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Abstract: Currently, there are several therapeutic approaches available for wound injury management.
However, a better understanding of the underlying mechanisms of how biomaterials affect cell
behavior is needed to develop potential repair strategies. Bacterial cellulose (BC) is a bacteria-
produced biopolymer with several advantageous qualities for skin tissue engineering. The aim here
was to investigate BC-based scaffold on epithelial regeneration and wound healing by examining
its effects on the expression of scavenger receptor-A (SR-A) and underlying macrophage behavior.
Full-thickness skin wounds were generated on Sprague-Dawley rats and the healing of these wounds,
with and without BC scaffolds, was examined over 14 days using Masson’s trichome staining. BC
scaffolds displayed excellent in vitro biocompatibility, maintained the stemness function of cells and
promoted keratinocyte differentiation of cells, which are vital in maintaining and restoring the injured
epidermis. BC scaffolds also exhibited positive in vivo effects on the wound microenvironment,
including improved skin extracellular matrix deposition and controlled excessive inflammation by
reduction of SR-A expression. Furthermore, BC scaffold significantly enhanced epithelialization by
stimulating the balance of M1/M2 macrophage re-programming for beneficial tissue repair relative
to that of collagen material. These findings suggest that BC-based materials are promising products
for skin injury repair.

Keywords: bacterial cellulose; scaffold; wound healing; epithelialization; tissue regeneration

1. Introduction

The skin is the largest organ of the human body and provides a protective barrier
against harmful external agents. Recently, biomaterials and tissue engineering have re-
ceived a lot of attention with the focus on developing appropriate treatments for destructive
skin injuries [1,2]. These strategies have been demonstrated to improve skin wound repair
by reducing dehydration and infection, supporting vascularization and attracting matrix
components, as well as sending cues to cells present in the local wound site [3–6]. In addi-
tion, biomaterials exhibit high biocompatibility, excellent permeability and non-toxicity,
as well as tunable physical, morphological and mechanical properties. With these use-
ful properties, functionalized biomaterials can promote wound healing by modulating
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local inflammation, ensuring selective cell infiltration and regulating the replication of
various beneficial growth factors, cytokines and/or enzymes [7,8]. Although many studies
have been conducted on the construction of properly engineered biomaterials, there are
several limitations that prevent significant progress, including a poor understanding of
cell–biomaterial interactions and host immune rejection. Thus, more comprehensive infor-
mation is needed to understand the underlying mechanisms of how biomaterials affect cell
behavior.

Choosing a suitable biomaterial is essential for the development of functionally engi-
neered tissues. Recently, there has been increasing interest in using natural polymers such
as collagen, cellulose, gelatin, plasma-based fibrin, keratin, silk and chitosan—separately
or in combination—because they comprise protein motifs and/or bioactive molecules that
naturally mimic the skin extracellular matrix (ECM) [5,9,10]. Constructing scaffold-like
ECM is desirable as the ECM facilitates support to cell structure and functions, accelerating
tissue formation and remodeling [11,12].

Cellulose is well-known as the most abundant natural polymer available and has been
utilized for a long time to produce diverse products, ranging from industrial to medical
applications, such as fibers for textiles, food ingredients and packaging, and hemodial-
ysis and blotting membranes [13,14]. Cellulose occurs naturally in plants, consisting of
β-1,4-glycosidic bonds with high crystallinity, indicating its resistance to depolymeriza-
tion [15]. Bacterial cellulose (BC) is a biocompatible extracellular polysaccharide produced
and secreted by some bacteria, such as the aerobic Gram-negative bacterium Acetobacter
xylinum [16]. As BC is free of lignin and hemicellulose, it has unique properties, including
chemical purity and a low energy synthesis process, although it shares the same molecular
formula as plant celluloses. In addition, BC has excellent biodegradability and biocompat-
ibility [17]. BC is also a remarkable biomaterial with tailor-made properties for various
applications owing to its abundant reactive group structure that provides many possible
modifications [18]. BC has been mainly applied as a scaffold for biomedical applications,
including wound dressing [19], nerve regeneration [20], dental implants [21], cartilage
growth [22] and vascular grafts [23]. In skin repair, BC shows good cytocompatibility,
maintains a constantly moist environment, enhances exudate absorption, provides a highly
porous, biocompatible and biodegradable architecture that mimics the ECM of skin and
promotes tissue regeneration [24,25].

