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A B S T R A C T

Pancreatic Ductal Adenocarcinoma (PDAC) is an aggressive form of pancreatic cancer that typically manifests
itself at an advanced stage and does not respond to most treatment modalities. The survival rate of a PDAC patient
is less than 5%, with a median survival of just a couple of months. A better understanding of the molecular
pathology of PDAC is needed to guide research for the development of better clinical treatment modalities for
PDAC patients. Gene expression studies performed to date have identified different subtypes of PDAC with
prognostic and clinical relevance. Subtypes identified to date are highly heterogeneous since pancreatic cancer is
heterogeneous cancer. Tumor microenvironment and stroma constitute a major chunk of PDAC and contribute to
the heterogeneity. Better subtyping methods are need of the hour for better prognosis and classification of PDAC
for future personalized treatment. In this work, we have performed an integrated analysis of DNA methylation and
gene expression datasets to provide better mechanistic and molecular insights into Pancreatic cancers, especially
PDAC. The use of varied and diverse datasets has provided valuable insights into different cancer types and can
play an integral role in revealing the complex nature of underlying biological mechanisms. We performed sub-
typing of TCGA-PAAD gene expression and methylation datasets into different subtypes using state-of-the-art
normalization methods and unsupervised clustering methods that reveal latent hidden factors, leading to addi-
tional insights for subtyping. Differential expression and differential methylation were performed for each of the
subtypes obtained from clustering. Our analysis gave a consensus of five cluster solution with relevant pathways
like MAPK, MET. The five subtypes corresponded to the tumor and stromal subtypes. This analysis helps in
distinguishing and identifying different subtypes based on enriched putative genes. These results help propose
novel experimentally-verifiable PDAC subtyping and demonstrate that using varied data sets and integrated
methods can contribute to disease prognostication and precision medicine in PDAC treatment.
1. Introduction

Studies have shown that epigenetic processes are often changed
during different stages of cancer, including the initial stage and pro-
gression of tumor stages. The changes also include a global change in the
DNA methylation profiles concerning normal DNA methylation patterns
[1]. Broadly, this change in DNA methylation is characterized by overall
genome-wide hypomethylation and DNA hyper-methylation of CpG is-
land promoters [2, 3]. Many studies have been conducted using the
TCGA dataset on DNA methylation in different cancers, which has pro-
vided new insights into these cancers [4, 5]. PDAC accounts for most
exocrine pancreatic cancer cases, with variants being less common and,
apart from differences in prognosis, being uninformative for
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management decisions [6]. Adenosquamous carcinoma is an uncommon
variant of PDAC and shares the features of adenocarcinoma and squa-
mous cell carcinoma, showing a mixture of glandular and squamous
differentiation [7]. Other carcinomas of the exocrine pancreas with
acinar differentiation include pancreatoblastomas, acinar cell carci-
nomas, and carcinomas with mixed histology and are usually identified
by staining for trypsin [8]. Five-year survival of PC is less than 5%, with
survival just a couple of months [8].

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease
that represents itself at an advanced stage and does not respond to most
of the available treatment options [9, 10]. Studies have shown that PDAC
is predicted to become the second leading cause of cancer mortality by
2030 [11]. Various studies have shed light and have helped decipher and
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characterize the PDAC genetic alterations, provided important insights
into the biology of the disease, and laid the foundation for the develop-
ment of approaches for detection and improved therapies. Initial
whole-exome sequencing studies of pancreatic cancer identified several
factors, including mutations and changes in somatic copy number alter-
ations (SCNAs) that altered the function of many key oncogenes and
tumor suppressor genes, including KRAS, TP53, SMAD4, and CDKN2.
DNA sequencing of neoplastic cells has demonstrated that most PDACs
show complex chromosomal rearrangement patterns, some of which are
consistent with PDAC progression [12]. Numerous gene expression
studies have identified subtypes of PDAC with prognostic and biological
relevance [13, 14, 15, 16]. Genomic analyses have previously revealed
heterogeneous landscapes of mutation, copy number variation, structural
variation, and gene expression in pancreatic cancer [19]. Better under-
standing and delineating the molecular pathology of pancreatic ductal
adenocarcinoma cancer is an urgent need to achieve advances in clinical
treatment for patients. Intra-tumoral heterogeneity makes PDAC a com-
plex disease [17]. Tumor microenvironment, stroma, and immune cell
filtrate contribute to the heterogeneity in PDAC. Some have considered
Intra-tumor heterogeneity as the Rosetta stone of tumor therapy resis-
tance [18]. Thus, there is a need to identify homogeneous groups from
different high throughput datasets, which could be an important step
towards better-personalized clinical management of PDAC patients. A
plethora of large-scale and valuable experimental data has been gener-
ated from extensive experimentations. For example, DNA methylation
has been explored in many cancers. It has provided novel and valuable
insights into many cancers. Epigenetic mechanisms regulate ontological
gene expression networks at different levels, including time and place,
giving rise to both normal and disease phenotypes. Recently, multi-
parametric integrative chromatin immunoprecipitation-sequencing
(ChIP-seq) studies on multiple histone modifications, RNA-sequencing
(RNA-Seq) and DNA methylation studies have been performed to
define the epigenetic landscape of various PDAC subtypes [19]. Inte-
grative analysis of TCGA pancreatic ductal adenocarcinoma, involving
different varied and diverse datasets, have revealed a complex molecular
landscape of PDAC [20, 21, 22]. Survival analyses based on diverse
datasets, including RNA-Seq, DNA methylation, miRNA, long non-coding
RNA, representing PDAC patients and normal subjects, have led to the
identification of putative gene markers associated with survival and
prognosis [23]. In this study, we have performed unsupervised clustering
and integrative analysis of PDAC DNA methylation and gene expression
data, obtained from The Cancer Genome Atlas (TCGA).

