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CONTEMPORARY REVIEW

Brain Enlarged Perivascular Spaces as 
Imaging Biomarkers of Cerebrovascular 
Disease: A Clinical Narrative Review
Srinath Ramaswamy , MD; Farid Khasiyev , MD; Jose Gutierrez , MD, MPH

ABSTRACT: Perivascular spaces or Virchow-Robin spaces form pathways along the subarachnoid spaces that facilitate the 
effective clearance of brain metabolic by-products through intracellular exchange and drainage of cerebrospinal fluid. Best 
seen on magnetic resonance imaging of the brain, enlarged perivascular spaces (EPVSs) are increasingly recognized as 
potential imaging biomarkers of neurological conditions. EPVSs are an established subtype of cerebral small-vessel disease; 
however, their associations with other cerebrovascular disorders are yet to be fully understood. In particular, there has been 
great interest in the association between the various parameters of EPVSs, such as number, size, and topography, and vas-
cular neurological conditions. Studies have identified cross-sectional and longitudinal relationships between EPVS parameters 
and vascular events, such as ischemic stroke (both clinical and silent), intracerebral hemorrhage, vascular risk factors, such 
as age and hypertension, and neurodegenerative processes, such as vascular dementia and Alzheimer disease. However, 
these studies are limited by heterogeneity of data and the lack of consistent results across studied populations. Existing meta-
analyses also fail to provide uniformity of results. We performed a qualitative narrative review with an aim to provide an over-
view of the associations between EPVSs and cerebrovascular diseases, which may help recognize gaps in our knowledge, 
inform the design of future studies, and advance the role of EPVSs as imaging biomarkers.
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PERIVASCULAR SPACES: ANATOMY, 
IMAGING CHARACTERISTICS, AND 
QUANTIFICATION
Brain perivascular spaces or Virchow-Robin spaces 
are potential spaces between the brain vasculature 
and the meningeal layers and were first described by 
pathologists Rudolf Virchow and Charles Robin sepa-
rately in the 19th century.1 They form pathways along 
the subarachnoid spaces surrounding the arterioles 
and venules and facilitate the transport of cerebrospinal 
fluid and the exchange of intracellular substances for 
the effective clearance of brain metabolic by-products 
(Figure).2 Although the human brain was thought to 
be devoid of a lymphatic drainage system, current ev-
idence indicates that the brain-wide perivascular space 

pathway may function as a “glymphatic” system.2 The 
process of “waste removal” involves the movement of 
cerebrospinal fluid into the periarterial spaces using 
bulk-flow dynamics followed by entry into the interstitial 
fluid compartment using aquaporin-4 channels. Herein, 
it undergoes admixture with the cellular metabolic prod-
ucts and subsequently drains by convection into the 
perivenular spaces and then into the larger downstream 
venous and lymphatic systems.3 As a result, impaired 
glymphatic clearance of substances and enlarged peri-
vascular spaces (EPVSs) have been studied and impli-
cated as a marker for various neurological conditions, 
such as cerebrovascular disease, dementias, and de-
myelinating disorders and, interestingly, they have also 
been studied in systemic vascular conditions, such as 
hypertension and chronic kidney disease.4
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Perivascular spaces (PVSs) are usually a micro-
scopic finding and are not visualized on imaging. 
Observation of PVSs on imaging, such as magnetic 
resonance imaging (MRI), typically results from enlarge-
ment attributable to age or other disease processes.5 
Although the current terminology seeks to avoid the 
use of the prefix enlarged, because PVS enlargement 
may not be necessary for pathology, we will use the 
term EPVS for the purpose of this review. Because 
EPVSs follow the course of the penetrating brain ves-
sel, PVSs may appear linear when imaged in parallel to 
a vessel or ovoid-circular (usually <3 mm in diameter) 
when imaged perpendicularly. The most important dif-
ferential diagnosis of EPVSs is chronic brain infarcts. 
We have proposed a pathology-informed algorithm 
to distinguish EPVSs from chronic infarcts. In this al-
gorithm, chronic infarcts are more likely to be >5 mm; 
occur usually in the upper two-thirds of the basal gan-
glia, in the cortex, or in the brain stem; and have a hy-
perintense rim in fluid-attenuated inversion recovery 
imaging.6 Another feature that favors an EPVS over a 
chronic lacunar infarct the absence of a central vessel 
sign on high-resolution imaging. However, EPVSs can 
enlarge to sizes exceeding 1 cm and may have a hy-
perintense rim resembling infarcts. In these situations, 
proton density imaging may be helpful in distinguishing 
infarcts from PVSs. Whether EPVSs can be classified 
as “lesions” is not conclusive because their association 
with neurological disorders is not consistent.7

