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Heart failure, which is responsible for a high number of deaths worldwide, can develop

due to chronic hypertension. Heart failure can involve and progress through several

different pathways, including: fibrosis, inflammation, and angiogenesis. Early and specific

detection of changes in the myocardium during the transition to heart failure can be made

via the use of molecular imaging techniques, including positron emission tomography

(PET). Traditional cardiovascular PET techniques, such as myocardial perfusion imaging

and sympathetic innervation imaging, have been established at the clinical level but

are often lacking in pathway and target specificity that is important for assessment

of heart failure. Therefore, there is a need to identify new PET imaging markers of

inflammation, fibrosis and angiogenesis that could aid diagnosis, staging and treatment

of hypertensive heart failure. This review will provide an overview of key mechanisms

underlying hypertensive heart failure and will present the latest developments in PET

probes for detection of cardiovascular inflammation, fibrosis and angiogenesis. Currently,

selective PET probes for detection of angiogenesis remain elusive but promising PET

probes for specific targeting of inflammation and fibrosis are rapidly progressing into

clinical use.

Keywords: PET imaging, hypertensive heart failure, fibrosis, inflammation, angiogenesis

INTRODUCTION

Heart failure is one of the leading causes of death worldwide with ∼35% risk of death within
the first year after diagnosis (1–3). It is a chronic, debilitating condition which affected around
40 million people globally in 2015 (4). The prevalence of heart failure greatly increases with age
and has also increased over the past decades (5, 6). Chronic hypertension has been identified as a
cause of heart failure, and is associated with a 2-fold increase in the risk of heart failure in men,
and a 3-fold increase in women, compared to those within the healthy range of blood pressure. In
addition, lifetime risk of heart failure can double with an increase in blood pressure from under
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140/90 mmHg to over 160/100 mmHg (7). Angiotensin II, which
has an important role in the development of hypertension and
associated cardiovascular and hypertensive heart disease (8–11),
influences a number of signaling pathways implicated in the
pathogenesis of heart failure (Figure 1). Angiotensin-II-induced
inflammation and fibrosis in the myocardium, due to increased
pressure overload, contributes to the development of heart failure
(11). It has also been suggested that angiotensin II treatment in
mice can give rise to fibroblast populations in the heart which are
unrelated to myofibroblasts (16).

Imaging techniques can help assess the function and
morphology of the myocardium, both in the healthy heart
and during the development and progression of heart failure.
Several imaging modalities are available in the clinical setting,
including ultrasound, computerized tomography (CT), magnetic
resonance imaging (MRI), and molecular imaging techniques
[single photon emission computed tomography (SPECT), and
positron emission tomography (PET)] (17). PET imaging
provides quantitative information on biological processes in the
living body by quantifying the distribution and uptake of a
radiotracer. This technique has high sensitivity for detection
of molecular changes and is uniquely placed to investigate
disease activity in vivo in the context of heart failure. The use
of radiotracers allows for high signal specificity by exclusively
targeting distinct cellular processes at the molecular level, thus
allowing for the detection of changes at early time points during
pathology (18).

The most established cardiovascular PET radiotracers target
myocardial perfusion and viability; however, there is a wide
range of pathways and processes which can be imaged using
these radiotracers, either pre-clinically or in the clinic. Table 1
summarizes the properties of key radiotracers used in classical
cardiac PET imaging, with examples and further details of
radiotracers targeting perfusion, metabolism, viability, cell death
innervation. Table 2 lists current and emerging radiotracers used
for imaging angiogenesis, extracellular matrix (ECM) remodeling
and inflammation.

A critically important clinical question is how we can
assess the extent of molecular changes, such as fibrosis,
inflammation and angiogenesis, in the heart during development
and progression of heart failure. Targeting markers of active
disease would provide a more accurate representation of each
individual’s condition, enabling delivery of more personalized
medical care. This specific-targeting PET approach could
help differentiate those in urgent need of interventions, e.g.,
with ongoing active or early stage fibrosis, from those who
had an older injury that have established non-active tissue
scars. Importantly, cardiac molecular imaging for heart failure
diagnosis would be beneficial for determining prognosis and
adequate interventions and treatments (54, 55). Despite the
well-established treatments and interventions available for
hypertension, a significant majority of those who have the
condition do not have it under control, according to a US based
assessment, only 43.5% of those who have hypertension have
it under control. Even though, this shows great improvement
since the 2000s, the overall burden of hypertension increased
consistently by over 21 million by 2016 despite a 3% decrease

in prevalence (56). There is also opportunity for investigating
whether the damage done to the myocardium prior to patients
being diagnosed could be reversed. PET radiotracers could be
used to assess pharmacological interventions.

The variety of pathways and radiotracers included in this
review indicates that PET radiotracers explored for one type of
pathology have the potential to become valuable tools in other
conditions where the same pathways are involved. This review
will discuss established and emerging PET techniques thatmay be
useful in assessing conditions such as hypertensive heart failure.

