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ABSTRACT

Motivation: We investigate and quantify the generalizability of the
white blood cell (WBC) transcriptome to the general, multiorgan
transcriptome. We use data from the NCBI's Gene Expression
Omnibus (GEO) public repository to define two datasets for
comparison, WBC and OO (Other Organ) sets.

Results: Comprehensive pair-wise correlation and expression level
profiles are calculated for both datasets (with sizes of 81 and 1463,
respectively). We have used mapping and ranking across the Gene
Ontology (GO) categories to quantify similarity between the two sets.
GO mappings of the most correlated and highly expressed genes
from the two datasets tightly match, with the notable exceptions of
components of the ribosome, cell adhesion and immune response.
That is, 10 877 or 48.8% of all measured genes do not change >10%
of rank range between WBC and OO; only 878 (3.9%) change rank
>50%. Two trans-tissue gene lists are defined, the most changing
and the least changing genes in expression rank. We also provide a
general, quantitative measure of the probability of expression rank
and correlation profile in the OO system given the expression rank
and correlation profile in the WBC dataset.
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Bioinformatics online.
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1 INTRODUCTION

One of the reasons that the classification of malignancy was one
of the earliest human applications of microarray transcriptional
profiling (Golub et al., 1999) was that the tissue to be characterized,
the tumor, was extracted as a matter of a routine surgical oncological
care. Other clinical domains have lagged because the tissue involved
in a pathophysiology may not be reasonably obtained from a
living individual (e.g. in behavioral or psychiatric disorders) or
the organ specificity of a disease is unclear (e.g. type II diabetes
mellitus or hypertension). Increasingly, investigators have explored
the possibility of classitying, prognosticating and characterizing the
mechanism of diseases using the gene expression patterns measured
in white blood cells (WBCs) (Coppola et al., 2008; Padmos et al.,
2008; Scherzer et al., 2007; Washizuka et al., 2009).
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For those studies seeking to find the mechanisms/genes
dysregulated in the tissue of interest, the large majority have been
structured very similarly: a direct comparison is made between
expression profiling of peripheral blood and the specific tissue
where the disease is known to develop. An alternative method is to
establish the degree of isomorphism between the peripheral blood
transcriptome and the overlap in expression profiles from a fixed
number of representative human tissues (e.g. brain, colon, heart,
kidney, etc., altogether nine tissue types) (see Liew et al., 2006).
To the surprise of many, these investigations have proven to show
considerable shared transcriptome across these tissues. We adopt
here a systematic survey approach using the ever-growing mountain
of public microarray expression data of both WBC and dozens of
other tissues, under a variety of conditions and pathophysiological
states. Our goal is to provide a quantitative estimate of the
generalizability of gene expression findings in WBC to those in
other tissues. We seek to identify the most robust similarities and
corresponding differences in a genome-wide expression profiles, and
to quantify them appropriately. We hypothesize there will be robust
correlations that survive the well-known variability of the multiply
sourced gene expression database such as the Gene Expression
Omnibus (GEO) (Barrett et al., 2005), that allow large fractions
of the peripheral blood transcriptome to be reflected in other organs
and tissues.