EPVSs are usually quantified on MRI by visual rat-
ing. Not surprisingly, significant variability has emerged 
between visual rating scales and their results, which 
hinders the translation of EPVS-related research into 
clinical practice.8 Most EPVS scales have been admin-
istered using 1.5-T MRI and a combination of axial T1, 
T2, or fluid-attenuated inversion recovery sequences, 

whereas some scales have used additional planes and 
sequences, such as coronal, sagittal, 3-dimensional 
fast low-angle shot, fast-field echo, and spectral pre-
saturation with inversion recovery, which influence 
the sensitivity and specificity for recording EPVSs.5,9 
The anatomical locations of EPVSs included in these 
scales also vary. While the inclusion of the basal gan-
glia and centrum semiovale is common, other regions, 
such as the midbrain, hippocampus, insula, and white 
matter, are not uniformly studied. Furthermore, most 
EPVS quantification scales are ordinal, but the number 
of EPVSs under each ordinal value is heterogeneous.8 
Other limitations of visual rating scales include ceiling 
effect, floor effect, and suboptimal reliability.10

Segmentation-based machine-learning techniques 
are thought to be less time-consuming and more re-
liable in longitudinal settings.11 The use of these fully 
and semiautomated methods is still experimental and 
needs to be validated against clinical outcomes in di-
verse populations and clinical settings.12 Other prom-
ising novel imaging approaches to EPVS diagnosis 
include the use of 7-T high-resolution MRI, incorpora-
tion of diffusivity tensor imaging, and the use of gado-
linium as a possible glymphatic tracer.13–15

EPVSs have been studied as imaging biomarkers 
mainly in cerebrovascular disorders, such as ischemic 
and hemorrhagic stroke, cerebral small-vessel disease 
(CSVD), cerebral amyloid angiopathy (CAA), vascular 
cognitive impairment, and other less common condi-
tions, such as cerebral autosomal dominant arteriopa-
thy with subcortical infarcts and leukoencephalopathy 
(CADASIL) and Moya-Moya disease.3,16–18 Despite the 
above reported associations, EPVSs are yet to gain 
widespread recognition. Notable impediments include 
the aforementioned heterogeneity of measurements, 
differences in outcomes among studied populations, 
and a paucity of prospective clinical trials. To help 
identify gaps in existing knowledge, inform the design 
of future research on EPVS imaging and correlations, 
and advance the role of EPVSs as imaging biomarkers 
for clinical use, we performed a literature review and 
qualitative analysis of the associations between the im-
aging features of brain EPVSs, such as size, number, 
and location, and the various clinical and radiological 
aspects of cerebrovascular disorders.

