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INTRODUCTION

Parkinson’s disease (PD) is specific to humans and its prevalence has increased over time (Garcia-
Ruiz and Espay, 2017). Clinical features range from hyposmia and constipation early in the disease
to cogwheel rigidity, tremors, and bradykinesia (classic triad for clinical diagnosis of PD); and later
still postural instability, ataxia, and freezing of gait (FOG) experienced by patients in advanced
stages of PD (Jancovic, 2008); these are often refractory to standard medications and even DBS
(Lilleeng et al., 2015). Dysphonia, dysphagia, and expressionless faces are other distinctive clinical
features. Increasing prevalence is related to longer life expectancy and survival with the disorder;
however, changes in lifestyle likely contribute as technological advances occasion a reduction in
physical exercise relative to our ancestors. Hunter-gatherers are estimated to have engaged in
four times the level of physical activity compared to modern humans, (O’Keefea et al., 2011)
and vigorous, even moderate exercise is associated with a >30% reduction in risk of developing
PD (Yang et al., 2015). Exercise is known to promote the release of neurotrophic factors in
the brain that exert neuroprotective effects (Ahlskog, 2011). The literature on the benefits of
clinical neurofeedback in managing PD symptoms has not included the method we employ in our
neurology clinic, infralow frequency (<0.01Hz) brain training (ILF). Our purpose is to contribute
our experience using ILF in managing our patients with PD.

BACKGROUND

Parkinson’s Disease: Etiopathogenesis
Dopaminergic neurons have an intrinsic vulnerability because of their high metabolic demands,
serving amongst other important functions the self-generation of rhythms that underlie the regular
and diffuse distribution of dopamine throughout the brain to maintain the basic regulation
of locomotion, learning, working memory, cognition, emotion, and behavior. Degeneration
of dopaminergic neurons in the pars compacta of substantia nigra (SNc) characterize the
neuropathology in PD. High energy demands may lead to calcium overload, resulting in
mitochondrial dysfunction and oxidative stress, over time resulting in alpha-synuclein misfolding
and aggregation into toxic soluble oligomers leading to progressive pathology in PD (Surmeier
et al., 2017). Recent literature emphasizes that the presence of neuroinflammation, particularly
reactive astrocytes in SNc, is a consistent feature and provides evidence that PD may develop, at
least in part, due to astroglial dysfunction (Booth et al., 2017). Other notable brain regions staining
highly for alpha-synuclein in experimental non-human primates include layers III and V of the
cerebral cortex and the hippocampus (Yang et al., 2021).
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A working “mixed hypothesis” has been proposed that
PD begins with a multifocal origin (accounting for early
hyposmia and constipation) that relies on trans-synaptic spread
for progression to new brain regions accounting for later
motor-related manifestations as the disease advances with
age (Mou et al., 2020). The high incidence and prevalence
of PD in the elderly has motivated the hypothesis of
diminishing dopaminergic supply in association with the normal
aging process; senescence itself is regarded a background
for the development of neurodegenerative diseases like PD,
wherein accompanying astroglial changes contribute to disease
progression (Yuan et al., 2021). Progressive dysfunctions of
astrocytes and microglia lead to a microenvironment deleterious
for neuronal survival over time, a more likely scenario since the
process of neuronal death is fairly rapid and does not fully explain
the gradual neurodegeneration characteristic of clinical PD (Joe
et al., 2018). Supporting this thinking is the fact that the majority
of PD genes identified to date are usually expressed in astrocytes
and microglia (Solano et al., 2008).

A growing emphasis on less neurocentric causal mechanisms
of PD supports our experience that ILF brain training is helpful
in managing the often medically refractory symptoms in PD.
The lowest recordable brain frequencies (<0.01Hz) are believed
to be non-neuronal in origin (Lorincz et al., 2009), dependent
on the ATP derived from astrocytes. Astrocytes are critical for
synaptic learning (plasticity) (Popov et al., 2021); we postulate
that ILF brain training strengthens brain networks involved
in neuroplasticity.

Role of Astrocyte Dysfunction in
Pathogenesis of Parkinson’s Disease
Many of the genes implicated in the development of PD are
expressed in astrocytes, sometimes at levels higher than in
neurons (Joe et al., 2018). For example, in postmortem studies
of human brain samples expression of PARK7 was shown to be
higher in astrocytes than in neurons, and in patients with PD this
gene was found to be up-regulated in reactive astrocytes. Alpha-
synuclein-positive inclusions have been found in both neurons
and astrocytes. Expression of the SNCA gene encoding for alpha-
synuclein is low in astrocytes, however the alpha-synuclein from
dying neurons is taken up by astrocytes, an attempt to remove
and degrade alpha-synuclein to maintain a healthy environment
for neuronal survival (Booth et al., 2017). These investigators
propose that understanding the role of astrocytes in PD will
further our understanding of the disease.