This hypothesis (heretofore referred to as the WBC relevance
hypothesis) entails the following three questions: (i) to what extent
do those genes with the highest levels of expression in the WBC
transcriptome also have high levels of expression in other organ
systems? Specifically, can we quantify how the rank of the gene
in WBC informs us of the rank in non-WBC tissues? (ii) How
do correlations between pairs of genes in WBC inform us of
their correlation in non-WBC tissues? (iii) How does the overall
correlation structure [e.g. Relevance Network (Butte et al., 1999)]
of WBC compare to those of other tissues? To the extent that the
WBC relevance hypothesis is supported we explore whether the
informativeness of WBC gene expression is broad or varies by
specific functional categories. We look at both the broad categories
of gene annotation (Ashburner ef al., 2000; Dennis et al., 2003),
such as apoptosis, as well as examining individual genes. We used
the NCBI's GEO to find experiments measuring WBC expression
and a large number of experiments on non-WBC tissues that we
lump into the Other Organ (OO) category. To minimize the noise
from inter-platform comparisons (Nimgaonkar ez al., 2003), we used
only those data obtained on the GEO’s GPL96 platform for both the
WBC and OO categories. This resulted in a total of 1463 samples
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Fig. 1. A diagram representing the workflow of the analysis. (i) ‘Data Sets Definition’ includes bulk download of the GEO archive files for the GPL96
platform, parsing out all GSM sample files with similar probeset-averaged expression matrix, detecting and removing outlier genes and constructing two sets
for comparison, WBC and OO sets. (ii) ‘Quantify Similarity between sets’ include: use GO mapping of the most correlated (highly expressed) genes (as
defined by their FDR g-value thresholds) to quantify change across sets; the null hypothesis Hy is overlap between corresponding sets from WBC and OO
by chance); use a linear model and general least squares and PCA to quantify relationships between OO and WBC across expression and correlation profiles,
respectively; define two list of ‘most-changing’ and ‘least-changing’ from WBC to OO genes, across expression profiles. (iii) In ‘Ad-hoc Analyses’, we first
construct the RelNets of the 200 most correlated WBC genes and their corresponding OO pairs ranks changes. We next looked at the TFs human homologs
from the Mahoney Atlas as expressed in WBC. Another step is looking at how the most-changing and least-changing genes from step (ii) are represented in
the list of human housekeeping genes. Finally, we run GO enrichment analysis of the ‘least-changing’ genes with respect to ‘tissue-of-expression’, in DAVID.

for the OO and 81 samples for the WBC set. The OO set consists
of about 95% solid tissue samples and about 8% are cancer-related
tissues (see Section 2.2).

2 MATERIALS AND METHODS

The overall flow of the analysis is summarized in Figure 1. The major steps
are listed in the figure caption and are also explained in detail.

2.1 GEO datasets

We have selected the NCBI’s public archive GEO as a source of the
microarray expression data (Barrett e al., 2005). To minimize the noise
across platforms (Nimgaonkar et al., 2003), we have elected to use only

datasets that were taken by the GPL96 platform, corresponding to the HG-
U133A chip by Affymetrix, and only included probeset-averaged expression
levels. A copy of the GEO database was downloaded on April 5, 2006. An
outlier detection and removal analysis was performed (Butte, 1999). There
are 1463 and 81 samples in the OO and WBC dataset, respectively.

2.2 Quantify tissue types in the OO set

To quantify the types of tissues across the OO set, we utilize the R package
GEOquery to download and parse out the annotation for each of the 1463
samples assigned to the set. Four of the fields in the GSM annotation were
used: ‘title’, ‘organism’, ‘source’ and ‘description’; the list is presented in
the Supplementary Table S1.

Overall, 27 GSM samples are no longer available from GEO and thus
cannot be included in the statistics. There are 1387 samples that are from
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Fig. 2. Distribution of solid tissues in the samples of the OO set. A total
of 1436 GSM samples annotations were parsed out and reviewed with
27 samples from the original 2006 download that was no longer available
in GEO.

solid-tissue organs, or ~95% of all samples in the OO set. One hundred
and sixteen (or ~8%) are samples that come from malignant tissues. The
resulting tissue categories distribution is shown in Figure 2.

2.3 Pair-wise correlation computation

For each of the datasets we have about ~250 million pair-wise correlations
between the 22 283 REF_IDs on the GPL96. Computations were carried out
on an HPC Cluster at Partners HealthCare System, Inc.

2.4 “Top N’ most highly expressed and correlated gene
lists as false discovery rate cutoff parameters

The selection of the top N used for the GO categories mapping statistics was
based on a false discovery rate (FDR) (Benjamini, 1995; Schweder, 1982;
with the specific g-value thresholds described below.