PATHOLOGICAL BASIS FOR EPVSS IN 
CEREBROVASCULAR DISEASE
The primary inciting factor leading to enlargement of 
PVSs in cerebrovascular diseases in humans is yet to 
be determined. On the basis of animal models, inflam-
mation is presumed to be an important catalytic event 
in the physiopathological cascade resulting in PVS ex-
pansion.19 Similarly, in humans, there is evidence that 

Nonstandard Abbreviations and Acronyms

CAA	 cerebral amyloid angiopathy
CADASIL	 cerebral autosomal dominant 

arteriopathy with subcortical infarcts 
and leukoencephalopathy

CSVD	 cerebral small-vessel disease
EPVS	 enlarged perivascular space
ICH	 intracerebral hemorrhage
LADIS	 Leukoaraiosis and Disability Study
NOMAS	 Northern Manhattan Stroke Study
OxVasc	 Oxford Vascular Study
PVS	 perivascular space
SVD	 small-vessel disease
TABASCO	 Tel-Aviv Brain Acute Stroke Cohort
WMH	 white matter hyperintensity
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systemic inflammatory markers are elevated in patients 
with EPVSs and white matter hyperintensities (WMHs), 
both markers of CSVD.20,21 Furthermore, inflammatory 
cells, such as macrophages, also accumulate directly 
in the PVSs in several conditions, such as hemor-
rhagic stroke, ischemic stroke, demyelination, CAA, 
Alzheimer disease, and traumatic brain injury.19,22–26 
Progression of perivascular inflammation results in 
pericyte damage and blood-brain barrier dysfunction, 
possibly leading to altered fluid dynamics, ineffective 
interstitial fluid drainage, and dilatation of the PVS. In 
fact, in the NOMAS (Northern Manhattan Study) and 
in Alzheimer’s Disease Neuroimaging Initiative, we 
found that a higher burden of EPVSs is associated 
with larger white matter volume,27 which we interpret 
as a sign of a physiopathological relationship between 
EPVSs and dysfunctional brain interstitial fluid drain-
age. Finally, the cumulative damage to the endothelium 
may lead to vessel wall alterations and subsequently 

impaired cerebrovascular reactivity and pulsatile bulk-
flow dynamics.28

Mice models of ischemic stroke have demonstrated 
inflammatory markers and impaired clearance of by-
products in the EPVSs in the immediate poststroke 
period, which may lead to further free-radical damage, 
impaired oxygen use, and stroke expansion.29 PVSs 
also play a vital role in clearance of amyloid-β protein. 
Although most amyloid-β is cleared through the trans-
vascular route influenced by sleep and aerobic activity, 
the PVS pathway is thought to account for ≈20% to 
40% clearance via interstitial fluid.22,30 Therefore, fac-
tors that impair interstitial fluid dynamics may lead to 
accumulation of amyloid-β, expansion of PVSs, and 
poorer cognitive outcomes.31,32 As a result, targeting 
paths related to amyloid-β clearance, such as activa-
tion of macrophages, induction of pericytes, or promo-
tion of interstitial clearance using focused ultrasound, 
have emerged as potential therapeutic options.32

Figure.  Anatomic relations within the central nervous system and microvasculature.
A, The subarachnoid space is delimited by the arachnoid mater and the pia mater. The pia 
mater is composed of a single layer of fibroblasts supported by a thin fibrous tissue matrix 
and underlain by the subpial space. This space is separated from the cerebral parenchyma 
by the glia limitans. B, Arteries passing from the subarachnoid space into the cerebral cortex 
are surrounded by a perivascular sheath composed of the pial membrane, which is adherent 
to the glia limitans and forms the inner lining of the PVS. This pial lining becomes incomplete 
and then disappears at the level of capillaries. Capillaries have no PVS, because their ECBM 
is fused with the glia limitans (itself formed by astrocyte foot processes embedded in the 
parenchymal basal lamina). Postcapillary venules (PCVs) are surrounded by a PVS that is 
delimited by ECBM and the glia limitans; there is no intact pial membrane, but small clusters 
of pial cells adherent to the vessels are present. The PVS is in continuity with the subpial 
space (A). Reprinted from Kaufman-Francis et al with permission. Copyright ©2018, Elsevier. 
ECBM indicates endothelial basement membrane; PBM, parenchymal basement membrane; 
PF, pial fenestration; and PVS, perivascular space.
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METHODS
Using broadly applicable keywords in combination, 
such as “brain,” “Virchow-Robin,” “space,” “perivascu-
lar space,” “Virchow-Robin space,” “PVS,” and “VRS,” 
we searched the MEDLINE, EMBASE, Web of Science, 
and The Cochrane Library databases, and registries, 
such as World Health Organization International Clinical 
Trials Registry Platform and Clini​caltr​ials.gov from in-
ception to December 31, 2021. Gray literature was 
searched for additional relevant abstracts. An example 
of a search term used was (((brain[Title/Abstract] OR 
arterial[Title/Abstract] OR arteries[Title/Abstract] OR 
artery[Title/Abstract] OR cerebral[Title/Abstract])) AND 
space*[Title/Abstract]) AND (enlarged[Title/Abstract] 
OR dilated[Title/Abstract] OR visible[Title/Abstract]).