In this paper on PD, we need to mention the evolutionary
importance of astrocytes. Morphologically there have been far
more prominent evolutionary changes in glia than in neurons
when comparing humans and other mammals to earlier species.
Compared to rodents, cats, and marsupials humans have a
much larger glia:neuron ratio, although our massive whales
demonstrate the highest ratio of all mammals. Within the human
brain itself there are regional differences; the globus pallidus (GP)
has the highest glia:neuron ratio of 160:1 compared to 3.6:1 in
gray matter (Verkhratsky et al., 2019).

There is a heterogeneity of function among the astrocytes
depending where in the brain they exist. Astrocytes support
important network hub functions, and play key roles in
homeostatic regulatory functions (Linnerbauer et al., 2020). The
homeostatic anti-inflammatory activities of astrocytes and their
regulation are coming to be understood (Sanmarco et al., 2021).
Neurons are functionally dependent on astrocytes; when any
astroglial network falters, the dysfunction and even death of
neurons dependent on that network is sure to follow.

Clinical Approach to Parkinson’s Disease
In neurology practice managing the refractory, disabling
symptoms and limitations in PD is a humbling challenge.
Rational polypharmacy in recent decades has provided some
meaningful advances; still there are patients who break through
their medication control and seek othermethods ofmanagement.
For some the aggressive surgical route of deep brain stimulation
(DBS) is a difficult decision; potential benefits include reduced
medication, improvements with rigidity and tremors and control
of dyskinesias (Limousine and Foltynie, 2019). Long term reports
on DBS are in accord that subthalamic nucleus (STN)-DBS
provides greater beneficial effects than globus pallidus internus
(GPi)-DBS on symptoms in off periods, allowing for reduction of
medications, whereas GPi-DBS has a better effect than STN-DBS
on reducing levodopa-induced dyskinesias (Odekerken et al.,
2013), and confers relatively less of an impact on cognition
(Odekerken et al., 2016). Even then, some patients continue to
experience an evolution of their PD symptoms or the adverse
effects of stimulation, such as dysarthric speech, swallowing
disturbances, FOG and postural instability 5 years or more after
an initial good response to DBS (Moro et al., 2010). Cognitive
impairments have also been consistently reported to progress
over many years (Krack et al., 2003; Gervais-Bernard et al., 2009).
Newer model device therapies aim to minimize stimulation-
related adverse effects reported with DBS (Paff et al., 2020).

ILF Brain Training in Parkinson’s Disease
Motor features of PD are experienced by patients only after some
50% to 80% of dopaminergic neurons have been lost, suggesting
a major reliance on compensatory mechanisms in early disease
stages (DeMaagd and Phlip, 2015). Excessive fast beta (13–30Hz)
oscillations in the basal ganglia have been observed in patients
with PD (Brown et al., 2001); beta-band oscillations in STN
correlate with PD symptoms (Little and Brown, 2012); DBS
in the STN suppresses beta-band oscillations (Eusebio et al.,
2011); and improvements of PD symptoms were correlated with
the attenuation of beta band oscillations during adaptive DBS
(Tinkhauser et al., 2017).

In our practice we find a non-pharmacological and non-
surgical option in infralow frequency brain training (ILF)
to be helpful in managing the distressing motor symptoms
in our PD patients. Employing this second-generation form
of neurofeedback (NF) allows us to also address cognitive
comorbidities common to PD (attention disorders, anxiety,
memory changes, loss of executive skills). ILF NF may be a good
first step in considering patients for potential DBS therapy.When
a high-functioning individual with PD gains benefit from ILF
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and then over time manifests a re-emergence or persistence of
symptoms, we have offered to refer them for DBS. We propose
an increased brain resilience is also achieved with ILF, preparing
especially our elderly PD patients for a successful surgical
outcome after DBS. For PD patients who are not candidates
for DBS, we find ILF brain training can also improve FOG and
postural instabilities.