In wound repair, epithelialization is an essential parameter of the healing process,
ensuring successful wound closure. Macrophages, key regulators of wound healing, play
vital roles in all phases of repair by secreting various cytokines and chemokines associated
with the production of pro-inflammatory mediators, angiogenesis and epithelialization [26].
Therefore, in this study, we aimed to investigate BC-based scaffold on epithelial regenera-
tion and wound healing by examining its effects on the expression of scavenger receptor-A
(SR-A) and underlying macrophage behavior. A better understanding of the epithelializa-
tion mechanism may lead to the development of significant therapeutic approaches with
excellent healing potential.

2. Materials and Methods
2.1. Fabrication of Bacterial Cellulose (BC) Scaffold

BC (BF10005; The Far Eastern Group, Taipei, Taiwan (R.O.C.)) was produced by
growing Acetobacter xylinum in a medium composed of buffered Hestrin–Schramm broth.
After 2 days of incubation, the BC produced was soaked in coconut water (pH 4.0–4.4)
at 30 ◦C for an additional 2 days. To remove the bacteria, BC fibers were washed with a
0.1 M NaOH solution at 90–95 ◦C followed by 0.25% H2O2 bleaching at 45 ◦C for 30 min.
Finally, the BC fibers were washed several times in water until a neutral pH was reached.
Subsequently, the BC fibers were compressed into a sheet and dehydrated with acetone
(water content < 15%) with a thickness of 2 mm.
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2.2. Characterization of Bacterial Cellulose (BC) Scaffold
2.2.1. Scanning Electron Microscopy (SEM)

Briefly, sections of BC scaffold were attached to carbon stubs followed by gold coating
using a sputter coating machine. A scanning electron microscope (HITACHI S-3000N,
Hitachi High Technologies, Krefeld, Germany) at 1.5 kV accelerating voltage was used to
observe the surface morphology of the scaffold.

2.2.2. Fourier-Transform Infrared (FTIR) Spectroscopy

BC scaffold spectra were examined using FTIR spectroscopy (Nicolet 8700 spectrom-
eter; Thermo Fisher Scientific, Waltham, MA, USA) equipped with the attenuated total
reflectance (ATR) accessory and mercury–cadmium–telluride for infrared detection. Spec-
tra were collected over a wavenumber range of 4000–500 cm−1 with a resolution of 1 cm−1.
A total of 16 scans was produced.

2.3. Cell Culture

Isolation of human adipose stem cells (hASCs) was performed as previously de-
scribed [27]. The tissue sample collection method was certified by the Institutional Review
Board of Tri-Service General Hospital, Taipei, Taiwan (R.O.C.) (IRB 2-105-05-150). The pri-
mary culture of hASCs (provided by Dr. Cherng) was cultured in keratinocyte serum-free
medium (KSFM, Life Technologies Ltd., Paisley, Scotland, UK) containing 10% fetal bovine
serum (FBS; Hyclone, Logan, UT, USA) in a humidified 5% CO2 atmosphere at 37 ◦C.

RAW 264.7 cells (ATCC, Rockville, MD, USA) were maintained in Dulbecco’s modified
Eagle medium (DMEM; Life Technologies, Carlsbad, CA, USA) containing 10% FBS (Life
Technologies, Carlsbad, CA, USA) and 1% antibiotics (penicillin/streptomycin; Thermo
Fisher Scientific, Waltham, MA, USA) at 37 ◦C under 5% CO2. The medium was renewed
twice per week.

2.4. In Vitro Biocompatibility

The BC scaffold was sterilized by ultraviolet irradiation for 18 h, then seeded with
hASCs at a density of 106 cells/cm2 and incubated at 37 ◦C in a humidified 5% CO2 atmo-
sphere. The culture medium was replaced every 2 days. The biocompatibility of the BC
scaffold was investigated by trypan blue (Sigma-Aldrich; Merck, Darmstadt, Germany)
staining. Briefly, the BC-hASC scaffolds were soaked in a 0.1% acetic acid solution for
30 min, followed by two phosphate buffered saline (PBS) washes and overnight refrigera-
tion at 4 ◦C. The scaffolds were then post-fixed for 3 days in a 4% paraformaldehyde-sucrose
solution, followed by rinsing with distilled water before staining with trypan blue solution
for 10 min at 27 ◦C. The samples were washed twice with PBS to completely remove any
remaining trypan blue residue before examination under a light microscope. Images were
captured using an SPOT-RT digital camera (Diagnostic Instruments, Detroit, MI, USA).