CLASSIC PET IMAGING TECHNIQUES FOR
ASSESSMENT OF BASIC CARDIAC
PHYSIOLOGY AND PATHOPHYSIOLOGY

Perfusion, Metabolism and Viability
In the clinic, the main application of imaging with radiotracers
in heart failure is the assessment of myocardial perfusion to
determine viability and potential ischemia, often via SPECT
imaging (57). PET perfusion radiotracers previously used for
cardiovascular imaging of perfusion include 82Rb, 13N-NH3,
13O-H2O and 18F-Fluripiridaz (Table 1) (23, 58, 59). In addition
to perfusion measurements, most cardiovascular PET imaging
studies focus on assessing myocardial metabolism and viability
using 18F-FDG, a marker of glucose metabolism that has over
90% accuracy for prediction of future recovery of myocardial
function (60, 61). However, because 18F-FDG is a glucose analog,
it is also taken up from the circulation by cells (e.g., macrophages)
which are metabolically active as a result of active inflammation
(62); thereby confounding assessment of myocardial viability.
Unsurprisingly, due to its association with inflammatory cells,
18F-FDG has been used to investigate myocardial and coronary
inflammation in several diseases, includingmyocardial infarction
and sarcoidosis (63–65). Although widely disseminated
in the clinical arena, the lack of specificity associated
with 18F-FDG can make it difficult to distinguish between
myocardial viability and tissue inflammation. Furthermore,
18F-FDG has high uptake in healthy myocardium that can
mask areas with lower uptake, skewing the results of image
analysis (66).

Cell Death
Cardiac remodeling as a component of heart failure has been
associated with increased rates of cell death in the myocardium,
with the activation of related signaling pathways due to ischemia
and pressure overload (67, 68). Radiotracers for investigating
cell death include 18F-ML-8 [18F-labeled 2-(3-fluoropropyl)-
2-methyl-malonic acid] and 18F-ML-10 [18F-labeled 2-(5-
fluoropentyl)-2-methyl-malonic acid] (Table 1) (34). These small
molecule compounds are part of the ApoSense family, and
they recognize the membrane phospholipid scrambling of
apoptotic cells where they then accumulate (69). These have
been applied in the setting of myocardial infarction (permanent
left coronary artery ligation) in rats to investigate apoptosis
in the forming scar and thus disease progression (34). In this
study, both 18F-ML-8 and 18F-ML-10 were used in combination

Frontiers in Cardiovascular Medicine | www.frontiersin.org 2 August 2021 | Volume 8 | Article 719031

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Balogh et al. PET and Hypertensive Heart Failure

FIGURE 1 | Targeting pathways related to hypertensive heart failure with PET radiotracers. Angiotensin II stimulates a number of different pathways that contribute to

cardiac remodeling in hypertensive heart failure. These pathways can be targeted with various PET radiotracers, which can then assess processes related to, but not

limited to, hypertrophy, vasoconstriction, mechanical stress, inflammation, fibrosis and angiogenesis. Examples of these radiotracers are shown above. Angiotensin II

acting through the AT1 receptor on vascular smooth muscle it can induce vasoconstriction, leading to mechanical stress on the cardiovascular system. As a result,

cardiomyocytes enlarge and the heart hypertrophies. Hypertrophy leads to inadequate blood supply to the affected areas in the heart, inducing the proliferation of

vascular endothelial cells to form new blood vessels (angiogenesis), and this is enhanced by proangiogenic signals from anti-inflammatory macrophages. Mechanical

stress also causes inflammation in the myocardium, enhancing various pro- and anti-inflammatory signaling pathways, which can lead to cardiac remodeling by

promoting fibrosis. Angiotensin II also increases proliferation of fibroblasts via the AT1 receptor. In contrast, it decreases proliferation of vascular endothelium through

activation of the AT2 receptor. Fibroblasts (as well as macrophages and vascular endothelial cells) may directly differentiate into myofibroblasts. The main activity of

myofibroblasts is the generation of collagen deposits in the ECM (12–15) AT1, angiotensin receptor type 1; AT2, angiotensin receptor type 2; VEGF, vascular

endothelial growth factor; TGF-β, transforming growth factor beta; IL-10, interleukin 10; TNF-α, tumor necrosis factor alpha; MMPs, matrix metalloproteinases; ECM,

extracellular matrix. List of PET radiotracers and their application are presented in more detail in Tables 1, 2.

with cardiac ultrasound and PET imaging with 18F-FDG to
visualize metabolically-active myocardium. The PET signal of
both radiotracers targeting apoptosis was high in the areas
where 18F-FDG showed no uptake, suggesting the cells labeled
did not have active metabolism which is indicative of infarct
regions (34).