The literature regarding NF and PD does not include the
utilization of the ILF method in particular. The promotion of
automatic motor control by NF is believed to help patients (Sidhu
and Cooke, 2021). Most reviews of PD in the NF literature utilize
classical somatomotor rhythm (SMR)-based methods for NF that
involve threshold-based training using a consciously mediated
feedback (usually visual) reward. Cortical beta suppression with
SMR training has been advocated on the observation that
cortical beta oscillations are suppressed by levodopa (Doyle
et al., 2005). Proposed mechanisms with SMR training include
inducing plastic changes in the subthalamic nucleus (Fukuma
et al., 2018), recruitment of unaffected nearby compensatory
pathways (Philippens et al., 2017), and encouraging a shift toward
more automatic motor control (Sidhu and Cooke, 2021).

Neurofeedback Mechanisms
The STN is integral to the cortico-basal ganglia-thalamocortical
complex and coherent beta oscillations have been demonstrated
throughout this network in PD, especially between the STN and
GPi (Brown et al., 2001), GPi and cortex (Williams et al., 2002),
STN and thalamus (Hanson et al., 2012), and STN and cortex
(Litvak et al., 2011).

Abnormal neuronal oscillations in STN in the beta frequency
range are a characteristic observation in patients with PD,
and treatment with levodopa attenuates the beta band power
(Giannicola et al., 2010) while improving symptoms such as
bradykinesia and rigidity.

In a recent study (Fukuma et al., 2018), EEG signals from
bilateral inactive STN-DBS electrodes were recorded from 8
patients with PD during replacement of their pulse generator
implants (using local anesthesia) as they rested on the surgical
table 3 h after medication. Traditional neurofeedback (up-
training and down-training, 4 patients in each group) was
performed for 10min using a 0–1 range scaled beta band
power from pre-neurofeedback selected adjacent DBS contacts
to provide the visual feedback (enlarging a circle scaled 0–1
with 1 being the largest diameter for those down-training, and
vice versa (anti-correlated for those up-training). The training
induced changes in the beta band power of the selected DBS
contacts in the targeted direction for each group after 10min; for
all patients in the down-training group the beta band power was
significantly decreased after the training. The powers in the other
frequency bands were not changed significantly. There was also
no apparent change in the patients’ symptoms, especially tremor
(EMG was also measured from muscles in both hands during
the surgery). The investigators surmised the 10min of feedback
training might not be long enough; it is also possible the beta
band power is not directly involved with causing tremor. Other
investigators propose that the parkinsonian rest tremor probably

has an independent pathophysiological substrate (Hammond
et al., 2007).

Relatedly, stimulation of the posterior hypothalamus has
been shown to restore locomotion in rats with haloperidol-
induced akinesia (Young et al., 2011), probably by inducing
frontal cortex slow delta (and concomitant beta-suppression)
(Sano et al., 1970). Other NF investigators have recently
proposed that training to decrease central alpha power at
scalp sites over the supplementary motor area (SMA) results
in activation of SMA to replicate activity patterns reflecting
“autonomous locomotion,” and that this shift toward increased
motor automaticity (requiring less conscious motor control)
benefits whole body performance (Sidhu and Cooke, 2021).

To demonstrate the benefits of NF in experimental PD,
5 marmoset monkeys received 9–12 weeks of classical SMR
training followed by MPTP injections to induce parkinsonian
symptoms. They were compared to 5 marmoset monkeys who
did not receive the training before and were also subjected to
MPTP-induced PD. After disease stabilization all 10 monkeys
were treated with levodopa (12.5 mg/kg PO BID for 3 weeks). All
10 monkeys were then euthanized for pathological examination.
The investigators demonstrated that the monkeys who received
SMR training had significantly reduced MPTP-induced PD
symptoms (and reduced body weight loss) compared to controls,
but there were no differences in pathological specimens in regard
to cell loss in substantia nigra. Based on this neuropathological
finding the authors concluded that no neuroprotective benefit
was discernible and proposed instead that SMR training might
enhance compensatory mechanisms (Philippens et al., 2017).

Second Generation Neurofeedback
We propose that infralow frequency EEG brain training (ILF NF)
engages the brain’s infraslow frequency networks that are non-
neuronal in origin and exert extensive neuromodulatory effects
on all neuronal populations, regardless of where they exist in the
hierarchy of motor control in PD. We consider ILF a second-
generation form of neurofeedback that involves limbic learning
(Dobrushinaa et al., 2018); it directly engages with predominantly
subcortical networks to encourage neuromodulation toward a
renewed homeostasis and does not require the conscious effort
required in traditional and classic neurofeedback methods. In
this way ILF naturally promotes “automation” of motor systems.
We consider the suppression of cortical beta (>12Hz) and “high
beta” (> 20Hz) a standard expected result of the ILF method,
evidenced by our real time trend graphs during every session
(See Figure 1). Beneficial clinical effects (e.g., reduced tremors)
are observed immediately following each 50-min session and
sustain for up to 48–72 h. Repeat sessions are required for
reinforcement and consolidation of learning to occur (Hellyer
et al., 2016). In regard to potentially stimulating compensatory
pathways, we prefer to consider instead that ILF brain training
has a robust effect on neuroregulation at all levels in the hierarchy
of motor control by potentiating adaptive neuroplasticity; we
have discussed elsewhere its engagement with the slow control
system in the brain including hypothalamic regulatory networks
(Legarda et al., 2022).
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FIGURE 1 | Spectral EEG demonstration of beta suppression during ILF brain training session (Case B).