2.5. Immunofluorescence Staining

After fixation, the samples were treated with 0.2% Triton X-100 for 30 min, followed
by three 5 min washes with PBS. A 10% normal goat serum (Vector Laboratories Ltd.,
Burlingame, CA, USA) was used to block the samples, followed by incubation with primary
antibodies (1:500 dilution), including rabbit polyclonal anti-octamer-binding protein 4 (anti-
OCT-4), mouse monoclonal anti-nestin, mouse monoclonal anti-sex determining region
Y-box 9 (anti-SOX-9) and mouse monoclonal anti SR-A (all from Santa Cruz Laboratories,
Dallas, TX, USA), for 2 h at 27 ◦C. After three 5 min washes with PBS, secondary antibod-
ies, including rabbit monoclonal anti-fluorescein isothiocyanate (1:1000 dilution; Jackson
ImmuoResearch, West Grove, PA, USA) and mouse monoclonal anti-rhodamine (1:1000;
AnaSpec, Fremont, CA, USA), were incubated with the samples for 1 h at 27 ◦C. Hoechst
33,342 (1:5000; AnaSpec, Fremont, CA, USA) was then added to the samples for 15 min for
nuclei visualization. Finally, fluorescent images were observed using an inverted fluores-
cent microscope (Axio Lab.A1; Carl Zeiss AG, Oberkochen, Germany) equipped with a
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camera (Zeiss AxioCam ICm1; Carl Zeiss AG, Oberkochen, Germany). Semi-quantitative
measurements of positive SR-A stained cells were conducted using the ImageJ software
(National Institutes of Health, Bethesda, MD, USA).

2.6. Raw 264.7 Cells Cultured on BC and Collagen Scaffolds

A collagen scaffold was prepared as previously described [28]. Pig collagen (FlexiCol®

Sigma-Aldrich, Merck, Darmstadt, Germany) was dissolved in 1% (v/v) acetic acid and
0.275 mL of this solution was then loaded into glass vials. The solution was cooled to
−20 ◦C and stored overnight before being transferred into a freeze-drying chamber (FD12-
2S; Kingming, Taipei, Taiwan) and dehydrated under a 300 mbar vacuum at −45 ◦C for
24 h. This process was evenly ramped to 25 ◦C, followed by incubation in a 2.5% (w/v)
polycaprolactone/dichloromethane solution for 30 min in a closed vial. The solvent was
allowed to evaporate in air before adding RAW 264.7 cells (105 cells/mL) onto the BC
and collagen scaffolds. The scaffolds were then incubated in culture medium for 24 h in a
humidified 5% CO2 atmosphere at 37 ◦C.

2.7. Rat Model of a Surgical Epidermal Defect

A total of 30 male Sprague-Dawley rats (250–300 g; Bio-LASCO Co. Ltd., Taipei,
Taiwan (R.O.C.)) were used to develop the skin epidermal defect model. All animal
protocols were approved by the Institutional Animal Care and Use Committee (IACUC-17-
068) at the Animal Center of the National Defense Medical Center, Taipei, Taiwan, R.O.C.
The rats were randomly divided into a BC scaffold treatment group and a control lesion
group. Briefly, the rats were anesthetized with an intraperitoneal injection of xylazine
(8 mg/kg) and ketamine (100 mg/kg). Two full-thickness skin wounds, 1 cm in diameter,
were generated using a surgical blade on the dorsum of each rat. The wounds were then
covered with BC scaffold for the experimental group and left untreated and covered with
plain medical gauze for the control lesion group. The rats were kept in individual cages and
euthanized on day 7 or day 14 after wound generation by intraperitoneal administration of
an overdose of sodium pentobarbital (≥100 mg/kg). The wound tissues were harvested
and immediately stored in 10% formalin with sucrose for further analysis.

2.8. Masson’s Trichrome Staining

Briefly, 30 µm cryo-sectioned tissue samples were fixed with 4% paraformaldehyde.
The samples were then stained using Masson’s trichrome solution (Sigma-Aldrich, Labor-
chemikalien GmbH, Hanover, Germany) according to the manufacturer’s instructions. An
inverted microscope (BX53; Olympus, Tokyo, Japan) was used to observe the samples.