Cardiac Innervation
Changes in signals from the autonomic nervous system can
affect progression of heart failure, with an associated increase
in sympathetic drive shown to be worsening the condition,
whereas parasympathetic activity has been suggested to
be cardioprotective (70, 71). The integrity of both can be
investigated with PET radiotracers. 11C-hydroxyephedrine [(N-
methyl-11C)-metahydroxyephedrine or 11C–mHED] is the most

commonly used PET radiotracer for imaging cardiac sympathetic
innervation (Table 1). It has been used to visualize sympathetic
nerves in the heart, focusing on the reuptake of norepinephrine
at nerve terminals, and this could be a useful way to investigate
the increased sympathetic drive in heart failure (72). Another
radiotracer that targets sympathetic innervation is 18F-LMI1195
{N-[3-bromo-4-(3-18F-fluoro-propoxy)-benzyl]-guanidine},
which provides an option with a longer half-life compared to
11C- mHED, while investigating the same area of physiology.
It targets the noradrenaline transporter, and in a rabbit model
of regional cardiac sympathetic denervation, it successfully
mapped sympathetic denervation in the myocardium (73). It
should be noted, however, that this radiotracer when used in
a mouse model of myocardial infarction was not successful at
mapping presynaptic norepinephrine transporters, important
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TABLE 1 | Classic PET radiotracers for cardiac imaging applications.

Application PET radiotracers Clinical/preclinical use

Myocardial perfusion 82Rb Coronary flow reserve/stenosis assessment, decreased uptake associated with disease (19)

13N-NH3 Assessment of stenosis and coronary artery disease. Radiotracer uptake is decreased in areas

of ischemia in the myocardium (20)

15O-H2O Assessment of regional myocardial blood flow in cardiomyopathies which decreased in

ischemic areas (21)

18F-Flurpiridaz Assessment of myocardial perfusion defects, more apparent reduction in uptake with disease

than SPECT with 99mTc-sestamibi (22)

18F-BMS-747158-02 High myocardial uptake in rat, rabbit and non-human primate models; perfusion deficit clearly

identifiable in rats with permanent left coronary ligation or reperfusion (23)

Metabolism and viability 18F-FDG Application based on glucose metabolism and glucose/radiotracer uptake into tissues:

reduced uptake in severely ischemic myocardium with decreased viability while still viable areas

with only mild ischemia can exhibit increased uptake. In heart failure, uptake was found to be

decreased. (24)

11C-glucose Similar application to 18F-FDG, showed more accurate measurements of regional myocardial

glucose utilization rate in dogs (25)

11C-palmitate Assessment of myocardial metabolism in idiopathic dilated cardiomyopathy (IDCM).
11C-palmitate as a measure of fatty acid metabolism which decreases in IDCM (26)

18F-Fluoro-6-Thia-

Heptadecanoic Acid

Assessment of fatty acid uptake, in patients with congestive heart failure radiotracer uptake

was increased in the myocardium (27)

18F-FTP Assessment of fatty acid oxidation in ex vivo rat heart; data showed a decrease in the hypoxic

myocardium (28)

18F-FCPHA Shown to have potential for studying myocardial fatty acid metabolism preclinically, currently

assessed for use in coronary artery disease in Phase II trials (29)

18F-FTO Analog of 4-thia oleate, assessment of fatty acid oxidation investigated in naïve rats showed

promising results for the uptake of the metabolically active radiotracer into the myocardium (30)

18F7* Assessment of myocardial long chain fatty acid metabolism in rats; showed high uptake into

the myocardium in naïve rats, thus a promising target in disease models (31)

*15-(4-(2-[18F]fluoroethoxy)phenyl)pentadecanoic acid

11C-methionine Assessment of amino acid metabolism and protein synthesis. In patients with myocardial

infarction, it showed increased uptake in the infarct areas (32)

13N-glutamate Assessment of myocardial ischemia in patients with coronary artery disease showed this

radiotracer was more suited for quantification of flow rather than metabolism in humans (33)

Cell death 18F-ML-10, 18F-ML-8 Quantification of cardiomyocyte apoptosis in rats after myocardial infarction, high radiotracer

uptake shown in the infarct area (34)

Sympathetic and

Para-sympathetic innervation

11C-hydroxyephedrine Assessment of regional abnormalities in cardiac sympathetic innervation; reduced retention of

the radiotracer in chronic heart failure associated with worse outcomes (35)

11C-CGP12177 Quantification of β-adrenergic receptor density in patients with idiopathic dilated

cardiomyopathy, where receptor density is decreased (36)

11C-CGP12388 Quantification of β-adrenergic receptor density in patients with idiopathic dilated

cardiomyopathy showed reduced density with disease (37)

18F-LMI1195 Quantification of cardiac nerve terminals for assessment of changes in cardiac sympathetic

function in a heart failure rat model. Radiotracer uptake in the myocardium was decreased with

progression of heart failure (38)

11C-MQNB Assessment of muscarinic receptors in the heart in chronic heart failure, increased density of

receptors measured with the radiotracer (39)