Molecular aberrations and alterations identified in cancers often have
multiple synergic interactions as it is a complex disease. Thus, it is
important to collect and analyze multiple data types to improve patients'
prognosis and response to treatment. A single omics screen cannot fully
reveal and decipher the complexity of a biological entity. Therefore,
studies involving varied datasets help in a better understanding of the
system. Integrating the diverse and rich information from diverse data-
sets has been an approach to identify latent, hidden factors and putative
biomarker identification for cancer and non-communicable studies.
Integrative approaches in cancer usually focus on integrating multiple
types of omics data such as RNA-Seq, DNA methylation, ChIPseq, etc.,
rather than using a single omics profile. Varied and diverse data has
provided valuable insights into different cancer types and can play an
integral role in revealing the underlying complex nature of biological
mechanisms in breast cancer, colon cancer, and pancreatic cancer [24,
25, 26]. The earliest example of data integration in omics reported in the
literature were studies that involved data analysis from individual omics
separately, one by one and the results of these parallel studies were then
finally merged [27]. The background behind the integratomics or inte-
grative analysis involving different layers of information is based on
emergent property in systems theory. The concept of emergent property
has become very popular in the systems biology approach. The emergent
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properties indicate how some system features are observed only when
the system is studied as a whole and not as the sum of its parts [28, 29].
The integrative analysis approach will help in providing better mecha-
nistic and molecular insights into pancreatic ductal adenocarcinoma
subtypes. TCGA-PAAD dataset gene expression studies to date include the
whole data, which involves PDAC and non-PDAC samples. Our analysis
takes this heterogeneity into account and includes only matched PDAC
gene expression and DNA methylation samples for better data integra-
tion. We have explored the subtyping of PDAC by integrating two
different levels of data, using state of the art normalization methods and
unsupervised clustering method intNMF, which gives latent factors, thus
leading to better subtyping. The current study tries to provide better
insight into the understanding of DNA methylation underlying PDAC
heterogeneity and identification of epigenetically modified regions in
different PDAC subtypes leading to better subtyping, which can serve as
potential new markers and therapeutic targets. Our integrated data
analysis indicates that gene expression, DNA methylation, and
tumor-intrinsic factors, such as the tumor microenvironment and im-
mune cell filtrate, all contribute to the heterogeneous landscape of PDAC
and thus, the integrative analysis of these factors lead to better subtyping
and a better understanding of the distinct PDAC landscape.

2. Methodology

2.1. Data mining of RNA-Seq and methylation datasets

The study workflow is shown in Figure 1. TCGAbiolinks package was
used to obtain pancreatic cancer datasets from TCGA. This package im-
ports and processes molecular profiles from high-throughput experi-
ments such as next-generation sequencing and methylation array and
their clinical data for statistical analysis [30]. To date, most of the studies
performed on pancreatic cancers have focused on TCGA_PAAD datasets,
which is heterogeneous data containing PDAC along with non-PDAC
samples. Non-PDAC cancer includes adenosquamous carcinoma, colloid
carcinoma, squamous cell carcinoma, and neuroendocrine tumor.
Missing and non-matched samples were removed before subtyping and
clustering.

2.2. Data pre-processing of methylation datasets

ChAMP or chip analysis methylation pipeline is used for the analysis
of methylation datasets such as filtering low-quality probes, adjustment
for Infinium I and Infinium II probe design, batch effect correction, de-
tects differentially methylated probes (DMPs), differentially methylated
regions (DMRs) and detection of copy number aberrations (CAN) [31]. It
also can filter SNPS based on user-specific minor allele frequency in one
of four populations as defined by the 1000 genomes project [32]. It uses
the algorithm “probe lasso” method for DMR hunting that incorporates
annotated genomic features and their corresponding local probe den-
sities and methylation [33].