For the most highly expressed gene list, we have transformed the
expression levels averaged over all samples to a ‘standard score’ (z-score),
followed by a call to the ‘fdrtool’ R package to determine the corresponding
g-values (Strimmer, 2008). Both OO and WBC cases were computed and
the minimum of the two cutoff parameters was taken to be the global FDR
cutoff parameter. The specific choice of N =1000 used in the analysis below
corresponds to an FDR cutoff g-value = 0.02.

Similarly for the case of top N most correlated gene lists, we
have transformed to z-scores for the Mutual Information Content (MIC)
(Strimmer, 2008) and also used |r| for the case of the Pearson’s correlation
coefficient. Q-values were computed for both similarity measure cases and
the minimum of the two was taken. The most correlated pairs list was
transformed to gene lists by adding the two members of all pairs less the
overlap set of genes between the members. Here, an FDR g-value of 0.005
corresponds approximately to N =1000 (most correlated genes) parameter,
for which comparison results are listed below.

2.5 Definition of change scores

Given two ranked lists of genes, we have defined a change score of each
gene as the signed integer equal to the number of positions its rank changes
between the WBC and OO datasets.

2.6 Test for independence of intersection of GO
categories

We have utilized the x> test of independence to analyze the results listed
in Table 2 for the WBC and OO overlap. Each of the lines in Table 2 was
fed into chisq.test() in R (ver. 2.10.1) with the parameter ‘simulate.p.value
= TRUE’ set so that a Monte Carlo sampling simulation of the P-value is
performed. The average P=0.0004998 is based on 2000 MC simulations.

2.7 General least squares and principal component
analysis fitting procedures

For the expression profile modeling procedure, we first applied the low
entropy filer and then have removed the ribosome-related genes by removing
all genes that are annotated to belong to these two GO categories:
(i) 5840, annotation="ribosome” and (ii) 5842, annotation="cytosolic large
ribosomal subunit (sensu Eukaryota)”. We have retained the more restrictive
low-entropy condition (for the WBC case) to keep the list of genes equal
in the OO and WBC expression sets. Both low-entropy and the removal of
ribosome genes procedures amounted to take 300 probes off the genes list.
For the list of remaining genes, we have averaged the expression levels for
each of them over the number of the samples in their corresponding dataset.
The resulting arrays were fed into the R Im() function and a linear model
was used for the functional relationship between OO and WBC sets.

For the correlation profiles case, a similar procedure was used for
removing outliers (low-entropy filter) and the ribosomal-related set of genes.
For each correlation metric, we have transformed to standard z-scores and
computed the FDR g-values for those pairs, and only retained g-value below a
threshold of & < 0.05. The unification of the OO and WBC sets was performed
and this enlarged set of correlation coefficients between the gene pairs was
used as the basis for performing both general least squares and principal
component analysis (PCA) in the samples versus OO and WBC gene-pair
correlation space. The corresponding sizes of the data matrices analyzed
were 30619 x 2 and 61190 x 2 for the MIC and Pearson’s correlation
coefficients, respectively. We used a standard singular value decomposition
method from the ‘pcaMethods’ R package and Im() function for the linear
least squares. Results are summarized in Table 3.

2.8 Tissue of expression enrichment analysis in DAVID
A set of 48 REF_IDs for the GO category of sugar-binding genes (GO:5529)
was submitted to DAVID. These probesets were mapped to 36 internal
DAVID IDs. Only the ‘Tissue of Expression” submenu options were selected.
A functional annotation clustering was performed with the default options.
Results are listed in Supplementary Table S6.

3 RESULTS
3.1 Fold and rank analysis

To first determine whether there was sufficient similarity between
WBC and other tissues, we focused our analyses on those genes that
had behaviors that were mostly likely to be consistent: genes with
high levels of expression, with low entropies (i.e. low variances),
and with high correlations with other genes across the entire GEO
datasets on the GPL96 platform (see Section 2).