2.9. Multiplex Protein Biomarker Immunoassays

Cytokine and chemokine production in the supernatant of cultured RAW 264.7 cells
were quantified using the Milliplex MAP Mouse Cytokine/Chemokine Panel (Merck
Millipore, Darmstadt, Germany) following the manufacturer’s instruction. Medium
from scaffold-treated and control cells was used and granulocyte-macrophage colony-
stimulating factor (GM-CSF), macrophage colony-stimulating factor (MCSF), interferon-
gamma (IFN-γ), interleukin-1 alpha (IL-1α), interleukin-1 beta (IL-1β), interleukin-2 (IL-2),
interleukin-4 (IL-4), interleukin-10 (IL-10), interleukin-12(p70) (IL-12(p70)), interleukin-17
(IL-17), chemokine (C-X-C motif) ligand 1 (CXCL-1), macrophage inflammatory protein-1
alpha (MIP-1a), macrophage inflammatory protein-1 beta (MIP-1b), regulated on activation,
normal t expressed and secreted (RANTES), tumor necrosis factor-alpha (TNF-α), nuclear
factor kappa B (NF-κB) and protein kinase B (Akt) were analyzed. For the Milliplex assay,
beads and the appropriate detection antibodies were added to the control or treated cell
lysates, which were then incubated with antibody-conjugated magnetic beads overnight
at 4 ◦C. The concentration of recovered bead complexes was read on a Magpix Multi-
plex Platform (Luminex Corporation, Austin, TX, USA). Median fluorescent values were
recorded from a minimum of 80 beads that were used for data analysis. Standard curves



Pharmaceutics 2021, 13, 1592 5 of 16

and data were analyzed using the Milliplex Belysa™Immunoassay Curve Fitting Software
(Version 1.1, Merck KGaA, Darmstadt, Germany).

2.10. Quantitative Real Time Polymerase Chain Reaction (qRT-PCR)

Briefly, RNA was isolated from RAW 264.7 cells cultured on BC and collagen scaf-
folds. The quantity and purity of isolated RNA were assessed using a NanoDrop™ 2000
Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). cDNA was generated
using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Waltham,
MA, USA). qRT-PCR was carried out using the LightCycler® 480 SYBR Green I Master
(Roche Life Science, Penzberg, Germany). Briefly, the reaction included an initial activation
step at 95 ◦C for 3 min, 40 cycles of denaturation at 95 ◦C for 5 s, annealing/extension
at 60 ◦C for 20 s and, lastly, a high-resolution melting curve analysis from 65–95 ◦C with
0.5 ◦C increments, 5 s per step. Equal amounts of cDNA were added for all samples, which
were run on a LightCycler ®® 480 System (Roche Life Science, Penzberg, Germany). All
measurements were based on quadruplicate measurements of each cell culture condition
and normalized to the internal reference gene, glyceraldehyde 3-phosphate dehydrogenase
(GAPDH). The comparative cycle threshold (DDCT) method was used to calculate the
relative fold-changes. Primers were designed using the Primer-BLAST tool (National
Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA)
as follows: mouse iNOS-Forward, CCA AGC CCT CAC CTA CTT CC and iNOS-Reverse,
CTC TGA GGG CTG ACA CAA GG; mouse Arg-1-Forward, CAT GGG CAA CCT GTG
TCC TT and Arg-1-Reverse, TCC TGG TAC ATC TGG GAA CTT TC.

2.11. Statistical Analysis

The statistical analysis was performed using the Statistical Package for Social Sciences
version 18 (SPSS, Chicago, IL, USA). The data are presented as mean ± standard error of
the mean and data means were compared using a one-way ANOVA. Data were considered
statistically significant at p < 0.05.