2.3. Data normalization of methylation datasets

There are various methods for the normalization of DNA methylation
data such as Noob, Subset-quantile within array normalization (SWAN),
Beta-Mixture Quantile (BMIQ), and Functional normalization (FN).
SWAN performs scaling of Infinium I and Infinium II probes together
within a single array to minimize the differences in beta value distribu-
tion [34, 35]. BMIQ normalization uses state-membership probabilities
under the beta mixture model to reassign quantile to type2 probe based
on type1 probe distribution (Supplementary file I, S1) [36]. Noob capi-
talizes on the Infinium I probe's unique design to perform with-array
normalization of methylation datasets (Supplementary file I, S2) [37].
FN is an unsupervised method that improves replication between



Figure 1. Workflow followed in the study to identify major subtypes of pancreatic cancer by integrative clustering analysis of methylation and genomics datasets.
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experiments even in batch effect and uses a control probe to act as sur-
rogates variable for unwanted variation [38].

2.4. Data normalization of RNA-Seq datasets

Gene expression datasets of 146 samples were normalized using
variance stabilizing normalization (VSN) of the DESeq package. It is used
to analyze count datasets generated from high throughput experiments to
perform downstream processing such as differential expression analysis
[39]. To capture differential signals with high statistical power, its uses a
negative binomial generalized linear model where mean and variance are
linked to local regression [39]. Data normalization of our datasets was
performed using VSN, which uses parametric fit for dispersion using vst
function. The vst function calculates variances from fitted
dispersion-mean relation and transforms count data into homoscedastic
data (https://rdrr.io/bioc/DESeq2/man/varianceStabilizingTransforma
tion.html). Variance stabilized transformed datasets incorporates a
correction for size factors or normalization factors.

2.5. Identification of subtypes using clustering

Before intNMF, genes with low variability across samples were
removed from gene expression datasets and methylation datasets using
Mean absolute deviation (MAD). The basic assumption or premise behind
it is that genes with high variability contribute more to the clustering
process. intNMF package was used for clustering using highly variable
genes andmethylation probe. This package utilizes a non-negative matrix
factorization method to perform unsupervised integrated clustering of
high dimensional datasets [40]. The k represents the number of clusters
varied across a suitable range and was repeated 20 times to predict the
optimum number of clusters based on cluster predictive index (CPI).
Parameters used while running intNMF were n.runs ¼ 30, n.fold cross
validation ¼ 5, k.range default value ¼ 2 to 8, st.count ¼ 10, maxiter
3

which is maximum number of iteration ¼ 20 and wt ¼ 1 for each data. It
generates CPI that is the measure of the stability of clusters obtained. It
signifies the correlation between sample distances obtained for the
consensus matrix representing the clusters [41]. It also generates a
silhouette index value for interpretation and validation of consistency
within the data clusters. The technique provides a graphical represen-
tation of how well each object has been classified based on the cluster's
tightness and separation [42]. The silhouette value can range from �1 to
þ1, where a high value representing the object is well matched to its
cluster and poorly matched neighboring clusters.

2.6. Differential methylation analysis of obtained subtypes

ChAMP (The Chip Analysis Methylation Pipeline) package was used
to perform differential methylation analysis on five subtypes obtained
from intNMF. It is used for the various downstream process in methyl-
ation datasets such as normalization, detecting differentially methylated
regions and copy number aberrations [31]. Differential methylation
analysis is performed by limma that uses a linear model for both cate-
gorical variables like two phenotypes, like “tumor”, “metastasis” or
“control,” as well as a numeric variable such as age to calculate the
p-value for differentially methylated probes. It carries regression analysis
to find out covariate-related CpGs for the specified condition. Its output
includes some data frames of p-value, t-statistic, difference in mean
methylation between two groups (for categorical covariate only),
average beta value for sample group, and delta beta value for two com-
parison groups and annotation for each probe. It also includes the
annotation for each probe, the average beta value for the sample group,
and the delta beta value for the two groups used in the comparison (https
://www.bioconductor.org/packages/release/bioc/vignettes/ChAMP/
inst/doc/ChAMP.html). The absolute minimum beta value is 0.2, and for
the Benjamini-Hochberg adjustment method, p-value <0.01 is used as a
cut-off for DMR analysis.

https://rdrr.io/bioc/DESeq2/man/varianceStabilizingTransformation.html
https://rdrr.io/bioc/DESeq2/man/varianceStabilizingTransformation.html
https://www.bioconductor.org/packages/release/bioc/vignettes/ChAMP/inst/doc/ChAMP.html
https://www.bioconductor.org/packages/release/bioc/vignettes/ChAMP/inst/doc/ChAMP.html
https://www.bioconductor.org/packages/release/bioc/vignettes/ChAMP/inst/doc/ChAMP.html
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2.7. Differential gene expression analysis of obtained subtypes

Differential gene expression analysis was performed for 5 subtypes
obtained from intNMF, using the edgeR [43]. It uses a negative binomial
distribution model for gene count and performs differential expression
analysis on RNA-Seq expression profiles [44]. It implements a range of
statistical methodologies such as empirical Bayes estimation, which
generates gene-specific dispersion estimates, ranking genes that behave
consistently across the replicates higher than others [45].