Solely reviewing the top N = 1000 most correlated genes
(i.e. those with high correlations with other genes in their respective
GEO datasets) and the1000 most expressed genes in the WBC and
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0O categories (see Section 2.4 for a discussion on the choice of N),
we noted that the GO categories to which these 1000 genes belong
(a mere 4.5% of the total number of genes measured on the GPL96
platform) had a very high overlap. The distribution of distinct GO
categories within each of the three main GO hierarchies for OO and
WBC datasets is shown in Figure 3. The hierarchies are ordered
by the number of genes annotated for OO and the corresponding
number of annotations in WBC shown in the second column of the
figure. With the notable exceptions of components of the ribosome,
cell adhesion and the immune response, the annotations of these
top correlated genes in OO samples are well represented by the
most correlated genes in WBC samples. For graphical compactness,
Figure 3 only shows the 30 most annotated GO categories in OO
samples. If we extend the analysis to all categories, then the GO
categories that change the most (as defined by their Change Score
described in Section 2) include the ribosomal location and related
processes as before, but also includes nucleic acid binding, and
spliceosome-related processes as shown in the second column of
Table 1.

But this focuses on the differences rather than the larger
similarities between the WBC and OO transcriptomes suggested by
the broad silhouettes in Figure 3. Indeed, 90% of the GO categories
change <1.37% for cellular components, 1.83% for molecular
function and 2.89% for the biological processes hierarchies, or in
average of slightly over 2%. The similarities between WBC and OO
are further quantified by examining which GO categories are shared
by the 1000 most highly expressed or the 1000 most correlated
genes in the two transcriptomes, respectively, as summarized in
Table 2. In all instances, the intersection is larger than any of
the distinct sets (ranging from 27% larger to 700% larger). The
details of the particular GO categories summarized in this table
are given in Supplementary Table S2. Of course, if all the genes
on the chip were used in this analysis, rather than the top 1000,
then all GO annotations would intersect completely across the two
transcriptomes, by definition. However, with only 4.5% of the genes
measured, the measured degree of overlap is highly improbable
(P=0.000499 by using Monte Carlo sampling simulation in 2
test, see Section 2). Supplementary Figure S1 illustrates the overall
stability of numbers of annotation by GO category by plotting the
frequency of change scores for each GO category. As shown, the

Table 1. The most changing GO categories from WBC to OO

GO categories of 1000 most
correlated genes

GO categories of 1000 most
expressed genes

Cell Ribosome (21 — 121) Mitochondrion (72 — 129)
Cytosolic large ribosomal Extracellular matrix (sensu
subunit (sensu Eukaryota) Metazoa) (7 — 37)
(1 — 34)
MF Nucleic acid binding Transmembrane receptor
(130 — 56) activity (9 — 1)
Structural constituent of Sugar binding (16 — 3)
ribosome (34 — 178)
BP Nuclear mRNA splicing, via Nucleosome assembly

spliceosome (47 — 9)
Protein biosynthesis
(62 — 193)

(3B — 14)
sensory perception of sound
(12 > 2)

Table 2. Representation of GO categories in 1000 most expressed (‘E’, in
last column) or correlated (‘C’) genes

Intersection WBC 00 E/C
Cell 116 53 65 C
MF 258 179 238 C
BP 280 220 233 C
Cell 144 18 87 E
MF 303 246 233 E
BP 322 267 257 E

distribution of change score is centered on zero for all three GO
hierarchies. The top 1000 most expressed genes have a much tighter
distribution (more low change scores) than the 1000 most correlated
genes.

A broader examination of which genes change the most in their
rank (by entropy or by expression) within the 22 283 genes measured
on the GPL96 platform reveals a steep decline in the change in rank
of expression as illustrated in Supplementary Figure S2. That is,
10877 or 48.8% of all measured genes do not change >10% of
rank range between WBC and OO. Only 878 (3.9%) change rank
>50%. There is somewhat more change in rank of genes by entropy
as revealed in Supplementary Figure S3. That is, 5084 (22.8%) of
all genes do not change >10% of rank range in entropy, and 4356
(19.5%) by >50%.