The objective of this review was qualitative and 
narrative, with a purpose of informing current litera-
ture on EPVSs in cerebrovascular disease given the 
high heterogeneity of methods used to study EPVSs. 
Consequently, we decided not to pursue a meta-
analysis. Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses guidelines and inclusion 
and exclusion criteria were not applicable. In total, 
4980 abstracts were retrieved after removal of du-
plicates. Abstracts and full texts were screened by 2 
reviewers (S.R. and F.K.) for inclusion. Conflicts were 
addressed by the senior author (J.G.).

EPVSS AND CEREBROVASCULAR 
DISEASE
Transient Ischemic Attack and Acute 
Stroke
Transient Ischemic Attack

EPVSs in relationship to transient ischemic attack (TIA) 
have not been extensively studied. One prospective 
study compared EPVSs in patients with either tran-
sient or persistent neurological deficits attributable to 
ischemic stroke and found no differences in the total 
small-vessel disease (SVD) scores on imaging, which 
included EPVS scores as one of its components.33 
Hypothetically, PVSs may play a role in preventing the 
progression of TIA to ischemic stroke through effec-
tive clearance of inflammatory markers and timely in-
terstitial fluid drainage. In this context, it remains to be 
tested whether a heavier load of EPVSs could increase 
the risk of stroke in the short-term after a TIA.

EPVSs and Stroke Risk

In the Lothian birth cohort (Table  1), EPVS scores 
computationally assessed for width and length were 
associated with history of stroke.34 Similarly, the pro-
spective 3-city population study from France reported 

that higher total EPVS scores were associated with a 
higher risk of incident ischemic stroke and intracere-
bral hemorrhage (ICH). The association was found sig-
nificant only for EPVSs in the basal ganglia, however.35 
The OxVasc (Oxford Vascular Study) also found that 
basal ganglia, but not centrum semiovale, EPVSs were 
associated with increased risk of recurrent ischemic 
stroke and ICH.36 This was replicated in another study 
of 1622 individuals where >20 basal ganglia EPVSs had 
a 1.8-fold higher risk of recurrent ischemic stroke and a 
2.6-fold increased risk of ICH compared with patients 
with <11 or 11 to 20 basal ganglia EPVSs.37 In NOMAS, 
we reported that participants in the highest tertile of 
EPVS scores had an increased risk of stroke and other 
vascular events compared with those in the mid and 
low tertiles.38 Notably, EPVSs >5 mm were not associ-
ated with higher risk of vascular events in NOMAS or 
in another community-based study of 1204 stroke-free 
participants.38,39 On the basis of these reports, there 
appears to be a consistent risk of increased risk of 
stroke in people with heavier burden of EPVSs in the 
basal ganglia, which we hypothesized could be par-
tially mediated by a more intense or longer exposure 
to hypertension.38

Existing meta-analyses and systematic reviews of 
EPVSs are challenging to interpret. A meta-analysis 
exploring the association between the various com-
ponents of SVD and stroke identified only 2 studies 
on EPVSs that fulfilled inclusion criteria.40 A separate 
pooled analysis discussed a potential qualitative trend 
for the association between EPVSs, incident stroke, 
and death but could not retrieve data that sufficed for 
meta-analysis.41 More recently, a third study pooled 
116 studies of EPVSs and reported no relation of 
EPVSs with the risk of stroke, dementia, or mortality.42 
The validity of pooled analyses using heterogeneous 
studies is a concern, however.