2.8. Correlation analysis of DMR and DEG for obtained subtypes

The in-depth integrative analysis relies on analyzingmultiple datasets
such as gene expression, methylation, CNV (copy number variations),
etc., to extract and identify major biological insights for disease pro-
gression. Correlation between methylation and gene expression was
carried out to estimate the extent to which methylation influences gene
expression in pancreatic ductal adenocarcinoma cancer [46]. The cor-
relation analysis was carried out using TCGAbiolinks starburst function
between differentially methylated CpG sites and differentially expressed
genes for each subtype individually. This analysis gives clues regarding
the epigenetically regulated genes responsible for heterogeneity in
pancreatic ductal adenocarcinoma cancer. Starburst plots generate an
exponential curve that captures the non-linear relationship between
methylation and gene expression utilizing a gene probe that occurs
within 20kb windows from each other [47]. Parameters used in Starburst
plots are expression p-value cut-off of 0.05 and methylation p-value
cut-off of 0.05. DNA methylation platform used is 450K, and genome of
reference used to identify nearest probes is hg38.

2.9. Go analysis of obtained subtypes using clusterprofiler to identify gene
signatures

Clusterprofiler was used to perform gene ontology analysis on the
gene signatures for the predicted subtypes. This package was used for
pathway level analysis to obtain a system-level understanding for gene
signatures obtained from analysis datasets generated from various plat-
forms such as RNA-Seq, micro-array, etc. [48]. GO was performed on
gene signatures returned by the correlation analysis of DMR and DEG to
determine major pathways and processes regulated in each of the sub-
types using the clusterprofiler.

3. Results

3.1. Data mining of TCGA_PAAD

The standard TCGA dataset for pancreatic cancer TCGA-PAAD was
downloaded from TCGAbiolink, including 183 cancer and four normal
samples. The curation of TCGA_PAAD samples is important for removing
biological and clinical biases from non-PDAC samples [49]. PDAC gene
expression RNA-Seq datasets and DNA methylation datasets consisted of
153 and 146 samples, respectively. After looking for seven missing
samples for DNA methylation data, 146 matched PDAC samples were
Figure 2. Various normalization methods used for Infinium I and Infinium II probe
images that SWAN performs better normalization than functional normalization of I
taken further for integrative clustering analysis.
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selected [49]. These 146 PDAC samples consisted of expression profile
for DNA methylation as well as gene expression. Gene expression profile
and DNA methylation datasets were normalized by various methods
before performing clustering and subsequent integration analysis. There
are several methods for preprocessing the 450K array data, adjust for
probe-type or color bias, subtract background signals, and eliminate
systematic errors [50]. DNA methylation datasets were normalized using
various methods such as SWAN, BMIQ, Noob, and Functional normali-
zation (FN). SWAN method gave the best result for Infinium I and
Infinium II probe normalizations. In SWAN normalization, type I probe
density for type I probe is the same as type II probe density, but in fun-
tonorm type I probe density is 4 but type II probe density is 2.55
(Figure 2a,b). SWAN-normalized datasets were taken further for inte-
grative analysis.

3.2. Filtering of CpG probes using ChAMP

ChAMP performed initial preprocessing on methylation datasets
using idat files. If for a probe, a p-value of detection was above 0.01, it
was regarded as a failed probe. The selected probes were filtered with a
p-value detection value above 0.01, which resulted in the removal of
54800 probes. It also filtered non-CpG probes resulting in the removal of
1616 probes. It filtered the probes associated with SNP resulting in the
removal of 48827 probes. It filtered probes with beadcount less than 3,
which lead to the removal of 144 probes in at least 5% of the study
samples. On applying Multihit stats, 11 probes were removed. It also
filtered probes that are mapping to X and Y chromosomes, which resulted
in the removal of 8056 probes.

3.3. VSN normalization of RNA-Seq datasets

VSN was performed on RNA-Seq datasets obtained for TCGA-PAAD
patients before performing clustering analysis. Before VSN the expres-
sion profile had standard deviation elevated in the lower count range
(Figure 3a). After VSN the standard deviation was constant across the
expression profile (Figure 3b). Normalization resulted in the trans-
formation of data, which was homoscedastic, with constant variance. It
removed the influence of technical variation such that the true biological
variation can be discovered.

3.4. Identification of subtypes using clustering by intNMF

Before performing clustering, expression profile with low variability
across samples was removed for gene expression and methylation data-
sets. MAD was calculated for each gene and probe, values with less than
0.5 were excluded from our analysis. We have performed MAD (mean
absolute deviation) before intNMF as MAD gives highly variable probes.
The reason for performing intNMF and no other methods like consensus
clustering is that intNMF takes latency and variability into account and
thus provides highly significant clusters compared to other methods. It
also does not take the data distribution into account, making it highly
suitable for analyzing diverse datasets. The PCA analysis has shown no
significant variability can be explained by principal components for our
normalizations. a) SWAN b) Functional normalization. It can be seen from the
nfinium I and Infinium II probe peaks. Hence SWAN normalized datasets were



