

https://uesca-apps.shinyapps.io/bincep/
https://uesca-apps.shinyapps.io/bincep/
https://doi.org/10.1371/journal.pone.0209000


than the SSR of the single RE then researcher would prefer the use of the CE [15] instead of the

RE alone (i.e. SSRCE < SSRRE).

Let Xijk be the binary response of the j-th patient (j = 1, . . ., ni) in the i-th group (i = 1,2) for

the k-th outcome (k = 1, . . ., K). The algorithm assumes the same number of patients in each

group (n1 = n2) and that at least two outcomes are considered to be combined (K>1). The Rel-
evant Endpoint is codified with k = 1 and the Additional Endpoint uses the remaining sub-

scripts (k>1). E(Xijk) = πik and V(Xijk) = πik(1−πik). Imagine a specific two-component binary

CE that combines two outcomes, the RE (Xijk = 1) and the k’-th AE (Xijk = k0), we denote this as

X1k0
ij and note that is equal to 1 whenever Xijk = 1 or Xijk = k0 are equal to 1 and 0 otherwise. X1k0

ij

is distributed as a Bernoulli random variable with mathematical expectation:

EðX1k0
ij Þ ¼ ProbðX1k0

ij ¼ 1Þ ¼ ProbððXij1 ¼ 1Þ [ ðXijk0 ¼ 1ÞÞ ¼ ProbðXij1 ¼ 1Þ þ ProbðXijk0

¼ 1Þ � ProbððXij1 ¼ 1Þ \ ðXijk0 ¼ 1ÞÞ ¼ pi1 þ pik0 � pi;1k0 ð1Þ

, where πi,1k0 corresponds to the probability of both outcomes (i.e. RE and the k’-th AE) hap-

pening together. Note that with these six parameters (πi = 1,1,πi = 1,k0,πi = 1,1k0,πi = 2,1,πi = 2,k0,

πi = 2,1k0) the SSR of the RE and the CE can be determined[7,16] and thus it can become appar-

ent whether it is worth the combination of the RE with the AE in a CE. Usually πi1,πik, are

known, but πi,1k0 is sometimes unknown[17].

It should be noted that the parameter πi,1k0 equals the joint probability between the RE and

the k’-th AE and it measures the strength of association between them. We assume that the

association between outcomes is the same in both study groups. The probability of both out-

comes occurring together is the same in the two arms. Henceforth πi,1k0 it will be referred as

π1k0.

Quantification of the strength of association between components of a CE

Although there are many different coefficients to quantify the strength of association between

components of a binary CE (see Supplementary Material for some examples, S1 File), we have

chosen the join probability for simplicity because the other coefficients are more or less com-

plex functions derived from both the join probability and the marginal probabilities.

On the early sixties, the work by Fréchet[18] on the combination of probabilities of events

and by Bahadur[19] on the joint probability distribution of binary random variables, charac-

terized the probability of two outcomes happening together (πkk0). It was shown that the distri-

bution is bounded between a lower and an upper limit and that not all values between 0 and 1

are possible. These bounds, known as Fréchet bounds, depend on the marginal prevalence of

each outcome as follows:

0 � Lowðpi1; pik0 Þ ¼ maxf0; pi1 þ pik0 � 1g � p1k0 � minfpi1; pikg ¼ Upðpi1; pik0Þ � 1 ð2Þ

When π1k0 = πi1πik0 both outcomes are considered as not being associated or as independent

events. For instance, imagine a CE including the outcomes “ACS or stroke”, these are consid-

ered independent if the probability of a patient experiencing an ‘ACS’ is the same regardless

the patient had a ‘stroke’ previously and vice versa.