Neurological Deterioration and Functional 
Outcomes After Stroke

Impaired glymphatic drainage and removal of inflam-
matory mediators after stroke may result in blood-
brain barrier damage, worsening oxygen use, and 
necrosis, as discussed in prior sections. In a study 
of small subcortical ischemic strokes, moderate and 
high-grade basal ganglia EPVSs were associated 
with neurological deterioration in the first 72 hours 
after stroke.43 However, another prospective study of 
687 patients with ischemic stroke reported that none 
of the imaging makers of SVD were associated with 
neurological decline in the first 72 hours.44 For more 
chronic poststroke outcomes, EPVSs do correlate with 
increased infarct size and progression of white matter 
disease after stroke.45 In a study of 1096 patients with 
acute ischemic stroke, high-grade EPVS scores were 

http://clinicaltrials.gov
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associated with increased all-cause mortality and fatal 
ischemic and hemorrhagic stroke, but the adjusted risk 
remained statistically significant only for fatal ischemic 
strokes.46 In patients with acute ischemic stroke treated 
with intravenous tissue-type plasminogen activator, 
retrospective analyses have found that higher EPVS 
scores were associated with increased stroke severity 
(moderate to severe) and poorer poststroke outcomes 
measured by the National Institutes of Health Stroke 
Scale and the modified Rankin Scale.47

Functional outcomes, measured using the modified 
Rankin Scale grade between 3 and 6 months post-
stroke, were not associated with EPVSs.48 However, 
in one study of patients with stroke with low National 
Institutes of Health Stroke Scale scores (≤2), higher 
basal ganglia EPVSs were associated with poor func-
tional measures, such as lower total stroke-specific 
quality-of-life score, lower mobility, depressed mood, 
and poor self-care.49 In another study of 743 patients 
with acute ischemic stroke, EPVS scores were only as-
sociated with health-related quality of life. Of note, the 
cumulative SVD burden appears to have a larger ef-
fect on functional outcomes compared with individual 
scores, such as EPVS or WMH alone.50

INTRACRANIAL AND EXTRACRANIAL 
CALCIFICATION AND 
ATHEROSCLEROSIS
Atherosclerosis in the carotid vasculature may alter pul-
satile hemodynamics and impair interstitial fluid drain-
age in the brain, resulting in EPVSs.51–53 In patients with 
ischemic stroke, intracranial atherosclerotic stenosis of 
>50% is independently associated with >20 centrum 
semiovale EPVS but not basal ganglia EPVS.36 These 
results were not replicated by another study, however.54 
Intracranial arterial calcifications, not a sine qua non of 
atherosclerosis, do not relate to EPVSs in patients with 
ischemic stroke or TIA, but there is a cross-sectional 
association between higher EPVS scores with carotid 
siphon calcifications in stroke-free individuals.55 We 
have argued before that stiffening of the conduit ar-
teries between the heart and the brain may relate to 
higher EPVS load, therefore suggesting that EPVSs 
may be markers of systemic arterial aging and its ef-
fect on pulsatile hemodynamics.52 Further longitudinal 
studies are essential to demonstrate a relationship 
between EPVS burden or location and progression of 
luminal stenosis.