Figure 3. The figure below plots the standard deviation of the transformed data, across samples, against the mean, using the shifted logarithm transformation, the
regularized log transformation, and the variance stabilizing transformation. a) The shifted logarithm has elevated standard deviation in the lower count range, and the
regularized log to a lesser extent b) In the variance stabilized data the standard deviation is roughly constant along with the whole dynamic range.
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multiple datasets (supplementary file I, S3). Subsequently, the top 1000
most variable probes and gene features were used to perform clustering
on samples to predict subtypes using intNMF. The intNMF analysis pro-
vided optimum cluster solution by k, which was varied from 2 to 10, and
the clustering process was repeated 20 times. The value of k corre-
sponding to maximum CPI was chosen as the optimal solution. Our
analysis gave an optimum five clusters solution, described in detail
below. Since the top 1000 probes have a high CPI of 0.76, these were
selected for further analysis (Figure 4). Thus, optimal Five clusters so-
lution was obtained with a high CPI of 0.76 with average silhouette width
of 0.74 (Figure 5).
3.5. Differential methylation analysis to identify DMPs

TCGAvisualize_meanMethylation function of TCGAbiolinks was used
for visualizing differences in the mean methylation value of patients
between comparison groups (Figure 6). It shows differences in the overall
methylation expression between the subtypes obtained from the clus-
tering analysis. The distribution of DMRs (hyper-methylation and hypo-
Figure 4. Cophenetic correlation coefficient plot obtained using intNMF. Cophenetic
clusters obtained by intNMF. It signifies the correlation between sample distances o
image that there is high CPI value of 0.76 at five cluster solution.
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methylation) was obtained using the ChAMP. The landscape of methyl-
ation includemethylation in the promoter region, Transcription Start Site
(TSS), intergenic, island, shell, and shore region. In the subtype I, there
are 39128 DMPs out of which hypo-methylation in CpG island is higher
as compared to that of hyper-methylation. In open sea, hypermethylation
is higher as compared to hypomethylation. The shelf region is charac-
terized by low methylation, while in the shore region, there is an equal
distribution of hypermethylation and hypomethylation. Exon, 30UTR,
50UTR, Intergenic region, and TSS1500 have equal hypomethylation and
hypermethylation. Gene body and TSS2000 havemore hypermethylation
as compared to hypomethylation (Figure 7a). In subtype II, there are
11011 DMPs, out of which there is more hypo-methylation in CpG island
as compared to that in the case of hyper-methylation. In the open sea,
hypermethylation is higher as compared to hypomethylation. In the shell
region, there is low methylation and in the shore region, there is an equal
distribution of hyper as well as hypomethylation. The exon and 50UTR
have a low methylation density, where the distribution of hyper and
hypomethylation is almost equal. 30UTR has more hypermethylation as
compared to hypomethylation. The Gene body has a high density and
correlation coefficient/Cluster predictive index (CPI) measure of the stability of
btained for the consensus matrix representing the clusters. We can see from the



Figure 5. Silhoutte plot obtained for subtypes from clustering analysis by intNMF. It also generates silhouette refers to a method of interpretation and validation of
consistency within clusters of data. It also provides a graphical representation of how well each object has been classified based on the tightness and separation of the
cluster. Five clusters solution were optimal as they showed the average silhouette width of 0.74.

Figure 6. Visualizing differences in mean methylation pattern between comparison groups obtained by subtyping using TCGAbiolink package. We can see from the
images that means methylation value between the obtained subtypes shows differences. Thus showing us the significance of obtained subtypes I terms of methylation.
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equal distribution of hyper and hypomethylation. The intergenic region
has a high density and hypermethylation is more as compared to hypo-
methylation. Both TSS1500 and TSS2000 have more hypermethylation
as compared to hypomethylation (Figure 7b). In the subtype III, there are
7721 DMPs, out of which there is more hypomethylation than hyper-
methylation in CpG islands. In the open sea, hypermethylation is more as
compared to hypomethylation. In the shelf region, hypermethylation is
more as compared to hypomethylation and in the shore region, hyper-
methylation, as well as hypomethylation, are equally abundant. In the
subtype III, exon region, 50UTR, TSS1500 and TSS2000 have more
hypomethylation as compared to hypermethylation. 30UTR gene body
and intergenic region have more hypermethylation as compared to
hypomethylation (supplementary file I-Figure S4). In subtype IV, there
6

are 6731 DMPs, out of which there is more hypermethylation than
hypomethylation in the CpG island region. In the open sea region, hypo-
methylation is greater than hyper-methylation whereas, in the shelf and
shore region, hypo-methylation is more abundant as compared to hyper-
methylation. In subtype IV, the exon, 30UTR, 50UTR, gene body, inter-
genic region, and TSS1500 have low hypermethylation probes as
compared to high hypermethylation probes whereas only TSS2000 has
more hypermethylation as compared to hypomethylation. In subtype V,
there are 6728 DMPs, out of which there is more hypermethylation as
compared to hypomethylation in CpG. In the open sea region, hyper-
methylation is more as compared to hypo-methylation. In the shell re-
gion, hypo-methylation is more as compared to hyper-methylation while
in the shore region, distribution is equal (supplementary file I-Figure S5).