Bin-CE algorithm

Bin-CE is a free available web application that can be accessed using a web browser (https://

uesca-apps.shinyapps.io/bincep/). Bin-CE has been programmed using the Shiny library on R

Studio. The R statistical language[20] has been used to develop Bin-CE App on R Studio. Bin-

CE can be directly run by connecting with the Shiny server https://www.shinyapps.io/)

Bin-CE: A sample size requirement calculator for binary composite endpoints
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without need to install neither R Studio or Shiny package. Nevertheless, users with program-

ming notions of R language can download the source code at Supplementary Material, S2. File

All necessary functions to implement Bin-CE can be found in S2 File. Functions, figures and

general structures have been programed by ourselves. Using the Supplementary Material 2 you

can replicate the examples given in this paper and Supplementary Material 3 contributes with

a deeper mathematical approach.

Bin-CE has been programmed to select, from a set of candidate binary outcomes (K�10),

the combination that minimizes the SSR. The four-screens that conform Bin-CE are automati-

cally refreshed when any input data changes (Fig 1). The first two screens are used to upload

all necessary data. The third screen is used only to check all input data and to present the initial

results. When Bin-CE detects any inconsistency in the input data such as a joint probability

outside the Fréchet bounds, it is automatically corrected. For example, consider that the user

introduces a rate of 6% for the RE and 10% for the AE and a joint probability value of 8%. The

joint probability value is not possible since in this case, it is defined only in the range 0% to

6%. Accordingly, Bin-CE automatically corrects this mistake by assigning the product of mar-

ginal probabilities for the joint probability (i.e. 0.6%), assuming the non-association scenario.

Finally, the last screen displays the best combination of outcomes (if any exists) in a CE as well

as the corresponding SSR. This screen also shows the intermediate steps of algorithm

iterations.

Analysis workflow

Step 1.1: Input data (Screen 1: Rate of events and effect of the therapy). Bin-CE allows

up to nine outcomes that may be combined with the RE. Bin-CE permits allows uploading the

label, the rate of events (πi = 1,k) in the control group, and the assumed effect of the therapy for

each outcome. In addition, the user can choose the Type I and Type II errors. The effect can be

assessed using different parameters (i.e. difference of proportions, rate-ratio, odds ratio). For the

following discussion we will assume that the effect is estimated by the Relative Risk (RR)

(πi = 1,k/πi = 2,k) because it is better suited as a measure of intervention effect in clinical trials

[21]. In any case, RR and Odds Ratio (OR) are numerically easily interchangeable [22] using

the expression 3. Additionally, the user can determine the component that drives the main

effect of the therapy or, in other words, the RE. If no outcome is indicated, Bin-CE automati-

cally assigns the label of RE to the outcome that requires the lowest SSR (Fig 2).

RRk ¼
p2k

p1k
¼

ORk

ð1 � p1kÞ þ ðORkp1kÞ
; ORk ¼

RRkð1 � p1kÞ

ð1 � RRkp1kÞ
ð3Þ

Fig 1. Bin-CE workflow.

https://doi.org/10.1371/journal.pone.0209000.g001
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Step 1.2: Input data (Screen 2: Joint probability). Bin-CE uses the joint probability as a

parameter to quantify the degree of association between outcomes (i.e. second-order associa-

tion). If values of joint probabilities between outcomes were known by the user they can be

assigned manually. However, as usually their exact values are unknown, Bin-CE permits to

enter semi-parametric approximations based on the Fréchet bounds (Fig 3). In this option,

nine different scenarios are considered depending on the assumed magnitude and direction of

the association between outcomes. One scenario considers that outcomes are non-associated.

In this case Bin-CE internally assigns the association for independent events (i.e. πkk0 = πikπik0).

Additionally, there are two specific scenarios, one for the maximum and another for the mini-

mum possible association (i.e. minimum and maximum Fréchet bound). For instance, the

association between the outcomes “CV death” and “Death from any cause” is the maximum

possible association (i.e. all CV death can be considered as “death from any cause”) whereas

the association between “ischemic stroke” and “hemorrhagic stroke” is the minimum possible

association (i.e. they can be considered as mutually exclusive). There are also three scenarios

indicating negative association: strong, moderate, and low negative association, and three sce-

narios indicating positive association (i.e. strong, moderate, and low positive association).