CEREBRAL SMALL-VESSEL DISEASE
Among the different ischemic stroke subtypes, lacu-
nar stokes have carried the strongest association with 
EPVSs. In a prospective study of 350 participants, 
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total EPVS scores were associated only with the la-
cunar stroke subtype.16 In another retrospective study 
of patients with acute ischemic stroke, high-grade 
EPVSs (grade ≥2) were observed more frequently in la-
cunar strokes compared with other stroke subtypes.56 
Community-based studies have also reported similar 
results, wherein individuals with silent lacunar strokes 
on imaging had a higher EPVS burden.33 The associa-
tion between lacunar stroke and EPVS is found con-
sistent for bilateral hemispheres compared with just 
the ipsilateral side of stroke, suggesting a more wide-
spread process of altered interstitial fluid dynamics and 
enlargement of PVSs in patients with lacunar strokes.34

With regard to associations between EPVSs and 
other markers of CSVD, EPVSs in both the basal gan-
glia and centrum semiovale were consistently associ-
ated with WMH volume and deep WMH.5,12,35–37 There 
is conflicting evidence as to whether the association 
between EPVS and WMH varies by anatomical lo-
cation, but the association appears more consistent 
with deep than with subcortical WMH.37–39 Cerebral 
microbleeds, another marker of SVD, have been also 
associated with EPVSs, at both the basal ganglia and 
the centrum semiovale.55,57 The association between 
EPVSs and other markers of SVD are likely to represent 
an epiphenomenon, but whether this coexistence is 
synergetic in the risk of vascular or cognitive outcomes 
remains uncertain.

CEREBRAL AUTOSOMAL DOMINANT 
ARTERIOPATHY WITH SUBCORTICAL 
INFARCTS
CADASIL is a neurological disorder caused by a mu-
tation in the NOTCH3 gene, which is responsible for 
vascular smooth muscle homeostasis. Clinical fea-
tures include subcortical infarcts, migraine headaches, 
psychiatric disturbances, and cognitive impairment. 
CADASIL represents a monogenic, early-onset variant 
of the CSVD.58 As a result, EPVSs have emerged as a 
possible marker to study in these patients. Advanced 
7-T MRI studies have shown correlation between EPVS 
number and WMH across all regions in patients with 
CADASIL compared with controls in whom EPVSs were 
correlated only to juxtacortical WMH.59 Furthermore, 
pathological studies in CADASIL revealed that EPVS 
severity is associated with adjacent lacunar infarcts 
and myelin degradation.59,60 EPVS burden is higher in 
asymptomatic patients with CADASIL compared with 
noncarriers. The severity of EPVSs in CADASIL is as-
sociated with advancing age and male sex, specifically 
for basal ganglia EPVSs.18,60 The burden of EPVSs and 
the widespread white matter lesions seen in CADASIL 
may have a common underlying link of altered intersti-
tial fluid drainage. Nonetheless, the clinical implications 

of EPVS measures in patients with CADASIL are uncer-
tain. Some studies have shown a lack of association 
between EPVS severity with outcome scores, such as 
the Institute of Cognitive Neurology Frontal Screening, 
Mini-Mental State Examination, or modified Rankin 
Scale, but others have suggested that EPVSs may cor-
relate with poorer cognition and higher disability.7,41,60 
Understanding the role of EPVSs in CADASIL-related 
neurodegeneration may offer insights into the physi-
opathology of this monogenic small-vessel disorder 
and highlight novel therapeutic pathways.

ICH AND CAA
Data supporting an association between EPVS and 
ICH risk are conflicting. In a study of 2002 participants 
with mean follow-up of 3.5 years (±2 years), there was 
no relationship between any EPVS score and incident 
ICH.36 In another study with longer follow-up (about 
9 years), increasing total and basal ganglia EPVS 
scores were independently associated with a 3-fold 
higher incident ICH.35 In hospital-based samples, the 
risk of recurrent ICH associated with EPVS scores is 
inconclusive.46,61