3. Results and Discussion
3.1. Characteristics of Bacterial Cellulose Scaffold

In skin tissue engineering, the functionality of tissue repair depends on the microstruc-
ture of the applied scaffold. Appropriate scaffolds play key roles in the regeneration of
skin tissues by providing a suitable platform and supplying various factors related to
the proliferation, differentiation and survival of cells [29]. SEM analysis demonstrated
that the surface of the BC scaffold was smooth, comprised of ultrafine BC fibrils with a
pore diameter of ~0.2 µm, supporting substance interchange and cell adhesion (Figure 1a).
The functional groups of the BC scaffold were further examined by FTIR spectroscopy
(Figure 1b). The FTIR spectrum displayed strong peaks for structures, including β-1,4 bond
vibrations (675–890 cm−1), stretching vibrations of the antisymmetric C–O–C bridge and
symmetric C–O groups (1000–1300 cm−1), CH2 bending relating to crystalline/amorphous
proportions in cellulosic molecules (1432 cm−1), C–H groups (2892 cm−1) and stretching
vibrations of the OH groups (3200–3500 cm−1), which implies a relative abundance of
cellulose Iα [30,31]. Similar results have also been reported in previous studies, indicating
that A. xylinum can produce typical cellulose [32,33].
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3.2. In Vitro Biocompatibility of Bacterial Cellulose Scaffold

Biocompatibility is an important feature of scaffolds that provides conducive tempo-
rary platforms for successful cell–biomaterial interactions and tissue formation. To evaluate
the effects of the BC scaffold on the cellular microenvironment, we incubated the scaffold
with hASCs and used trypan blue staining to observe their proliferation. As shown in
Figure 2a, the BC scaffold promoted cell growth remarkably after 3 days and significant
cell survival after 7 days of incubation (Figure 2b), proving its excellent biocompatibility.
It is suggested that BC scaffolds enhance cell adhesion owing to their crystalline fibrillar
structure, which creates a large surface area. Proper cell adhesion that initiates cytoskeletal
protein mediation is favorable for the completion of cell mitosis [34]. We further evaluated
the differentiation potential of hASCs cultured on BC scaffolds using several markers,
including OCT-4, nestin (stemness differentiation marker) and SOX-9 (a keratinocyte dif-
ferentiation marker) [35,36]. After 14 days incubation, there was a positive expression of
OCT-4 (Figure 3a,b) and nestin (Figure 3c,d) by hASCs on the BC scaffold, indicating that
BC can maintain the stemness function of cells. This mechanism is critical for physiological
tissue renewal and regeneration after injury [37]. In addition, the positive expression of
SOX-9 (Figure 3e,f) in hASCs on BC scaffolds showed that BC has the potential to promote
keratinocyte differentiation of hASCs. Many studies have demonstrated that mesenchymal
stem cells can participate in wound re-epithelialization by differentiating into keratinocytes,
thus regenerating the skin epidermis [36,38–40]. Keratinocytes are vital in maintaining the
epidermis and restoring it after injury [41].

3.3. In Vivo Assessment Using a Rat Skin Defect Model

To evaluate the effects of the BC scaffold on epithelial regeneration in vivo, we devel-
oped a rat skin defect model, which was either treated with BC scaffold or remained empty
as a control lesion for up to 14 days. Representative images of wound healing over time
are shown in Figure 4. Compared to the control lesion, the wound site with BC scaffold
treatment was smaller and surrounded by smooth tissue without redness. However, both
skin defects demonstrated ongoing wound closure.

A qualitative assessment is necessary to determine whether there are observable
tissue, cellular, or molecular differences caused by the treatment during the wound healing
process. Dermal wound repair involves dynamic activities, including interaction between
epidermal and dermal cells and angiogenesis, as well as ECM and plasma-derived proteins
for successful epithelialization [42]. In the absence of re-epithelialization, failed wound
repair occurs. To evaluate the quality of epithelial regeneration in the wound tissue, a
histological analysis using Masson’s trichrome staining was performed (Figure 5). The
results revealed that re-epithelialization of the wound was occurring with BC scaffold
treatment. Compared to the untreated control lesion that showed a less clear structure,
more empty spaces, hair follicle damage and high numbers of neutrophilic inflammatory
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cells (Figure 5a), wounds treated with BC scaffolds showed increased healing effects, as
indicated by the presence of keratinocytes and fewer granular cells or inflammatory cells
after 7 days (Figure 5c). During re-epithelialization, fibroblasts are recruited to rebuild
the dermal layer along with the migration of keratinocytes from the edges of the wound
to re-epithelialize the surrounding matrix [43]. After 14 days of wound healing, in this
study, an improved arrangement of collagen fibers, stratified squamous epithelium and
dense newborn subcutaneous tissue, which integrated with the granular tissue in the
epidermis, was displayed in wound tissue with BC scaffold treatment (Figure 5d), when
compared with the untreated lesion control (Figure 5b). Previous studies reported that BC
applied as wound dressing demonstrates good cytocompatibility and histocompatibility
with no fibrotic tissues around the implants and showed better tissue regeneration and
faster healing in the in vivo studies performed on a large area of skin [44–46]. Overall, the
results reflect the positive role of BC in ECM deposition and re-epithelialization of wounds.