Bin-CE imputes the joint probability using: a) the marginal prevalence of each outcome

(πik,πik0); b) the range between minimum and maximum of the Fréchet bound (High(πik,πik0)

−Low(πik,πik0)); and finally, c) the non-association scenario (πkk0 = πikπik0). In (4) it is shown

the mathematical expression applied when the user considers that outcomes are not associated,

whereas in (5) and (6) the expressions for the negative and positive association are displayed.

pkk0 ¼ pikpik0 ð4Þ

pkk0 ¼ pikpik0 �
½pkk0 � Lowðpik; pik0 Þ�

3

� �

Y ð5Þ

Fig 2. Data showed on screen 1: Rate of events and effect of the therapy. On the first screen (Input Data), the user

fixes the number of outcomes, the hypothesis contrast and the type I/II errors assumed. Then the user assigns the

following parameters a) the label of each outcome, b) the rate of events in the control group, c) the effect of the therapy

measured as a risk ratio and d) if any of the outcomes is considered as the RE.

https://doi.org/10.1371/journal.pone.0209000.g002

Bin-CE: A sample size requirement calculator for binary composite endpoints

PLOS ONE | https://doi.org/10.1371/journal.pone.0209000 December 13, 2018 5 / 16

https://doi.org/10.1371/journal.pone.0209000.g002
https://doi.org/10.1371/journal.pone.0209000


pkk0 ¼ pikpik0 þ
½Highðpik; pik0 Þ � pkk0 �

3

� �

Y ð6Þ

The parameter Θ takes value 1 for low, 2 for moderate, and 3 for strong positive/negative

associations. The user can combine exact joint probabilities for some pairs of outcomes and

semi-parametric approximations for other pairs.

On the third screen (Fig 4), Bin-CE shows the input data. Graphically, Bin-CE shows on

this screen a plot with the potential increase or decrease in the SSR when the RE is combined

Fig 3. Data showed on screen 2: Joint probability (second-order association). On the second screen (Association)

the known joint probabilities for the simultaneous occurrence of each pair of outcomes should be declared and their

values uploaded in the appropriate cell. The semi-parametric approximations according to the Fréchet Bounds are

employed for the unknown associations.

https://doi.org/10.1371/journal.pone.0209000.g003

Fig 4. Data showed on Screen 3: Checking upload data and firsts results. On the third screen (Data) the user can

check the data uploaded (i.e. labels, the RE, the rate of events in the control groups, the effect of the therapy and a

triangular-matrix with all the pairs of joint probabilities). On this screen the SSR for the RE or for the outcome with a

minimum SSR is shown. Finally, Bin-CE depicts a plot with the range of SSR when combining the RE with each of the

other AE assuming the lower and the higher association of the Fréchet Bounds.

https://doi.org/10.1371/journal.pone.0209000.g004
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with each one of the other additional outcomes, but without taking into account the degree of

association considered. The plot depicts the SSR for both the minimum and maximum associ-

ation for each pair of outcomes with the RE. This plot can be useful to determine the impact of

the strength of association on the SSR. Also, on this screen, Bin-CE shows the SSR for the RE.

Step 2: An iterative algorithm. In the first iteration of the algorithm, Bin-CE computes

the SSR of the RE (SSRRE) and the (k-1) possible SSRs of the hypothetical two-components

CEs when combining the RE and the other AE (SSRk = 2 . . . K). From all possible additional out-

comes Bin-CE selects the one that combined with the RE leads to the largest decrease in the

SSRRE. Then, this combination of the RE and the AE with the lowest SSR is considered as the

new RE and the algorithm starts again seeking among the k-2 remaining outcomes. Bin-CE

additionally estimates the rate of the CE (1) and the effect of the CE on the treatment group

(the methodology to compute these parameters has been discussed previously [7,14,16]).

The joint probability between the new RE and all other AE candidates has now to be recalcu-

lated. Fig 5, shows three hypothetical outcomes (A, B and C). In this example the outcomes A and

B combined in a CE (CEAB) can decrease the SSR of the initial RE (i.e. A outcome). Then the joint

probability between the CEAB and the outcome C (i.e. a second order association) is red-colored.