The individual genes that change the least in rank across WBC and
OO, are itemized in Supplementary Table S3 as are those genes that
change the most. In the former list, are included HBB (hemoglobin
B chain), H3F3A H3 histone, family 3A, MED6 (mediator of RNA
polymerase II transcription, subunit 6 homolog), FTL (ferritin, light
polypeptide), ACTG1 (actin, gamma 1), B2M (B-2-microglobulin)
several HLA-related genes, several hemoglobin-related genes,
S100A9 (S100 calcium binding protein A9—calgranulin B). In
the latter list, are included the FCGR3B (Fc fragment of IgG,
low affinity IIIb, receptor—CD16b), PSAP (prosaposin—variant
Gaucher disease and variant metachromatic leukodystrophy), CAl
(carbonic anhydrase [—most highly expressed in erythrocytes) and
UBB (ubiquitin B). In contrast to expression rank, UBB changes the
least in entropy rank between WBC and OO. Conversely, GAPDH
is highly invariant as viewed by change in rank in expression, but
is among the most changed in rank in entropy across WBC and
0OO. Many more genes have similar rank profiles in expression
and entropy: For example, H3F3A (H3 histone) is just as invariant
in rank as in expression of HLA genes, ribosomal genes and
several of the hemoglobins. The expression of HBB in avascular
and non-hematopoietic tissues has been previously documented
(e.g. Mansergh et al., 2008).

3.2 Quantitative map between WBC and OO
transcriptomes

Having established the broad correlation between OO and WBC
expression profiles, we next take the logical step of trying to find
a quantitative relationship between the two transcriptomes. The
exact question we ask is: can one come up with the expression
rank in the OO system given the expression rank in WBC? Or,
even more broadly, given the broader expression profile (values and
cross-correlations) of a group of WBC genes how can one predict
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Fig. 3. Distribution of GO categories in 1000 most correlated genes in WBC and in OO.

their corresponding rank values and correlations in the OO set, and
with what probability? In doing this, we treat WBC expression (or
correlation) profile as an independent random variable and determine
the conditional probability distribution of the OO expression or
correlation coefficients given the WBC ones.

We modeled the OO expression levels and correlation coefficients
as a function of their WBC counterparts using linear predictive
models. The ribosome-related genes were removed as previously
described. The parameters for the resulting linear least squares
models as well as the P-values measuring the goodness-of-fit for
the expression and for the correlation profiles are summarized in
Table 3 together with the PCA model results for the correlation
profiles space. The two PCs for the MIC and r correlation spaces

show similar structure where a large part of the variance is carried
by the first PC.

3.3 Relevance networks and ‘most-connected’ genes

Relevance networks generate graph of connected nodes in which
each node represents a gene and each edge represent a correlation
metric (e.g. Pearson’s) that exceeds a statistically significant
threshold (Butte et al., 1999, 2000).

Shown in Supplementary Figure S4 is the relevance network
for the WBC transcriptome depleted for ribosomal genes. The
most highly connected genes include RRAGB (Ras-related GTP
binding B), MAG (myelin-associated glycoprotein, member of the
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Table 3. Linear least squares fit coefficients as computed for (i) expression
profile, and linear squares and PCA with two PCs for (ii) cross-correlation
using MIC, over the FDR ¢ <0.05 truncated complete phase space of ~250
million ‘points’ in the phase space of the pairs (WBC, OO) correlation
numbers, and (iii) same as in (ii) for Pearson’s correlation coefficient

Linear least squares fitting: 0O ~ A + B x WBC
Estimate SE; t-value; Pr(> |t])

(A) 8.846590; 0.297784; 29.71 < 2e-16™**
(B) 0.206404 0.001263; 163.48 < 2e-16***
40.47 on 21981 DF