Figure 7. Differential methylation analysis between subtypes obtained by clustering using ChAMP package shows differences in methylation pattern in different
regions of the genome for: a) Subtype I. b.) Subtype II.
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In the subtype V, the exon, 50UTR, TSS1500, and TSS2000 have more
hypermethylation as compared to hypomethylation, whereas 30UTR,
gene body, and intergenic region have lower hypermethylation sites as
compared to hypomethylation (supplementary file I-Figure S6). Overall
hypo-methylation expression landscape between all subtypes shows that
subtype III has most hypomethylation in island region whereas subtype II
and subtype III have in open sea region (Supplementary file I, S7).
Overall hyper-methylation expression landscape between all subtypes
shows that subtype II has hyper methylation open sea region whereas
subtype IV and subtype V in island region (Supplementary file I, S8).
There is no difference in hypomethylation expression in shore region.
Thus, there are difference in methylation landscape in different subtypes
obtained by our analysis.

3.6. Correlation analysis

Correlation analysis was performed between DNA methylation and
gene expression to determine the extent to which DNA methylation
influenced gene expression in the subtypes obtained in our analysis.
Differentially methylated CpGs and the differentially methylated genes
were used for correlation analysis for each of the obtained subtypes using
starburst function. Correlation is observed for each of the subtype (I, II,
III, IV, V) individually, based on its DMR and DEG profile. Therefor ob-
tained gene signatures and pathway regulated by them has been used to
characterize that particular subtypes. The starburst performs a correla-
tion analysis of DMR and DEG to find out the genes that have a significant
correlation with the expression pattern of DMR. In the subtype I there are
total 768 gene signature that have a significant correlation with
methylation expression pattern, out of which 36 genes show hyper-
methylation and 732 genes show hypomethylation (supplementary file I-
Figure S9, supplementary file II-subtype I). There is a gene signature with
7

254 genes in subtype II that has a significant correlation with methyl-
ation expression pattern, out of which 204 genes show hypermethylation
and 50 genes show hypomethylation (supplementary file I-Figure S10,
supplementary file II-subtype II). In subtype III, there is gene signature
with 76 genes with significant correlation with methylation expression
pattern, out of which 26 genes show hypermethylation and another set of
50 genes show hypomethylation (supplementary file I-Figure S11, sup-
plementary file II-subtype III).

There is a gene signature with 390 genes in Subtype IV with a
significant correlation with methylation expression pattern, out of
which 364 genes show hypermethylation and 26 genes show hypo-
methylation (supplementary file I-Figure S12, supplementary file II-
subtype IV). In subtype V there are total 148 gene signature that
have significant correlation with methylation expression pattern, out
of which 122 genes show hypermethylation and 26 genes show
hypomethylation (supplementary file I-Figure S13, supplementary file
II-subtype V). Our DMP and correlation analysis show there is direct
relation between proportion of differentially methylated probe to gene
signatures obtained by correlation analysis for individual subtypes
(supplementary file I, S14).

3.7. Functional annotation of PDAC subtypes using clusterprofiler

Correlation analysis of the obtained subtypes resulted in a distinct
pattern of gene expression and methylation. Our analysis results in sub-
types with considerable overlap and correlation with the previously re-
ported pancreatic ductal adenocarcinoma subtypes with their
characteristic pathways. A novel gene signature was reported for each of
the obtained subtypes. This analysis has tried to characterize the ob-
tained subtypes based on the available literature regarding the gene
signatures.
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3.8. Subtype I – ADEX subtype genes

Pancreatic progenitor displays a transcriptional network of early
pancreatic development (FOXA2/3 and PDX1) [13]. Subtype I display
upregulation of genes involved in the latter stages of pancreatic devel-
opment, differentiation and endocrine differentiation (NEUROG1 and
NKX2-2) similar to ADEX subtypes. ADEX subtype includes genes
responsible for endocrine/exocrine differentiation of pancreas [13]. The
key genes identified in subtype I include HOXA3. The HOXA3 family
genes are involved in pancreas development and upregulated in
pancreatic cancer. The human protein atlas also shows the HOX gene
family's oncogenic role with reduced survival (Figure 8a) [51].

Another signature gene in the subtype is CDH3, a classic cadherin
protein, a member of a single-span transmembrane domain glycoprotein,
involved in cell-cell adhesion. It is hypomethylated in the promotor re-
gion (Figure 8a) [52].

LIMK1 is a serine/threonine kinase that regulates actin filament dy-
namics. It phosphorylates and deactivates de-polymerization factors such
as CFL1 and CFL2 resulting in the stabilization of actin filament
(Figure 8a) [53]. It is involved in metastasis and tumor-cell induced
angiogenesis in pancreatic cancer [54].

SLC17A7, SLC25A5, SLC35A2 are series of transporters expressed in
organ and tissue of the digestive tract involved in the uptake of a small
molecule (Figure 8a) [55, 56, 57].