A Focus on the Mechanism of ILF Brain
Training
A proposed mechanism for the ILF regime (Legarda et al.,
2011), postulating that this form of neurotherapy engages directly
with the brain’s resting state networks in the awake (alert
but non-engaged) state, appears to have stood the test of
time. These relevant regulatory networks are non-neuronal in
origin and are dependent on the ATP from astrocytes (Lorincz
et al., 2009). Exemplified by the “task-negative” default mode
network (DMN), resting state oscillations are associated with
the primary assignments of brain function when we are awake
but non-engaged: self-referential mental activity, correlation,
adaptation, response generation, and homeostatic control—
our subconscious vigilance and interoception (Buckner et al.,
2008). In terms of neuroanatomic correlation, the hypothalamic-
limbic system is integral to achieving this state of affairs. In
terms of histologic-neurophysiologic correlation, the astroglial
networks acting within their heterogenous neuronal domains
are implicated.

In brief, ILF neuromodulation engages with the brain’s
infra-slow fluctuations, the widespread intrinsic networks that
generate them, and impacts global neuro-regulation that
includes hypothalamic-limbic circuitry. The hypothalamus in
particular has been associated with the “slow regulation system”
(Aladjalova, 1957, 1964). Regardless of where we train at the
scalp the whole brain is involved in the program of optimizing
self-regulation. Brain sites from which we record are cortical
regions selected for being preferentially involved in the process
(Hellyer et al., 2016). They are the multi-modal association
areas, which are also hubs of the DMN, and they inform
the salience network, which in its controlling role mediates
shifts in dominance between the DMN and central executive
networks (Sridharan et al., 2008). The ILF training is tailored
to each individual with respect to both sensor placement
and target frequency based on presenting symptoms and the
neurological evaluation.

Parkinson’s Disease Brain Training
Protocols
We share our experience of ILF neurotherapy for patients

with PD by describing three patient profiles to illustrate our

understanding of how this form of neurotherapy benefits
individuals with PD.

Case A: 77-year-old female with uncontrollable tremors

and extreme gait difficulty requires a walker for mobilization.
After medical therapies are instituted, she is able to become
independent of her walker, then of her cane, and enjoys

tremendous improvement of her quality of life. Over a span of
8 years the tremors become uncontrollable; additional medical
options give little relief; she is using her cane again. She agrees

to neurofeedback. After the very first NF session, her tremors
were objectively and subjectively much reduced. She completed
40 sessions. At this time, she is stabilized with the tremors and
continues to come intermittently for her brain training sessions
(at times forgetting her cane as she leaves!).

Case B: 63-year-old college professor presents with voice
difficulties and mild dysphagia, and on exam has no cogwheel
rigidity, imbalance, or tremors. She responded well to speech
dysphagia therapies and feels improved on carbidopa-levodopa
monotherapy. Over a span of about 8 years, she develops tremors
that are controlled by incrementally adding low dose pramipexole
to 0.25mg TID. She travels abroad for experimental therapy
with fetal cell infusions and believes she derived further benefit.
Over the next 2 years she begins to have writing difficulty and
marked dysgraphia. She is requested to provide a writing sample.
Immediately after a single neurofeedback session a repeat writing
sample reveals improvement of the dysgraphia (Figure 2). She
continued with the brain training and after 50 sessions feels well
able to be independent in maintaining her own writing skills.

Case C: A 76-year-old lawyer presents with intracerebral
hemorrhage on account of cerebral amyloid angiopathy. Six
months later he develops elements of vascular parkinsonism.
The patient is placed on PD medications with good response;
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FIGURE 2 | Case B demonstrates writing skills before (above) and after

(below) her first session of ILF brain training.

however, over the span of 5 years he becomes immobile, unable
to initiate motion, and totally dependent on wheelchair mobility.
He sits for a session of neurofeedback; after a single session he is
immediately able to start ambulating with a walker. He comes
for repeat sessions to improve and sustain the learning effect
over time.