18F-FEOBV Binds the vesicular acetylcholine transporter; promising results in healthy subjects for the

evaluation of parasympathetic innervation in the myocardium (40)

for assessing sympathetic function, as opposed to imaging with
11C–mHED (74). Radiotracers for imaging the parasympathetic
system with PET include 11C-methylquinuclidinyl benzilate
(11C-MQNB) and 18F-fluoroethoxybenzovesamicol (18F-
FEOBV); although this type of imaging is associated with
physiological limitations due to the myocardium having a
low density of cholinergic neurons (75, 76). 11C-MQNB, a
muscarinic antagonist, was used to target and investigate active

muscarinic acetylcholine receptors in the heart and suggested
that the highest accumulation of these receptors was in the
ventricular septum. It was also suggested that a conformational
change of the muscarinic receptor could increase the affinity for
the radiotracer, thus the physiologically active receptors were
able to bind the radiotracer more readily (75). The radiotracer
18F-FEOBV binds to the vesicular acetylcholine transporter of
cholinergic neurons and the reduction of this transporter can
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TABLE 2 | Current and emerging PET radiotracers for cardiac imaging of angiogenesis, extracellular matrix remodeling, the renin-angiotensin system and myocardial

inflammation.

Application PET radiotracers Clinical/preclinical use

Angiogenesis 18F-Fluciclatide αvβ3 integrin-selective radiotracer to investigate myocardial repair following infarction, uptake

was increased in infarcted regions with better repair, and predicted areas of recovery in patients

(41)

18F-galacto-RGD,
68Ga-NODAGA-RGD,
68Ga-TRAP(RGD)3

All used for αvβ3 integrin imaging, to monitor angiogenic repair mechanisms after myocardial

infarction in rats. Uptake of 68Ga-labeled radiotracers was comparably increased to
18F-galacto-RGD in the infarct area (42)

64Cu-NOTA-TRC105 Assessment of newly formed blood vessels in a myocardial infarction rat model to investigate

ischemia-induced angiogenesis, with increased uptake in the infarct zone at earlier time-points

(43)

ECM remodeling 68Ga-FAPI-04 Assessment of fibroblast activity after myocardial infarction in rats with a radiolabeled fibroblast

activation protein inhibitor. Uptake increased in the border areas of the infarcted myocardium

(44)

18F-FXIII Assessment of extracellular matrix crosslinking after myocardial infarction in mice. Radiotracer

uptake was increased in the heart after infarction (45)

18F-fluoro-L-prolines Assessment of myocardial fibrosis in a myocardial infarct rat model. Uptake was increased in

the infarct area with trans and in the remote myocardium with cis isomer (46)

Renin-angiotensin

system

11C-KR3117 Targets the angiotensin receptor type 1, was shown to have increased uptake in the infarct

area in pigs after myocardial infarction compared to the remote areas. Also shown to be safe to

use in humans (47)

Myocardial

inflammation

18F-FDG Assessment of inflammation in myocardial infarction. Uptake is associated with the increase in

macrophages around infarct region, but signal can be obscured by the radiotracer’s metabolic

properties (48)

18F-Fluoromethyl-

PBR28,
18F-CB251

Both bind TSPO (18 kDa translocator protein), a marker of inflammation; used in for the

assessment of experimental autoimmune myocarditis in rats. 18F-CB251 showed more specific

uptake, corresponding to TSPO-rich areas (49)

68Ga-pentixafor Targets the chemokine receptor CXCR4, increased uptake after myocardial infarction in mice

coinciding with upregulation of inflammatory cells. Patient-data more variable (50)

11C-methionine Based on the accumulation of methionine in macrophages, uptake was most pronounced in

inflammatory macrophages and was increased in myocardial infarct areas at 3-day post-injury

in mice (51)

18F-GE180 Targets TSPO, showed increased uptake after myocardial infarction in mice at the infarct site at

1-week post-injury and in remote areas during heart failure progression 8 weeks post-injury.

Similar results in patients after myocardial infarction (52)

18F-LW223 Targets TSPO, showed increased uptake in infarct areas 7 days following myocardial infarction

in rats, consistent with results from macrophage immunostaining (CD68, TSPO). Not

susceptible to the rs6971 genetic polymorphism (53)

initiate cardiac remodeling and heart failure (77). Experiments
carried out in vitro suggested that this tracer would have limited
translatability to in vivo cardiac studies due to low radiotracer
retention and low density of cholinergic neurons in the heart
(75, 76). 11C-CGP12177 PET was used to assess myocardial
β-adrenergic receptor density in patients with non-ischemic

cardiomyopathy to investigate left ventricular dysfunction

where cardiac sympathetic regulation is affected (78). This
study found that the receptor density was lower in patients and

showed a significant difference in the severity of heart failure,

meaning that those with severe heart failure classification had
lower density of β-adrenergic receptors. Another radiotracer,
(S)-[11C] CGP12388, has been successful in detecting a reduction
(compared with controls) in myocardial β-adrenergic receptor
density in patients with idiopathic dilated cardiomyopathy
(37). Therefore, assessment of sympathetic innervation
with PET in heart failure can also be valuable in classifying
disease severity.