Segregating ICH into CAA and non-CAA related, 
centrum semiovale EPVS >20 is more common in 
CAA-related ICH, independent of age.62 In another ret-
rospective cohort of 315 patients with CAA-related ICH 
and 137 with hypertensive ICH, high-grade centrum se-
miovale EPVSs were associated with CAA-related ICH 
and basal ganglia EPVSs were associated with hyper-
tensive ICH, a finding replicated in other research.17,49,63 
In patients with spontaneous cerebellar ICH, the pres-
ence of >20 centrum semiovale EPVSs was associated 
with higher lobar cerebral microbleed scores, which 
also add evidence for possible association between 
CAA-type ICH and EPVSs.64 Furthermore, there is a 
correlation between higher severity of centrum semio-
vale EPVSs with increased uptake of 11C-Pittsburgh 
compound B in patients with ICH who are diagnosed 
with “probable” CAA.65 One autopsy study found that 
patients with CAA have hemosiderin-laden macro-
phages in their EPVSs and mononuclear cells in the 
white matter.53–66

Whether EPVSs can influence the clinical presen-
tation of CAA has been investigated, and the results 
suggest that EPVSs do not influence the clinical presen-
tation of ICH or its severity. One study noted that there 
were no demonstrable differences in EPVS severity (for 
both centrum semiovale and basal ganglia) between 
patients presenting with focal deficits or cognitive im-
pairment.63 Similarly, EPVS burden was not predictive 
of hematoma expansion or recurrent ICH risk in pa-
tients with CAA-related ICH.50,67 In patients with CAA, 
there is no correlation between centrum semiovale 
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EPVSs and outcomes, such as non-ICH stroke, de-
mentia, or mortality.68 Total CSVD score, but not EPVS 
score alone, correlates with the risk of hemorrhagic 
transformation of ischemic strokes.69 Nonetheless, 
there may be a role for EPVSs in risk stratification for 
anticoagulation-related ICH. For example, a study of 
1386 patients with TIA or ischemic stroke on thera-
peutic anticoagulation for atrial fibrillation reported that 
basal ganglia but not centrum semiovale EPVSs were 
associated with risk of ICH.70 Despite this evidence, no 
study to date has provided strong data that anticoag-
ulation is contraindicated among people with EPVSs, 
and it should be used when indicated regardless of 
EPVS status.

DEMENTIA AND VASCULAR 
COGNITIVE IMPAIRMENT
Numerous population-based studies have investi-
gated the association of EPVSs with prevalent or in-
cident cognitive impairment (Table  2).71–80 Perhaps 
the strongest evidence supporting a role for EPVSs in 
cognitive decline comes from the Gene/Environment 
Susceptibility–Reykjavik Study that included 2612 pa-
tients with 5-year follow-up. EPVSs were associated 
with steeper cognitive decline in information process-
ing speed and >4-fold risk of vascular dementia.71 
Another community-based study of 1778 participants 
without dementia assessed longitudinally over 4 years 
showed that higher EPVS burden in either the basal 
ganglia or the centrum semiovale was associated with 
risk of incident dementia. However, only basal ganglia 
EPVSs were associated with a higher rate of cognitive 
decline.72 With regard to other locations, hippocampal 
EPVSs are inversely correlated with verbal reasoning 
but not with overall cognitive impairment or demen-
tia.81 EPVSs have been also associated with cognitive 
dysfunction in older dementia-free men specifically in 
nonverbal reasoning and visuospatial functions, but 
this association is partially confounded by atrophy.82 
The association between EPVSs and measures of cog-
nition and dementia is less consistent in the Rotterdam 
study, the LADIS (Leukoaraiosis and Disability Study), 
and the Lothian birth cohort.76 A meta-analysis of 116 
studies limited by heterogeneity also reported no asso-
ciation between EPVSs and dementia.42 The conflicting 
results are partially attributable to the heterogeneous 
exposure measurement and various populations.