The joint probability between AC and BC is known or have been estimated using the semi-

parametric approach, but the joint probability between the three outcomes (i.e. the third-order

association: πABC) is unknown. To solve this issue, it is assumed a non-associated scenario as a

good approximation of the third-order association, πABC = πAC
�πAB.

If a new CE of three components with lower SSR that the CE of two components exists, this

new three-components-CE is in turn considered as the new provisional RE, and the algorithm

starts the process again until either all k-1 AE are included in the CE or there is no additional

gain in the SSR.

Fig 5. Second and third-order associations between three hypothetical outcomes (A, B and C). The association

between a new hypothetical CE obtained by combination of outcomes A and B and the outcome C (red-colored

probability) is the result of combining the joint probability between the pairs of outcomes A and C and the outcomes B

and C. The value of this probability is (1): Prob((XAC = 1)\(XBC = 1)) = πAC+πBC−πABC�πAC+πBC−πAC
�πBC. Then

Bin-CE estimates the unknown joint probability among the 3 outcomes πABC with the product of both probabilities

(i.e. πAC
�πBC). Although this is only an approximation, the potential error should be small since the real proportion of

patients with the 3 outcomes has to be within the Fréchet Bounds (max{0;πAC+πBC−1}�πABC�min{πAB,πBC}).

https://doi.org/10.1371/journal.pone.0209000.g005
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Step 3: Results (Screen 4: Table and plots output). Bin-CE shows a table that includes

the best combination of outcomes, the rate of events, the effect of the therapy on the CE, the

SSR estimated and the percentage of SSR reduction achieved in each step (Fig 6). It also pres-

ents several figures showing sequential changes of both SSR, event rates and intervention effect

(RR) at each iteration (Fig 7).

Numerical example

The STEMI-RADIAL study [23] is a randomized, multicenter, parallel group trial. Patients

that were admitted with an acute STEMI, within 12 h of symptom onset, and referred for an

invasive approach were randomized to a radial or a femoral approach. The underlying hypoth-

esis was that radial approach is safer than femoral approach.

The primary endpoint was the cumulative incidence of major bleeding and vascular access

site complications requiring intervention at 30 days. The components of the CE were: gastro-

intestinal bleeding, hemoglobin drop� 4g/dl without overt bleeding, hemoglobin� 3g/dl

with overt bleeding, hematoma > 15 cm, transfusion (non-coronary artery bypass graft), and

vascular access complication. Secondary outcomes at 30 days include Major Adverse Cardio-

vascular Event, defined as combinations of death, myocardial infarction, stroke and coronary

artery bypass graft. Since STEMI-RADIAL study included both ischemic and bleeding out-

comes we illustrate the performance of Bin-CE using separately both set of outcomes

(Table 1). Figs 2, 3, 4, 6 and 7 refers to the bleeding set of outcomes.

Using data from STEMI-RADIAL trial, we illustrate the selection of the most efficient com-

bination among the five bleeding outcomes (i.e. 31 possible combinations) and the 4 ischemic

outcomes (i.e. 15 possible combinations) in two CEs, one for the bleeding outcomes and the

ischemic outcomes, employing Bin-CE.

Results

The association between each pair of components is not available in the STEMI-RADIAL pub-

lication. Although it is highly recommended, the report of the association between individual

components is generally inadequate [2,24,25]. Since the present paper has an educational pur-

pose we assume absence of association among individual outcomes of the STEMI-RADIAL

clinical trial. Bin-CE imputes the product of both probabilities when non-associations scenario

is clicked (i.e. see Eq (4)).

Bin-CE workflow

In a first step (Fig 2), the user introduces the assumed rate of events in the radial group, the

assumed effect of the therapy, and the degree of association between each pair of outcomes

(Fig 3). If the exact degree of association between two pairs of outcomes is unknown, the semi-

Fig 6. Data showed on screen 4: Results (table). Each line presents the CE selected in each step, specifically: the label

of the combined components, the incidence rate and the Relative Risk, the SSR (number of subjects required in each

treatment group) and the proportion of SSR compared to that used for the isolated RE.

https://doi.org/10.1371/journal.pone.0209000.g006
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parametric approach is employed. Then, Bin-CE returns the joint probabilities between each

pair of component outcomes (Fig 4). In the bleeding example, associations between compo-

nents are unknown. In this example, for simplicity it is assumed that outcomes are not

associated.