EMERGING PET TECHNIQUES FOR
QUANTIFICATION OF PROCESSES
INVOLVED IN THE PATHOGENESIS OF
CARDIAC REMODELING

Renin–Angiotensin System Imaging
Radiotracers exploring myocardial remodeling through this
pathway include those targeting angiotensin II type 1 (AT1)
receptors and angiotensin-converting enzyme-1 (ACE-1) (47,
79, 80). [11C]-KR31173, a radiotracer targeting AT1 receptors
showed an upregulation of the signal in the infarct area
(compared with remote areas of the myocardium) in pigs with
myocardial infarction. It was also shown to be safe to use
in healthy human volunteers (47). Another AT1 antagonist
radiotracer, (18F)FV45, derived from valsartan had promising
results when assessed for visualizing AT1 receptor distribution
in rats and was shown to be selective as its uptake was
successfully blocked by valsartan pre-treatment (79). A SPECT

Frontiers in Cardiovascular Medicine | www.frontiersin.org 5 August 2021 | Volume 8 | Article 719031

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Balogh et al. PET and Hypertensive Heart Failure

radiotracer, Tc-Lis (technetium-99m–labeled lisinopril/an ACE
inhibitor drug) successfully detected upregulation of ACE-1 in
transgenic rats which overexpress this enzyme (80). This suggests
it has potential as a tool for monitoring ACE-1 upregulation in
heart failure in patients.

Fibrosis
There are two main types of fibrosis in the injured heart:
reactive and replacement fibrosis. Reactive fibrosis (interstitial
fibrosis) happens further from the place of the injury as a
response to pathological changes in the tissue elsewhere (e.g.,
infarct area) or as a response to changes in the physical or
chemical environment (e.g., pressure overload or hypertension;
myocardial inflammation). This can lead to stiffness of the
ventricle wall and, thus, increased risk of heart failure.
Replacement fibrosis occurs when excess collagen is deposited
and fibroblasts replace the ischaemic (or necrotic) tissue at the
injury site after myocardial infarct and form a scar to prevent
rupturing of the wall due to the loss of the original heart muscle
cells (12, 81).

Fibroblast activation is essential for the development of
fibrosis in the heart. During cardiac remodeling, myofibroblasts
produce collagen, cause interstitial fibrosis and increase collagen
deposition. Cardiac remodeling, either to compensate for the
loss of myocardial tissue (e.g., in myocardial infarction) or
to allow the heart to adapt to the changed environment
(e.g., hypertension) can lead to heart failure via development
and progression of tissue fibrosis (12). Both in vitro and in
vivo, the renin-angiotensin-aldosterone system, and especially
angiotensin-II, have been associated with increased fibrosis and
collagen synthesis (82–84). Currently, techniques available for
direct imaging of cellular and molecular composition of active
cardiac fibrosis are limited (12). There are also no radiotracers for
imaging active fibrosis in the routine clinical setting. This type
of tracer would greatly enhance diagnostics and management
of patients with heart failure, although active clinical research
studies are rapidly generating promising results with newly
developed PET radiotracers targeting fibrosis.

Several processes during the initiation of fibrosis have been,
or could be, targeted with novel and emerging PET radiotracers.
These include: immune activation; leaking of the vasculature and
coagulation; fibroblast recruitment and proliferation; activation
of fibroblasts and myofibroblast differentiation; as well as the
resulting ECM crosslinking and the accumulation of matrix
components (85). Radiotracers used to investigate another aspect
of tissue remodeling, fibroblast activation in cancers, are 68Ga-
FAPI-2 and 68Ga-FAPI-4. The latter accumulated at the injury
border after myocardial infarction in rats, making it a potential
candidate for assessing fibroblast activation in the context of
myocardial remodeling (Table 2) (44, 86).

Integrins play an important role in the adhesion of ECM
components to the cellular parts of the tissue; thus radiotracers
targeting integrin expression have been identified as good
candidates for monitoring progression of fibrosis (87). A large
group of radiotracers that were previously explored as markers of
integrin expression are those targeting integrins αvβ3 (Table 2).
An example of an integrin radiotracer for imaging fibrosis and

angiogenesis is 18F-Fluciclatide, which targets the αvβ3 integrin
and was shown to have increased uptake at areas of recent injury
after myocardial infarction in patients (41). Further integrin
targeting radiotracers have been assessed in applications other
than for myocardial imaging. Integrin αvβ6, an activator of TGF-
β, is upregulated during tissue injury on epithelial cells, while
increased expression has been demonstrated in fibrosis (88–90).

Other more direct options for targeting the ECM components
which accumulate in the myocardium during fibrosis, instead of
focusing on the wider pathway processes with integrins, include
imaging with radiotracers for elastin or collagen, which are
more specific indicators of fibrosis (91). Imaging elastin content,
as opposed to collagen, could produce a higher background
signal due to the comparably higher levels of elastin in the
healthy heart. In addition, elastin appears to accumulate later
than collagen in the disease process, thus collagen increases
could be detected earlier during remodeling. One example of
an elastin radiotracer is 18F-AlF-NOTA-EBM which was tested
for targeting atherosclerotic plaques, but was not successful at
differentiating between plaques and controls (92). To investigate
infarct healing afterMI and the involvement of inflammation, the
tissue transglutaminases radiotracer 18F-FXIII (transglutaminase
factor-XVIII) was used to visualize the infarct area and matrix
crosslinking in the mouse heart (45).