Dementia Subtypes
In a study of 110 patients with Alzheimer disease and 
116 patients with vascular cognitive impairment, cen-
trum semiovale EPVSs were associated with Alzheimer 
disease, and basal ganglia EPVSs were associated 
with vascular cognitive impairment.77 Basal ganglia N
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EPVS scores were higher with vascular dementia than 
with Alzheimer disease, frontotemporal dementia, or 
healthy controls. Basal ganglia EPVSs carried a higher 
sensitivity of and specificity (67% and 70%, respec-
tively) for vascular dementia compared with other de-
mentia subtypes.9 In a systematic review of EPVSs and 
dementia, 5 of 13 studies of vascular dementia reported 
an association with basal ganglia EPVSs. The results 
were ambiguous for relationships between EPVS and 
Alzheimer disease or the other dementia subtypes.83 
This evidence does suggest that in older individuals, 
EPVSs in deeper brain areas relate better to vascular 
dementia than to Alzheimer disease. Using the same 
EPVS scale as in NOMAS, we reported that increas-
ing EPVS severity is associated with worse cognitive 
diagnosis in patients with Down syndrome (amyloid-β 
hyperproducers), which does suggest an association 
between amyloid accumulation and EPVSs in a clinical 
context less biased by older age and traditional vascu-
lar risk factors, as is in the case of late-onset Alzheimer 
disease.84

Poststroke Cognitive Performance
In patients with lacunar strokes, basal ganglia EPVSs 
were negatively correlated with processing speed after 
adjusting for confounding factors.85 Similarly, Mini-
Mental State Examination scores at 1-year poststroke 
were related to higher basal ganglia EPVSs.86 Other 
studies, however, have not replicated an association 
between EPVSs and poorer poststroke cognitive per-
formance.87,88 In the TABASCO (Tel-Aviv Brain Acute 
Stroke Cohort) study of patients with TIA or stroke, only 
WMH but not EPVS was predictive of cognitive per-
formance at 1 year.78 Finally, a meta-analysis of 3575 
patients, aged between 63 and 73 years, found no cor-
relation between total EPVS burden and Mini-Mental 
State Examination scores, except for hippocampal 
EPVSs associated with decreased memory function.89

CONCLUSIONS
EPVSs have been extensively studied as biomarkers 
of various clinical aspects of neurological diseases, 
specifically as imaging biomarkers of SVD and of dys-
functional brain interstitial fluid drainage. Deep EPVSs 
localized to the basal ganglia are closely related to vas-
cular outcomes, whereas centrum semiovale EPVSs 
are more often associated with dementia or CAA. 
These differential associations are likely related to the 
greater exposure of deep penetrating arteries and sur-
rounding tissue to systemic pulsatile hemodynamics, 
whereas cerebral convexity diving arteries (ie, medul-
lary arteries) are more likely related to alterations in in-
terstitial fluid drainage. Despite the evidence reported 
to date, EPVSs are not routinely used to stratify the risk 

of vascular or cognitive outcomes in clinical practice, 
and the use of EPVSs remains confined to research.

Integrating EPVSs into mechanistic studies simulta-
neously to other markers of SVD can help understand 
whether there is a unique role of EPVSs in brain dis-
ease physiopathology or whether EPVSs represent 
only an epiphenomenon of aging and specifically of 
SVD. Although there is evidence that the association 
between EPVSs and certain vascular and cognitive 
outcomes is independent of other MRI markers of SVD, 
such as chronic lacunar infarcts, cerebral microbleeds, 
and WMHs, these association are not always repli-
cated, which introduces hesitancy as of the worth of 
EPVS rating given the effort it takes to measure them. 
Furthermore, the heterogeneity in the methods to study 
EPVSs hinders the comparison of studies, which itself 
perpetuates the lack of consistency in results across 
various populations. Therefore, a unified, reproducible, 
and preferably automated method to measure EPVSs 
is a high priority in the field. Alternatively, integration of 
EPVSs in algorithms to risk stratify patients to a given 
treatment or intervention as part of a clinical trial could 
help decide whether there is value in measuring EPVSs 
in clinical practice.
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