Fig 7. Data showed on screen 4. Plots of the main results. A Sample Size Requirement in each iteration. Y-axis is

ranged from zero and it represents the SSR computed within each iteration. X-axis shows each one of the Bin-CE

iterations. In the example, first iteration corresponds to the RE “Hematoma> 15 cm.”, with SSR of 166. The second

iteration corresponds to the CE “Hematoma> 15 cm” and “Hb drop�3 g/dl with overt bleeding”, with a SSR of 121.

Finally Bin-CE proposes to combine 4 outcomes to the last CE, in this case the SSR is of 102. B Effect of the therapy in

each Bin-CE iteration. In the example, the effect of the therapy was a RR of 0.09 in the first iteration and it increased

(decreased the efficacy) until 0.16 at the last iteration of Bin-CE. C Rate of events in each iteration. This plot presents,

for each Bin-CE iteration, the rate of events for both the control group and the treatment group. In the example, the

rate of event for the control and treatment group in the first iteration were 6% and 0.54% respectively, which increased

to 9.48% and 1.33% in the second iteration. Finally, a small increase in rates was achieved through the third and fourth

iteration, in agreement with the small reduction in SSR displayed in A.

https://doi.org/10.1371/journal.pone.0209000.g007
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Bin-CE plots the potential SSR using the different combinations between the RE and each

AE (see bottom of the Fig 4). Note that the exact value of the association is not implemented in

this plot. Rather the plot shows the potential SSR variation for each combination of outcomes

considering the whole range of joint probabilities according to the Fréchet bounds. In the

example, the SSR of the CE “Hematoma > 15 cm or Hb drop�3gd/dl with overt bleeding”

could be as low as 117 or as high as 191 in case of minimum and maximum degree of associa-

tion respectively. Any component can be declared as RE; in the example ‘Hematoma > 15 cm’

does this role. By defect Bin-CE considers the component which needs a minimum SSR as the

RE.

Figs 6 and 7A show the CE with the lowest SSR. In this case the combination of

‘Hematoma > 15 cm’, ‘hemoglobin� 3g/dl with overt bleeding, ‘gastrointestinal bleeding and

‘vascular access complication’ would have provided the lowest SSR (n = 102 per group). More-

over, using this combination, a 38.55% (i.e. 61.45% of the initial SSR) reduction of the SSR

employing the primary outcome “Hematoma > 15 cm.” would have been achieved (166 vs.

102). It is also shown that the combination of “Hematoma > 15 cm” and “hemoglobin� 3g/dl

with overt bleeding” contributes the most to SSR, achieving a reduction of 27.11%. Therefore,

although the addition of the outcome “gastrointestinal bleeding” or “vascular access complica-

tion” further reduces the SSR, the magnitude of this reduction is so small (i.e. from 121 to 108

and from 108 to 102) that its inclusion in the CE could be debatable. The other outcomes are

not selected by Bin-CE because when their inclusion does not reduce the SSR. Fig 7B and 7C

show the variation on the rate of events and the effect of therapy, respectively, at each iteration.

Sensitivity analysis. Since the actual strength of association between some outcomes is

unknown and cannot be easily inferred, an additional analysis has been performed considering

combinations of the all nine possible semi-parametric values of the strength of association

between the five outcomes of the trial (Tables 2 and 3).

Table 2 presents the sensitivity analysis for bleeding outcomes and Table 3 the sensitivity

analysis for the ischemic outcomes. For the bleeding outcomes, the strength of association is

more determinant than in the ischemic example in terms of SSR. So the strength of association

Table 1. Primary and secondary outcomes in STEMI-RADIAL clinical trial.