Training protocols: Each brain training session lasts 50min
which limits the training to five sites at 10min each. We begin
at the basic training sites:

• T4-P4 (for parietal calming, regulation of sleep, and anxiety).
• T4-T3 (for instabilities; accessing amygdala-hippocampal

complex and limbic system).
• T3-P3, T3-C3, and T3-F3 (for right hand dominant tremor).
• T4-P4, T4-C4, and T4-F4 (for left hand dominant tremor; to

promote frontal-parietal connectivity and direct hand motor
area regulation).

• Fp2+Fp1 fast (gamma, 40Hz) synchrony: we later add
bi-frontal fast synchrony training, believed to encourage
microglial scavenging activity (of neurofibrillary tangles,
amyloid plaques, etc.) (Martorell et al., 2019), and in doing so
we remove the T3-F3/T4-F4 training sites.

This sequencing of training protocols may be modified for a PD
patient needing to address other serious symptoms, for example
dysphonia and dysphagia, wherein we would add T4-F8 and T3-
F7 to include nearby opercular regions in the optimized self-
regulation scheme. For problems with nausea, constipation, and
autonomic instabilities we choose the T4-T3 placement. Impulse
control behaviors are reduced by training at T3-Fp1. Rigidity,
dyskinesias, and gait instability are notably reduced by training
at the sites T4-P4 and T4-T3.

SUMMARY

Clinical benefits reported after performing traditional SMR-
based neurofeedback in monkeys later injected with MPTP are
compelling evidence for a learned resilience (Philippens et al.,
2017). Neuromodulation in the ILF realm involves learning

and remodeling by engaging with the neuroplasticity of slow
oscillating networks that are non-neuronal in origin and that
critically influence neuronal function, regulation, and functional
integrity. Neuromodulation is actually training brain behavior
(Othmer et al., 2013).

Progression of clinical PD as a neurodegenerative condition is
not inevitable. There is growing evidence that astrocytic integrity
is important to impede the progression of PD.We are proponents
of the principle that there is a primary dysregulation involving
specifically the astroglial network within the basal ganglia that
leads to PD and ILF neuromodulation strengthens astroglial
tasks that enhance dopaminergic neuronal integrity, thus slowing
the progression of PD. We propose that ILF brain training is
a non-invasive approach to re-regulate the brain’s hierarchical
motor system networks, forms part of an integrative approach in
managing patients with medically refractory PD, and should be
considered earlier before significant polypharmacy and before, or
in anticipation of DBS. This form of neurotherapy requires some
inconvenience on the part of the patient; it is a visit to the doctor’s
office once (ideally twice) a week, each session lasts 50min, and
they need to arrange for a consistent means of transportation.

FUTURE DIRECTIONS

Abnormal beta oscillations of the STN and GPi are implicated
in the pathophysiologic mechanism of PD and these regions
are selectively targeted by DBS (Paff et al., 2020); however,
chronic direct neuronal stimulation in the STN and GPi
has been demonstrated to induce inflammation, local
circuit remodeling, and chronic signal instability, resulting
in reduced performance over time (Salatino et al., 2017,
2019), with the return or worsening of PD symptoms
and comorbidities.

The origin of abnormal beta oscillations in PD remains
unclear; investigators speculate that they are either the result
of dysregulation of normal beta oscillations or are generated
through entirely different circuit mechanisms (Li et al., 2014).
Either way, their presence is associated with a motor system
network in dyscontrol that is evidently remediable by way of
clinically applied neuromodulation. A recent literature review
concluded that clinical neurofeedback “appears to hold great
potential as a treatment for PD motor symptoms” (Anil et al.,
2021).

There is a multi-level regulatory hierarchy in the
brain that is exemplified well by the motor system.
Practitioners of ILF brain training empower patients to
self-regulate via an evolutionarily established hierarchy
of brain networks. All forms of neuromodulation have
one prime objective: training brain behavior. The training
proceeds most efficiently by targeting the regulatory
hierarchy at its foundation through engagement with the
brain’s infralow frequencies, which takes us to the realm of
the glia.

Engineering of surgically placed DBS devices is continually
evolving; however, limitations on their long-term effectiveness
still exist. Neuromodulation proceeds readily when no adversely
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permanent injury to local brain anatomy interferes with
its prime objective. In our experience, incorporating ILF
brain training-based intermittent neuromodulation early
in the integrative management of disabling PD symptoms
serves to postpone resorting to DBS, if not averting
it entirely.
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