Targeting collagen biosynthesis itself can also be a good
strategy to quantify fibrotic activity, by observing the levels of
active collagen accumulation. PET imaging can target collagen
biosynthesis by the incorporation of radioactive 18F-fluoro-
proline isomers into actively forming collagen. There are,
however, four different isomers of fluoro-proline: cis-L, cis-
D, trans-L and trans-D, all of which are safe to use in
mice, rats, rabbits, and humans (93). The D isomers are less
well-characterized and less stable than the L isomers, and
they also possess lower affinity. Consequently, they are not
optimal for studies investigating active collagen biosynthesis (94).
Therefore, the L isomers are the preferred probes for mapping
collagen biosynthesis in vivo. Biomarkers for quantifying collagen
biosynthesis in the heart via radioactive tagging of fluoro-
proline are particularly promising for two main reasons. Firstly,
proline and hydroxyl-proline contribute almost a quarter of
the amino acids in collagen (95). Secondly, proline is found
almost exclusively in collagen. The use of 18F-fluoro-proline
radiotracers to target active fibrosis in heart failure also has a
great potential to be clinically translatable for detection of active
fibrosis, as they are present in the precursors of collagen. This
is advantageous over other radiotracers which only visualize
established fibrotic tissue through directly measuring the end-
product (e.g., ECM) of the related pathways such as collagen
or elastin; or radiotracers targeting activation of fibroblasts
[e.g., fibroblast activation protein (FAP) specific radiotracers]
that are known to label active fibrosis and chronic reactive
inflammation in the oncology setting (96, 97) and might be
also labeling both processes in the cardiovascular context.
This is because fibroblast activation occurs following pro-
inflammatory Damage-Associated Molecular Patterns (DAMPs)
released by dying cardiac cells and activated myofibroblasts
produce structural extracellular matrix proteins andmatricellular
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macromolecules (98). Moreover, the ability to image with
both cis- and trans-fluoro-prolines is useful for determining
the content of degraded or to-be-degraded immature collagen
(in reactive fibrosis) and triple helix collagen (scar tissue),
respectively. The cis-fluoro-proline isomer has been assessed
in a rabbit lung fibrosis model, which showed promising
results in the radiotracer’s ability to identify fibrosis in vivo
(99). Currently preclinical cardiovascular studies with 18F-
fluoro-prolines are underway to determine their utility in
the context of myocardial infarction and hypertensive heart
failure (46).

Inflammation
Inflammation and fibrosis are distinct yet interconnected
processes, as unresolved inflammation causes fibrosis and
fibrosis may lead to chronic inflammation; both are essential
for tissue repair after injury (100). Importantly, chronic
inflammation and progressive fibrosis lead to increased tissue
breakdown and functional impairment of the heart (101–
103). Proteins and various components of the ECM influence
the inflammatory cascade directly or by acting on signaling
pathways triggered by localized insults and also systemic
inflammation (100, 104). Macrophages are immune cells which
can interact with fibroblasts and directly promote fibrosis and,
thus, ECM deposition (105–107). In the angiotensin-II-induced
hypertension model, which leads to hypertension via volume and
pressure overload on the cardiovascular system, blood derived
Ly6Chigh monocytes were recruited and gave rise to all cardiac
macrophage populations in mice (108). Angiotensin II infusion
in mice also led to proliferation of residential macrophages in the
myocardium, thus during cardiac inflammatory processes, the
local macrophage pool expands through both local proliferation
and recruitment of blood monocytes (108). Macrophages are
also involved in secreting ECM components and are especially
important sources of matrix metalloproteinases (MMPs) and
tissue inhibitor of metalloproteinases (TIMPs) which can be
used as biomarkers of heart failure (109, 110). On the anti-
inflammatory side of the spectrum, macrophages have also been
shown to degrade collagen in the ECM (111). Recently, resident
cardiac anti-inflammatory macrophages were shown to be key
determinants in the development of angiotensin-II mediated
myocardial fibrosis (112).