Radial (n = 348) Femoral (n = 359) Effectb

n % n % RR OR Diff

Ischemic Outcomes

Death 8 2.30% 11 3.06% 1.33 1.34 0.77%

Infarction 4 1.15% 3 0.84% 0.73 0.72 -0.31%

Stroke 1 0.29% 1 0.28% 0.97 0.97 -0.01%

CABG/Revascularization 32 9.20% 28 7.80% 0.85 0.84 -1.40%

Bleeding Outcomes

GI Bleeding 5 1.44% 1 0.28% 0.19 0.19 -1.16%

Hb drop� 4 g/dl without overt bleeding 2 0.57% 1 0.28% 0.48 0.48 -0.30%

Hb drop� 3gd/dl with overt bleeding 13 3.74% 3 0.84% 0.22 0.22 -2.90%

Hematoma > 15 cm. 21 6.03% 2 0.56% 0.09 0.09 -5.48%

Transfusiona 3 0.86% 0 0.00% 0.00 0.00 -0.86%

Vascular Access Complication 4 1.15% 1 0.28% 0.24 0.24 -0.87%

a: Transfusion was excluded for the analysis because none case in Femoral group was observed. In this particular case, the effect is unlikely.
b: The effect is presented as the ratio between the incidences (risk ratio), using Odds Ratio see expression (3) and by the difference of incidences. Bin-CE uses the Risk

Ratio

GI: Gastrointestinal, Hb: Hemoglobin, Diff: Difference of incidences, RR: Risk Ratio, OR: Odds Ratio.

https://doi.org/10.1371/journal.pone.0209000.t001
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determines the set of events to combine. Thus, for the bleeding events, as the magnitude of

positive association decreases the number of combined outcomes rapidly increases, being the

lowest magnitude of association (i.e. disjoint outcomes) the most favorable scenario for the CE

(SSR = 97). In summary, for the bleeding events the strength of associations between outcomes

has a strong influence on both the number of bleeding outcomes to be combined in the CE

and SSR reductions (from 166 to 97, representing the 58% of the initial SSR).

On other hand, the strength of association hardly determines the number of components

combined in the ischemic CE. In this case the outcomes ‘coronary artery bypass graft’ and

‘myocardial infarction’ are consistently gathered in a CE regardless the degree of association,

except for the scenario with the highest degree of association where Bin-CE proposes only use

a single outcome. As Table 3 shows the influence of the degree of association on the SSR is

modest for the ischemic events (i.e. a maximum reduction of 26% on ischemic example vs. a

42% reduction in the bleeding example).

The sensitivity analysis not only has to be considered for the degree of association between

events. For example, in STEMI-RADIAL Trial the effect of some events could not be estimated

accurately (i.e. Hb. drop� 4 g/dl without overt bleeding). A small number of patients had the

event, and in this situation the variability of the effect can be high. Thus, simulating different

scenarios with different effects as a sensitivity analyses is advisable because it will provide

robustness.

Table 2. Sensitivity analysis. Bin-CE results when the strength of associations varies from the lowest to the highest possible values. Bleeding Outcomes.

Strength of
Association

CE #Components Rate of
Events

Risk
Ratio

SSR %

Lowest Hematoma> 15-Hb�3 with-GI Bleeding-Access Compl-Hb�4 5 12.80% 0.18 97 58.43%

Strong Negative Hematoma> 15-Hb�3 with-GI Bleeding 3 11.01% 0.15 105 63.25%

Moderate Negative Hematoma> 15-Hb�3 with-GI Bleeding 3 10.92% 0.15 106 63.86%

Low Negative Hematoma> 15-Hb�3 with-GI Bleeding-Access Compl 4 11.84% 0.16 101 60.84%

No Association Hematoma> 15-Hb�3 with-GI Bleeding-Access Compl 4 11.72% 0.16 102 61.45%

Low Positive Hematoma> 15-Hb�3 with-GI Bleeding-Access Compl 4 9.40% 0.14 122 73.49%

Moderate Positive Hematoma> 15-Hb�3 with-GI Bleeding 2 7.74% 0.14 149 89.76%

Strong Positive Hematoma> 15-GI Bleeding 2 6.33% 0.10 160 96.39%

Highest Hematoma> 15 1 6.00% 0.09 166 100%

Hb: Hemoglobin, GI: Gastrointestinal.

https://doi.org/10.1371/journal.pone.0209000.t002

Table 3. Sensitivity analysis. Bin-CE results when the strength of associations varies from the lowest to the highest possible values. Ischemic Outcomes.