NRP1 is a prognostic marker in stomach cancer, cervical cancer, renal
cancer and glioma (Figure 8a) [58]. NRP1 is a prognostic marker,
hypomethylated and co-expressed with PDGFRB resulting in reduced
gastric cancer survival [59].

3.9. Subtype II genes

Subtype II is similar to the classical/pancreatic progenitor subtype.
The classical/progenitor subtype includes transcription factors that
determine the pancreas endoderm fate [13]. The key genes identified in
subtype II are: FGFR2, which acts as a cell surface receptor for fibroblast
growth factors regulating cell differentiation, proliferation, migration
and embryonic development (Figure 8b) [60]. It is responsible for acti-
vating MAPK and AKT1 signaling pathway by phosphorylation of FRS2
that activates RAS, MAPK and ERK [60].

Other important genes in the subtype include PDIA2, a member of
endoplasmic reticulum family disulphide isomerase that catalyzes pro-
tein folding by thiol-disulphide interaction changes specific to the
pancreas (Figure 8b) [61]. It is involved in various tumors and is specific
to the pancreas. PDIA2 is engaged in multiple tumors, according to recent
research [62]. Subtype II is associated with the expression of genes
related to digestive enzymes, characteristic of the exocrine pancreatic
function such as CYPA1, CYPB.

3.10. Subtype III genes

Subtype III is similar to the immunogenic subtype. The subtype is
enriched in key immunological genes. The key subtype III genes are:

BTK encodes Bruton's Tyrosine Kinase that regulates cytokine
signaling by PLCG phosphorylation in close cooperation with B cell linker
protein BLNK resulting in B lymphocyte development, differentiation and
signaling (Figure 8c) [63]. The therapeutic role of BTK inhibition has
been reported in PDAC [64]. Mice model studies have shown the ther-
apeutic role of BTK inhibition in PDAC [63].

Another key gene in the signature includes IRAK1, a serine-threonine
kinase involved in toll-like receptor and IL-1R signaling that initiates
innate immune response against foreign pathogens. TLR activation helps
in recruiting MYD88 that phosphorylates IRAK1, which brings together
IRAK4, MYD88 and tollip and leads to NK-KB activation (Figure 8c) [65].

DOCK 11 is a guanine nucleotide exchange factor and is important for
B cell development and plays a role in the development of B cell in the
marginal zone (Figure 8c) [66, 67]. Dock180 contributes to ovarian
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carcinogenesis and since its overexpression is correlated with poor pa-
tient survival, it can be a potential prognostic marker and therapeutic
target [68]. High DOCK2 expression is involved in better prognosis in
AML [69, 70].

3.11. Subtype IV – Stroma (Microenvironment of tumor) genes

One of the important features of PDAC is non-tumor cells collectively
known as stroma responsible for its progression. This feature contributes
to the heterogeneity associated with PDAC resulting in less established
patients. Therefore, it is important to recognize the key molecular fea-
tures and biological processes responsible for the heterogeneity and
PDAC progression [71]. The key genes identified in subtype IV are:

TAB3 gene forms a ternary complex with protein kinase MAPK3K7/
TAK1 leading to the stimulation of pro-inflammatory cytokine and NF-
kappa signaling activation (Figure 8d). TAB2 gene exhibits poly-
morphism and is associated with ovarian cancer susceptibility [72].
TAB3 gene overexpression is associated with poor survival in human
esophageal squamous cell carcinoma [73].

SMAD3 is a potential biomarker in PDAC, which promotes cancer's
malignant potential through EMT induction in malignant cells [74].
Hepatocyte growth factor promotes pancreatic cancer's growth and
behavior by promoting the ductal phenotype (Figure 8d) [75].

Another important gene in the subtype, NSDHL, encodes a gene
localized in the endoplasmic reticulum involved in cholesterol biosyn-
thesis (Figure 8d) [76].

3.12. Subtype V genes

Subtype V shows resemblance to the squamous subtype enriched in
major pathways like MAPK, Ras protein signaling and chromatin modi-
fication. The key genes identified in subtype V are:

MAP3K15 gene is a member of the mitogen-activated protein kinase
that is involved in the protein kinase signal transduction pathway
(Figure 8e). MKK3/6-p38 MAPK-caspase signaling pathway activation
results in the induction of apoptosis induced by Gemcitabine in human
pancreatic cancer, serving as a novel marker [77].

PAK3 is a serine-threonine protein kinase that regulates various
signaling pathways such as cell migration, cytoskeleton regulation and
cell cycle regulation (Figure 8e). PAK3 acts on Ser473-Akt kinase regu-
lating the Akt-GSK3β-β-catenin signaling in several pancreatic cancer cell
lines [78].

KDM5D gene is a histone demethylase that plays a major role in
histonemodification by demethylation of lysine of histone H3 (Figure 8e)
[79]. It is found to promote pancreatic cancer by modification of the
epigenetic landscape [80].