Pharmaceutics 2021, 13, 1592 7 of 17 
 

 

 
Figure 2. Study of in vitro biocompatibility of bacterial cellulose scaffold incubated with human 
adipose stem cells (hASCs) using trypan blue staining. (a) Growth of hASCs with time. (b) Quanti-
fication of cell survival (scale bar = 200 μm; * p < 0.05). 

 
Figure 3. Immunofluorescence staining of human adipose stem cells cultured on bacterial cellulose 
scaffold for 14 days. (a,b) Octamer-binding protein 4 (OCT-4) and OCT-4/Hoechst overlay expres-
sion, respectively. (c,d) Nestin and Nestin/Hoechst overlay expression, respectively. (e,f) Sex deter-
mining region Y-box 9 (SOX-9) and SOX-9/Hoechst overlay expression, respectively (scale bar = 200 
μm). 

3.3. In Vivo Assessment Using a Rat Skin Defect Model 
To evaluate the effects of the BC scaffold on epithelial regeneration in vivo, we de-

veloped a rat skin defect model, which was either treated with BC scaffold or remained 
empty as a control lesion for up to 14 days. Representative images of wound healing over 
time are shown in Figure 4. Compared to the control lesion, the wound site with BC scaf-
fold treatment was smaller and surrounded by smooth tissue without redness. However, 
both skin defects demonstrated ongoing wound closure. 

Figure 2. Study of in vitro biocompatibility of bacterial cellulose scaffold incubated with human adi-
pose stem cells (hASCs) using trypan blue staining. (a) Growth of hASCs with time. (b) Quantification
of cell survival (scale bar = 200 µm; * p < 0.05).

Pharmaceutics 2021, 13, 1592 7 of 17 
 

 

 
Figure 2. Study of in vitro biocompatibility of bacterial cellulose scaffold incubated with human 
adipose stem cells (hASCs) using trypan blue staining. (a) Growth of hASCs with time. (b) Quanti-
fication of cell survival (scale bar = 200 μm; * p < 0.05). 

 
Figure 3. Immunofluorescence staining of human adipose stem cells cultured on bacterial cellulose 
scaffold for 14 days. (a,b) Octamer-binding protein 4 (OCT-4) and OCT-4/Hoechst overlay expres-
sion, respectively. (c,d) Nestin and Nestin/Hoechst overlay expression, respectively. (e,f) Sex deter-
mining region Y-box 9 (SOX-9) and SOX-9/Hoechst overlay expression, respectively (scale bar = 200 
μm). 

3.3. In Vivo Assessment Using a Rat Skin Defect Model 
To evaluate the effects of the BC scaffold on epithelial regeneration in vivo, we de-

veloped a rat skin defect model, which was either treated with BC scaffold or remained 
empty as a control lesion for up to 14 days. Representative images of wound healing over 
time are shown in Figure 4. Compared to the control lesion, the wound site with BC scaf-
fold treatment was smaller and surrounded by smooth tissue without redness. However, 
both skin defects demonstrated ongoing wound closure. 

Figure 3. Immunofluorescence staining of human adipose stem cells cultured on bacterial cellulose
scaffold for 14 days. (a,b) Octamer-binding protein 4 (OCT-4) and OCT-4/Hoechst overlay expression,
respectively. (c,d) Nestin and Nestin/Hoechst overlay expression, respectively. (e,f) Sex determining
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The beneficial re-epithelialization shown by the BC scaffold could be due to the
reduction in the excessive immune response of macrophages, which would avoid persistent
inflammation and tissue damage. In this study, we evaluated the expression of SR-A at
the wound sites after 7 days of treatment (Figure 6). SR-A is a membrane-bound receptor
that is relatively abundant under oxidative stress conditions in macrophages, vascular
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smooth muscle and endothelial tissues [47]. In macrophages, SR-A participates in the
identification and removal of pathogens. However, SR-A1-null macrophages exhibit
elevated pro-inflammatory responses, such as increased p42/44 MAPK phosphorylation,
NF-κB nuclear translocation and increased secretion of TNFα, IL-6 and IFNβ [48]. As
shown in Figure 6a, the relative expression of the SR-A at the wound site was weaker
in the BC scaffold treatment than in the control lesion, indicating that the activity of
macrophages was downregulated along with the formation of integrated keratinocytes
in the superior epithelial tissue. Semi-quantitative analysis revealed a significantly lower
number of SR-A positively stained cells in the BC scaffold group than in the control lesion
group (p < 0.01; Figure 6b). Preclinical and clinical studies have shown that a reduced
inflammatory response and improved epithelialization during treatment are associated
with better wound closure and scar histology [49,50]. Based on this result, we further
evaluated the underlying mechanism of BC scaffold treatment on macrophage behavior.
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Figure 6. Immunostaining of scavenger receptor-A (SR-A) expression in rat skin defects after 7 days of treatment. (a) Control
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ImageJ (scale bar = 200 µm; ** p < 0.01).