PET imaging can selectively identify active inflammation by
targeting important proteins expressed in inflammatory cells
(113). It is therefore possible to image activated macrophages
indicative of inflammation (Table 2). Inflammation after
myocardial infarction can be imaged with 18F-FDG and 11C-
methionine ligands, although these radiotracers do not provide
a selective or direct measurement of inflammation, as they
measure glucose metabolism and cell proliferation, respectively
(51, 114, 115). It is notable, however, that uptake of 11C-
methionine was high after myocardial infarction in the infarct
area, where it showed macrophage uptake but not taken up by
the impaired cardiomyocytes, indicative of inflammation in the
area and thus could provide a more specific assessment than 18F-
FDG (51). Inflammation in atherosclerotic plaques has also been
assessed with radiotracers, such as 68Ga-DOTATATE, targeting

the somatostatin receptor. 68Ga-DOTATATE uptake was
increased in lesions with high macrophage content (116). The
radiotracer 68Ga-DOTANOC, which targets the somatostatin
receptor, provided promising results for diagnosis of cardiac
sarcoidosis in patients (117). Chemokine receptors can also be
targeted in relation to inflammation. One example is CXCR4
which can be targeted by 68Ga-pentixafor; uptake of this tracer
was increased after myocardial infarction. This uptake coincided
with the infiltration of inflammatory cells but did not distinguish
between uptake by pro- and anti-inflammatory macrophages
(50). Another chemokine radiotracer is 68Ga-DOTA-ECL1i
which targets the CCR2 (C-C chemokine receptor type 2) and
was found to be localized to tissue injury sites in mouse models
of cardiomyocyte ablation and myocardial infarction (118).
64Cu-DOTA-ECL1i was also investigated to target CCR2+ cells
in heart injury mouse models, where it was comparable to the
68Ga-labeled probe (119). 18F-FDM (18F-labeled mannose) has
also been used to image inflammation of atherosclerotic plaques
in rabbits, where it showed increased uptake within the aortic
plaques. This tracer has potential for targeting the mannose
receptors on alternatively activated macrophages within the
plaques as well as in other areas (120).

The18kDa translocator protein (TSPO), which is present in
the outer membrane of the mitochondria of macrophages (121,
122), has been proposed as another target for imaging cardiac
inflammation. TSPO was shown to be present both in classically-
and in non-classically-activated macrophages. However, there
were differences in radiotracer uptake between the types of
macrophages, such as in the case of 18F-GE180, which shows
a binding preference for pro-inflammatory macrophages (113,
123, 124). Understanding the underlying inflammatory and anti-
inflammatory mechanisms involved in cardiovascular diseases
could be achieved via molecular imaging of TSPO. Therefore,
TSPO is likely to be a valuable target to investigate in the setting
of myocardial inflammation in heart failure. TSPO has been
shown to target macrophage driven cardiac inflammation more
selectively than glucose metabolism tracing (124). Although
TSPO is expressed in the healthy heart, a radiotracer with
high selectivity toward TSPO with concomitant low non-specific
binding would enable detection of subtle changes in TSPO
expression even without a zero background owing to the high
sensitivity of PET for detecting changes in the pM to nM range.
Notwithstanding isolation of the inflammatory cell contribution
to themeasured PET signal could be challenging due to themixed
substrate in hypertensive heart failure where TSPO expression
might be increased in cardiomyocytes.

Previously, several ligands have been developed for targeting
TSPO with PET. One of these, 11C-PK11195, has a low signal-to-
noise ratio and high non-specific binding; whereas an alternative
ligand, 11C-DAA1106, demonstrated superior binding to TSPO,
compared with 11C-PK11195, when investigating microglia and
inflammation in the brain (125–129). TSPO-targeted imaging
with the PET radiotracer 18F-GE180 also detected the increased
inflammation after myocardial infarction both in mice and
in humans (52). TSPO radiotracers can have a number of
limitations, including: low signal-to-noise ratio; non-specific
binding; and perhaps most importantly, alterations in tracer
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binding as a result of variations in the gene encoding TSPO
in humans (125–130). The affinity of several radiotracers for
TSPO is affected by the rs6971 human polymorphism, which
means that the binding affinity of some can vary depending on
which variant of the polymorphism is present. Thus a patient’s
genetic information would need to be assessed for full analysis
of scans acquired with these ligands (130). A new selective PET
radiotracer for imaging TSPO, 18F-LW223, has the potential to
overcome this issue. 18F-LW223 has been shown to reversibly
bind to its target, can be displaced by PK11195 (which indicates
specificity to TSPO) while it also showed uptake consistent with
macrophage infiltration after myocardial infarction in rats (53).
It is potentially more readily clinically-translatable due to having
similar affinity to all TSPO isoforms regardless of the presence
of the previously described rs6971 human polymorphism (53,
130). Further examples of TSPO radiotracers with low sensitivity
to this polymorphism are 18F-FEBMP (R)-18F-NEBIFQUINIDE
and (R, S)-18F-GE387 (131–133). Another TSPO radiotracer,
18F-FEDAC, has been used to monitor liver fibrosis in rats,
as the signal correlated well with expression of TSPO in
macrophages, which was increased with disease (134). This is
promising in relation to using PET to investigate inflammation-
induced fibrosis and TSPO expression in macrophages in the
failing heart.