3.13. Survival curve of subtypes

Survival analysis of the five subtypes was obtained using Kaplan-
Meier analysis. Subtype V has the worst clinical outcome as compared
to the other subtypes in the survival analysis. No significant differences
were observed for survival analysis between samples classified into
subtype III and subtype IV (supplementary file II-Figures S17-S18).
Subtype II has the best clinical outcomes compared to the other subtypes
(supplementary file II-Figure S16). Subtype I has the worst clinical out-
comes than that of subtype II, III, and IV. Subtype I show a drastic decline
in survival around 1000 days (supplementary file II-Figure S15).

4. Discussion

Pancreatic cancer treatment is faced with the significant challenge of
heterogeneity in the genomic profile of patients. However, the
advancement of molecular profiling techniques has led to a better un-
derstanding of heterogeneity in pancreatic cancer.



Figure 8. a) Gene ontology analysis of the gene set obtained from correlation analysis using clusterprofiler package shows subtype I having similarity to major
pathways of ADEX subtype. b) Gene ontology analysis of the gene set obtained from correlation analysis using clusterprofiler package shows subtypes II having
similarity to the major pathways of classical/pancreatic progenitor subtype. c) Gene ontology analysis of the gene set obtained from correlation analysis using
clusterprofiler package show subtypes III having similarity to the major pathways of Immunogenic subtype. d) Gene ontology analysis of the gene set obtained from
correlation analysis using clusterprofiler package shows subtypes IV having similarity to the major pathways of stroma subtype. e) Gene ontology analysis of the gene
set obtained from correlation analysis using clusterprofiler package for shows subtypes V having similarity to the major pathways of squamous subtype.
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Compared to the traditional classification technique based on stain-
ing and histochemical studies, these methods classify samples into
distinct subgroups based on molecular characteristics having clinical
implications. However, heterogeneous classification results may be ob-
tained by varying patient cohorts, gene expression platforms, and clus-
tering methods. Different methodologies and platforms have resulted in
different classifications of PDAC and it has been classified into two to six
subtypes by other groups. But they have their limitations and inconsis-
tency. This prompts a better classification of PDAC, where the role of
data integration comes into play. Data integration helps in identifying
latent factors hidden across different levels of data and thus helps in
better identification of the heterogeneity in data. PDAC has a charac-
teristic feature of abundant stroma that constitutes a major percentage of
the tumor mass. The presence of microenvironment, stroma and tumor
cell infiltrate make PDAC highly heterogeneous. Besides, PDAC also has
infiltrative natures having normal pancreatic components along with the
tumor. Tumor microenvironment cells molecular profiling may help
define molecular subgroups and identify carcinogenic mechanisms based
on mRNA expression and their epigenetic regulation. Studies involving
various other datasets involving gene expression, DNA methylation,
miRNA and long non-coding RNA have shown putative markers impor-
tant for survival in PDAC. Genome-wide methylation studies have been
performed in TCGA pancreatic cancer datasets involving all pancreatic
cancer dataset and normal samples providing three cluster solution with
significant insights showing stage-specific subtyping like histologic
grade G1 and T3 stage subtype and have shown important gene and
methylation on histone modifying core genes like histone reader, editor
and eraser genes [81]. In comparison, we have removed the heteroge-
neity in the TCGA_PAAD data set by removing the non-PDAC samples
from PDAC samples. All studies were carried out on matched samples of
PDAC. We have applied intNMF to perform an integrative study of varied
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datasets to perform unsupervised classification of PDAC, which involves
two levels of data, namely RNA-Seq and DNA methylation data. We have
used all state-of-the-art normalization processes for the DNAmethylation
data namely SWAN, BMIQ, Noob, and Functional normalization for
normalization of DNA methylation data. Amongst these four methods,
we showed that SWAN performed best and then we performed integra-
tomics and further downstream studies, which included clustering using
intNMF, DEG, DMR, and the correlation study. We propose five molec-
ular and clinical distinct PDAC subtypes and studied survival analysis of
these subtypes, based on the integrative clustering approach. Our study
improves our understanding of PDAC heterogeneity and further helps
decipher the molecular and clinical significance of different subtypes.

The five subtypes emerging out of this analysis correlate properly
with the already identified subtypes of PDAC based on Bailey's and
Moffitt's classification. This study has shown the methylation landscape
in different subtypes of PDAC obtained after clustering and correlation
studies.

This study will strengthen our understanding of the impact of
methylation landscape of hyper-methylation and hypo-methylation on
different gene regions in gene expression profiles of obtained PDAC
subtypes. Our study focuses on the role of DNA methylation on gene
expression at different loci in the different genes in the heterogeneous
PDAC landscape. It will help improve and help in a better understanding
of epigenetic regulation on the gene expression in PDAC, using unsu-
pervised classification that will lead to better subtyping, prognosis and
personalized medical treatment.

5. Conclusion

Our integrative study proposes five biological subtypes of PDAC, with
their distinct molecular features and clinical outcomes. The proposed
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study will lead to better identification of PDAC and help in a better
prognosis, personalized treatment and help in delineating the hetero-
genetic landscape of PDAC. The obtained subtype-specific genes by our
analysis have the potential to drive personalized therapies and risk pre-
diction for PDAC patients [82].
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