3.4. Immunoregulation of Bacterial Cellulose Scaffold on Macrophage Behavior

As the expression of SR-A was up-regulated in the epidermis of rats with skin defects,
we investigated the immunoregulation of BC on macrophages to define their M1/M2
behavior. We hypothesized that BC could stimulate the balance of M1/M2 macrophage
reprogramming, which is essential for promoting cell proliferation and tissue repair. In
this study, we compared the effects of BC scaffold and collagen total type material (COLt)
on M1/M2 macrophage phenotypes by analyzing the expression of iNOS and Arg-1, as
well as M1/M2 macrophage-related cytokines. Collagen, one of the primary components
of ECM, is commonly used as a dressing-based material in wound healing because it can
promote angiogenesis and re-epithelialization of wound tissue [51]. In the subsequent
experiment, we compared BC scaffold effectiveness to that of collagen-based material,
which served as a control dressing, to explore any differences in the regulation of the
skin wound inflammation response. The results showed that BC scaffold significantly
enhanced the expression of iNOS and Arg-1, compared to that of COLt (p < 0.05; Figure 7).
iNOS is induced by M1 macrophages, which have a pro-inflammatory phenotype with
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pathogen-killing properties, while Arg-1 is induced by M2 macrophages, which support
cell proliferation and tissue repair [52,53]. In relation to SR-A expression, the expression of
Arg-1-induced M2 was higher than that of iNOS-induced M1 in the BC culture. The role of
SR-A in triggering pro-inflammatory reactions is associated with phagocytosis and uptake
of waste products [54]. One study revealed that SR-A1 antibody pre-treatment increased
IL-10 expression in RAW264.7 cells. This indicates that SR-A1 facilitates the inflammatory
response not only by inducing the secretion of pro-inflammatory cytokines, but also by
suppressing the expression of anti-inflammatory cytokines, which was accompanied by a
decrease in M1 macrophages and an increase in M2 macrophages [55]. Our results suggest
that BC is not only able to control the inflammation response, but it also functions in
M1/M2 polarization.
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Figure 7. Expression of inducible nitric oxide synthase (iNOS) and arginase-1 (Arg1) secreted by
macrophages cultured on bacterial cellulose (BC) scaffold, collagen total type material (COLt), or in
DMEM for 24 h (* p < 0.05; ** p < 0.01).

Cytokine assay results demonstrated that culturing macrophages with BC elevated
the levels of M1 macrophage-related cytokines, including GM-CSF, TNF-α, IL-1β, IL-5,
IL-6, CXCL5/LIX, IFN-γ, IL-12(p70), IL-17, MIP1a, MIP1b and RANTES, compared with
that of COLt (Figure 8). The expression of M1 macrophage-related cytokines in COLt was
not significantly different from that of the control DMEM group, indicating collagen may
not activate macrophage polarization. In addition, BC scaffold had the highest proportion
of M2 macrophage-related cytokines, such as IL-4, IL-10, MCSF and CXCL1/KC (Figure 9).

Macrophages play vital roles in the phases of wound healing by circulating into
target tissues and differentiating into polarized M1 and M2 macrophages, as influenced by
microenvironment signals [56]. Understanding macrophage activity is important for tissue
repair and homeostasis maintenance. M1 macrophages are stimulated by Th1 cytokine
IFN-γ and bacterial components (e.g., lipopolysaccharide and peptidoglycan), while M2
macrophages are stimulated by different stimuli, including IL-4, IL-10 and IL-13 [57,58].
During the wound healing process, M1 macrophages are active in pro-inflammatory and
antimicrobial responses by producing various cytokines and chemokines, including TNF-α,
IL-1, IL-6, IL-12, IFN, CXCL1–3, CXCL5 and CXCL8–10. In contrast, M2 macrophages
occur in response to IL-4, IL-10, IL-13, IL-33 and TGF-β signals [59,60].