Strength of Association CE #Components Rate of
Events

Risk
Ratio

SSR %

Lowest CABG-Infarction 2 10.35% 0.84 4724 73.62%

Strong Negative CABG-Infarction 2 10.32% 0.84 4771 74.35%

Moderate Negative CABG-Infarction 2 10.30% 0.84 4819 75.10%

Low Negative CABG-Infarction 2 10.27% 0.84 4867 75.85%

No Association CABG-Infarction 2 10.24% 0.84 4917 76.62%

Low Positive CABG-Infarction 2 9.98% 0.84 5230 81.50%

Moderate Positive CABG-Infarction 2 9.72% 0.84 5580 86.96%

Strong Positive CABG-Infarction 2 9.46% 0.85 5973 93.08%

Highest CABG 1 9.20% 0.85 6417 100%

CABG: coronary artery bypass graft.

https://doi.org/10.1371/journal.pone.0209000.t003
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Discussion

As long as the use of CEs in clinical trials increases steadily, the need for simple and robust

methods for a comprehensive use of this tool arises. We present a computational method to

guide decisions concerning the optimal choice of the number of dichotomous outcomes to be

combined in a binary CE in order to minimize the SSR. It also permits to explore a variety of

plausible scenarios by varying the assumed strength of association between the outcomes,

which can be useful to evaluate the potential usefulness of using CE in each clinical situation.

Eventually this could avoid the futile recruitment of patients in clinical trials, which will benefit

the researches, patients, and the scientific community. However, the time-to-event analysis

can be approximated though working with the probability of event by a certain follow-up time

as a binary outcome, so the sample should not be very different with both approximations.

Although there are many publications addressing the statistical methods to analyze the data

from clinical trials using CEs, the problem of the sample size computation and its relationship

with the strength of association between components of a binary CE has not been addressed in

depth [7,12,15,17,26,27]. Sozu et al.[7] reported the mathematical approach to estimate the

SSR of a CE and our group[16] explored how the strength of association between the 2 compo-

nents of a CE can affect this SSR. In the field of survival analysis, Gómez et al. have reported

several findings concerning the SSR when using CE in the time-to-event setting [15,28–31]. In

this manuscript we present Bin-CE, a free intuitive Shiny App available at https://uesca-apps.

shinyapps.io/bincep/ with the objective of computing the SSR of a binary CE with more than

two potentially candidate endpoints. It has to be noted that the iterative algorithm developed

to compute the SSR is not an exact method. Thus, some degree of error is assumed because of

the categorical approximation of the second-order associations and the imputation of the

third-order association using the mathematical expectation. However, the exact solution

would imply the estimation of 2k−1 coefficients (for instance, for PARADIGHM-HF study

[32], with 5 outcomes it should be necessary to estimate 31 parameters), which is not practical

in most situations. However, our sensitive analyses assuming different strengths of association

between outcomes indicate that the potential SSR error is not relevant from the clinical point

of view (Table 2).

Bin-CE has been designed to help the applied trialist so we have tried the software to be

intuitive and easily manageable. In a first step, the user determines the number of component

candidates and the prespecified type I and II error rates. Secondly, the user assigns the labels

and inputs the prevalence and the assumed effect of the therapy. Finally, the users have to

include the degree of the association between components, which is obviously a hard issue

because in most cases this parameter is unknown. In this sense, the App allows to introduce

the exact association (i.e. the joint probability) if it is known, which in most cases will not be

the case, or to use a semi-parametric approximation based on the Fréchet bounds otherwise.

The semi-parametric approximation is, in our view, a pragmatic solution, since for clinicians it

is usually easy to intuitively know whether components are correlated or not and, in the case

of correlation, if it is positive or negative and the rough strength of the association.