Angiogenesis
Reduced blood supply to the heart tissue through impaired
angiogenesis and neovascularization damages the myocardium
during heart failure, and can lead to cell death due to oxidative
stress and enhanced fibrotic response after cell loss (135). During
hypertension, excess mechanical demand on the heart can induce
hypertrophy of the myocardium leading to reduced blood supply
in the newly enlarged areas resulting in hypoxia and tissue
impairment and eventually heart failure. Capillary angiogenesis
is important to restore function to these areas. The imbalance of
capillary numbers in the heart is a consequence of myocardial
enlargement, causes hypoxia in the tissue, and can lead to
heart failure (136–138). Improving this capillary imbalance
with pro-angiogenic mediators can improve functional outcome
during heart failure. For-example neonatal rabbits undergoing
aortic banding (and therefore developing pressure overload and
hypertrophy) had improved angiogenesis when treated with
VEGF while matrix metalloproteinase activity also increased
(139). This suggests that angiogenesis and angiogenic factors can
have an important role in extracellular and vascular remodeling
in the myocardium. Pro-angiogenic stimuli can lead to the
upregulation of growth factors, such as vascular endothelial
growth factor (VEGF), which act on the vascular endothelium,
promoting migration and proliferation, and, eventually, the
formation of new vessels (140). Angiogenic and inflammatory
pathways are also closely associated thus it can be challenging to
disassociate the two processes (141).

Recently, several new PET radiotracers have been used to
target angiogenesis and repair mechanisms in the myocardium
(142). αvβ3 integrin, a transmembrane cell surface receptor that
is an important mediator of angiogenesis, and is expressed by
macrophages and myofibroblasts after myocardial infarction,

is also a target for imaging of angiogenesis using PET (143–
145). However, repair processes measured by using integrin
αvβ3-targeted radiotracers can be attributed to angiogenesis,
fibrosis and inflammation. This is because integrin αvβ3 is
not a specific marker of activated endothelial cells, as it is
also expressed by macrophages. Despite this limitation, it is
frequently reported as a target for quantification of angiogenesis
using PET radiotracers (146–149). The αvβ3 integrin also
binds to collagen, further complicating the distinction between
signals from different targets. Indeed, 18F-Fluciclatide, a PET
radiotracer used to image αvβ3 expression, has been used to
detect fibrosis in the heart after myocardial infarction (41). Other
PET radiotracers used for investigating myocardial angiogenesis
following infarction include: 18F-galacto-RGD (clinical use),
64Cu-VEGF, 18F-PRGD, 64Cu-TRC105, and multiple 68Ga-
labeled RGD peptides (preclinical use) (Table 2) (42, 43, 148,
150–153). These radiotracers have all shown increased uptake
after myocardial infarction at the infarct site. However, targeting
with an RGD peptide means the potential labeling of both
angiogenesis and inflammation, which can complicate clear
interpretation of the results (154).

The nicotinic acetylcholine receptor α7 subtype (α7nAChR)
has emerged as an alternative to integrins or VGEF receptors
as a target for imaging angiogenesis. This is due to its role
in the modulation of important angiogenic signaling pathways
(155). Nicotine promotes angiogenesis via the nAChRs, in areas
with inflammation, atherosclerosis and ischemia, as well as
in areas where tumors are present (156, 157). An in vitro
study demonstrated that, whilst endothelial cells express several
isoforms of the nAChR receptor, the α7nAChR subunit was
most highly expressed. Furthermore, inhibition of angiogenesis
was only obtained by selectively blocking the α7nAChR subunit
(157). Similarly, in vivo studies have shown that inhibiting
or genetically disrupting the α7nAChRs reduced angiogenesis
in response to inflammatory and ischemic stimuli in both
the ischemic mouse hind limb and disc angiogenesis models
(157). A rat pressure overload model induced by coarctation of
the abdominal aorta demonstrated increased α7nAChR protein
and mRNA levels in the left ventricle 16 weeks after surgery.
Results from that study also showed that the animals developed
cardiac hypertrophy and increased microvessel density, with
expression of α7nAChR most evident around the blood vessels
with degeneration of cardiomyocytes also observed (155). Several
radiotracers for these receptors have been used in the context of
neuroimaging, the most successful being 18F-ASEM, a selective
α7nAChR antagonist radiotracer, which is already used in clinical
studies for neuropsychiatry (158, 159). 18F-NS14490, a new
agonist radiotracer for targeting α7nAChR, was first proposed as
a potentially useful biomarker in cardiovascular imaging when
high uptake was visualized in the brain vasculature of pigs in
vivo (160).

CONCLUSION

Heart failure is an important healthcare issue of rising prevalence,
with a large number of cases related to hypertension. There is
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a chronic and cumulative element of heart failure in terms
of disease development and progression that could benefit
from early detection to guide patient management via
molecular imaging techniques, such as PET imaging. The
utility of PET is particularly justified in subtle progressive
hypertensive heart disease because it is the clinical imaging
technique with highest sensitivity (pM to nM range) for
detection of molecular changes in vivo and non-invasively.
Nonetheless, due to hypertensive heart failure having a
less pronounced phenotype compared to for example
myocardial infarction or oncological conditions, detection
of changes could be more challenging. Currently, pre-clinical
PET imaging studies with models of hypertensive heart
failure are needed to test the utility of new and emerging
selective PET radiotracers with clinical potential in this
disease context.
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