Consequently, macrophages also play key roles in immunity. A balance between M1
and M2 macrophages can thus differentially regulate beneficial tissue repair in inflamma-
tory diseases [61,62]. However, macrophage phenotypes are still alterable in response to
microenvironment stimuli; proinflammatory stimuli can trigger a switch in phenotype
towards the anti-inflammatory M2 phenotype. In turn, anti-inflammatory stimuli can
trigger a switch in phenotype towards the proinflammatory M1 phenotype [63]. In this
study, we investigated the shifting of macrophage phenotypes in response to scaffold treat-
ment. Macrophage phenotype shifting affects synchronized changes in signaling pathway
activities, such as JNK, PI3K/Akt, Notch, JAK/STAT, TGF-β and TLR/NF-κB. Further-
more, both phenotypes can tolerate reversible functional changes that lead to macrophage
plasticity and the ability to be reprogrammed given the proper stimuli [64,65]. Figure 10a
demonstrated that BC scaffold significantly enhanced the activation of the NF-κB pathway
in IFN-γ-stimulated macrophages. The NF-κB pathway is primarily involved in immune
and inflammatory regulation by modulating pro-inflammatory mediators and cytokines
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associated with inflammation, apoptosis and proliferation [66]. NF-κB pathway activation
is also vital for M1 macrophage polarization and its pro-inflammatory effects [67]. Further-
more, the switching phenotype may be involved in the several isoforms of Akt, allowing
macrophages to be reprogrammed to both M1 and M2 phenotypes in response to the same
LPS ligand via the PI3K/Akt-signaling pathway [68]. As shown in Figure 10b, BC scaffold
significantly elevated the activation of the Akt signaling pathway. A study reported that
the inhibition of the PI3K/Akt pathway can suppress M2 macrophage polarization [69].
Our data suggest that Akt1 ablation results in an M1 phenotype, while ablation of Akt2
results in an M2 phenotype. Additionally, in the BC scaffold culture condition, we found
that, although the cytokines were simultaneously secreted by M1/M2 macrophages, the
expression of M1 shift to M2 and M2 shift to M1 cytokines were also elevated, demon-
strating a constantly dynamic homeostasis (Figure 10c). Moreover, the M1/M2 switching
phenotype induces the production of M1 mediators in response to IFN-γ and, in response
to IL-4 and IL-13, their phenotype induces the production of M2 mediators [70]. This
continuum performs an essential role during inflammation; hence, it implies the ability of
BC in helping to maintain the balance of M1/M2 macrophage reprogramming for beneficial
tissue repair.
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Figure 8. Expression of M1 macrophage-related cytokines secreted by macrophages cultured on
bacterial cellulose (BC) scaffold, collagen total type material (COLt), or in DMEM for 24 h (GM-
CSF = granulocyte-macrophage colony-stimulating factor; TNF-α = tumor necrosis factor-alpha;
IL-1β = interleukin-1 beta; IL-5 = interleukin-5; IL-6 = interleukin-6; CXCL5/LIX = chemokine
(C-X-C motif) ligand 5/lipopolysaccharide-induced chemokine; IFN-γ = interferon-gamma; IL-
12(p70) = interleukin-12(p70); IL-17 = interleukin-17; MIP1a = macrophage inflammatory protein-1
alpha; MIP1b = macrophage inflammatory protein-1 beta; RANTES = regulated on activation, normal
t expressed and secreted; * p < 0.05; ** p < 0.01).
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4. Conclusions

In summary, our study demonstrates the potential of BC as an effective bio-scaffold
for skin tissue repair. The results suggest that a BC scaffold plays a positive role in the
wound microenvironment, including improving skin ECM deposition, controlling excessive
inflammation responses by reducing SR-A expression and enhancing the epithelialization
process by stimulating the balance of M1/M2 macrophage reprogramming, all of which are
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beneficial in tissue repair. Together, these findings support the use of BC-based materials,
such as surgical dressings or carriers, in cell therapy treatment for skin injury management.
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