As a limitation, the reliability of Bin-CE lies on the validity of the assumption that the math-

ematical expectation (product of probabilities) is a good approximation of the third-order

associations between outcomes. However, as it is shown in the sensitivity analysis, the potential

error considering different levels of associations is unlikely to be clinically relevant.

Bin-CE uses a greedy step-wise forward iterative algorithm to find the optimal combina-

tion. So, Bin-CE solves locally the problem (i.e. to combine the RE with the AE whom establish

the lowest SSR) in each step. However, although we assume that the final combination of out-

comes in a CE selected by Bin-CE is the most efficient, it cannot be demonstrated. Such

Bin-CE: A sample size requirement calculator for binary composite endpoints

PLOS ONE | https://doi.org/10.1371/journal.pone.0209000 December 13, 2018 12 / 16

https://uesca-apps.shinyapps.io/bincep/
https://uesca-apps.shinyapps.io/bincep/
https://doi.org/10.1371/journal.pone.0209000


demonstration would require simulating all possible combinations from all available out-

comes, which would overcharge the programme.

In this article, we have focused on the issue of improving efficiency in clinical trials through

the minimization of SSR, provided there are a set of potential candidate outcomes available.

However, the importance of other critical considerations in the decision to use a CE (clinical

relevance of single components, homogeneity of intervention effects, interpretability of results,

etc.) should not be underemphasized[3–5].

There are several types of CE depending on the type of outcomes to be combined. Time-to-

event CE are by far the most used CE in clinical trials, although there are many other possibili-

ties (i.e. multivariate normal outcomes or multinomial variables as Likert scales). In this sense,

binary outcomes are used when the outcomes occur in a short-fixed follow-up period or when

the outcome has to be dichotomized. Although binary CE are much less used in clinical trials,

they are very useful to implement new knowledge on this topic because their mathematic

properties are well-stablished. Other authors [7,28,33–35] have used binary CE to illustrate

their proposes. In any case, a clear limitation of the present paper is that our findings cannot

be extrapolated directly to time-to event analyses.

In spite of that, we believe that our work is conceptually valid also in survival analysis in the

sense that an influence of the outcomes association and of the prevalence on the sample size

requirement is also required [15,29,36].

Bin-CE selects the best set of outcomes comparing the SSR for the RE versus the combina-

tion of RE with one of the AE remaining. The SSR is computed considering the simplest

hypothesis testing case of equality of probabilities. This approximation is simpler enough

when the number of outcomes to be combined is either large (i.e. multiplicity testing problem)

or other type of hypotheses testing is desired (e.g. at least one of the components is significant).

Some authors have studied in depth[33,37–39], the problem of multiple testing and the hetero-

geneity of possible contrasts applied giving some recommendations to handle it. We share the

source code (Supplementary Material 2) in order to adapt Bin-CE code to other particular

specifications.

An essential difference between Bin-CE and other tools to compute SSR is that Bin-CE cal-

culates the SSR for the most efficient CE and not for other prespecified CEs. Thus, the clinical

trialists have to be aware that bin-CE does not take into account the clinical relevance of the

outcomes combinates, which must always be assessed by the researcher. In this paper, we

describe a new tool that could be useful to reduce the SSR when one is considering a CE as a

primary endpoint. However, not only the SSR but other issues must also be taken into consid-

eration when using a CE in order to correctly interpret the final CE. We and other authors

have address these issues previously [3,5,6,25,39–44].

So, although Bin-CE does not solve completely the SSR in CE issue, it can be considerate a

first step. In this sense, we encourage other researchers to improve the utility of this tool.

To summarize, in this manuscript a free tool to estimate the SSR in a two-arms randomized

clinical trial using a binary CE with more than two-components is presented. When a set of

possible candidate outcomes is to be combined in a CE and the decision to combine them or

not depends on the SSR Bin-CE can be a good tool to consider. Accessible at: https://uesca-

apps.shinyapps.io/bincep/.
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