Expression profiles

Residual SE

Multiple R? 0.5487
F-statistics 2.672e+04 on 1 and 21981 DF,
P <2.2e-16

Correlation, MIC (A) 5.73524; 0.01937; 296.2 < 2e-16™**
(B) —1.42333; 0.00641; —222.1 < 2e-16***

Residual SE 0.3749 on 30617 DF

Multiple R? 0.6169

Adjusted R? 0.6169

F-statistics 4.931e+04 on 1 and 30617 DF
P <2.2e-16

PCA: R? PC1: 0.926; PC2: 0.07403

Correlation, Pearson  (A) 4.11674 0.01349 248.5 <2e-16™**
(B) —0.42123; 0.00984 —309.3 <2e-16***

Residual SE 5.2748 on 60188 DF

Multiple R? 0.4751

Adjusted R? 0.4751

F-statistics 1.721e+05 on 1 and 60188 DF
P <2.2e-16

PCA: R? PC1: 0.8314; PC2: 0.1686

See Section 2 for exact algorithmic steps. Significance level is encoded as
20,0001

immunoglobulin super-family thought to be involved in the process
of myelination and known to mediate certain myelin—neuron cell-
cell interactions), BMP7 (bone morphogenetic protein 7), DOPEY1
(dopey family member 1), GTF2H5 (general transcription factor
IIH, polypeptide 5, involved with DNA repair mechanisms, and
nucleotide excision repair in particular), PURA (purine-rich element
binding protein A, deletion of this gene has been associated
with myelodysplastic syndrome and acute myelogenous leukemia),
EZH1 (enhancer of zeste homolog, a transcriptional regulator
and as a component of protein complexes that stably maintain
heterochromatin.) and PGDS (prostaglandin D2 synthase, plays a
role in the production of prostanoids in the immune system and
mast cells). The rank of these 200 top correlated gene pairs in
this WBC relevance network are compared with the ranks of those
same gene pairs in the OO set, in Supplementary Figure S5. It does
reveal a significant concordance in the ranks of correlation in gene
pairs from WBC and OO, even though the overall shape of the
presented distribution is somewhat peaked—the largest bin (N =50)
corresponds to a rank change across WBC to OO of maximum of
11.4%. Ninety percent of all WBC pairs do not change rank by
>31 positions or 15.5%. The top shared gene pairs are SF3B1 and
DDXS (the first is in the spliceosome and the other is DEAD domain
involved in spliceosome), YMEIL1 and FNTA (the first is ATP-
dependent metalloprotease specific to mitochondria and the second
is a farnesyl transferase, also involved in protein metabolism but in
the cytoplasm).

It is instructive to note in passing that the results reported here
do not depend on the actual permutation thresholds in the two
comparison sets. Since the two sets are very different in size (81
for WBC versus 1463 for OO), we did not use a permutation
scheme to select subsets for comparison (Kerr, 2009). Instead, we
define the number of genes used for the correlation analyses based
on global FDR thresholds. We built the relevance network of the
WBC correlation profile based on a fixed number (the top 200, as
reported in Supplementary Figure S1, most correlated pairs) as it is
of illustrative purposes only.

3.4 Transcription factors expression patterns:
the Mahoney atlas

The Mahoney is an atlas of transcription factors expressed in
the murine brain (Gray et al., 2004). We determined how highly
expressed these TF’s were in the WBC. First, the homologues
of these 2342 human TF’s were mapped to their 2168 human
homologues by reciprocal best first match (Moreno-Hagelsieb et al.,
2008). Of those, 1212 are measured on the HG-U133A microarray.
The expression ranks of these 1212 were obtained from the WBC
transcriptome and are illustrated in Supplementary Figure S6. As
shown, the distribution of ranks is uniform over the range of ranks
measured by GPL96.

3.5 Gene ontology enrichment analysis

We used DAVID online tools (Dennis et al., 2003) to perform
enrichment analysis of the set of 500 least-changing genes with
respect to Gene Ontology (GO) categories. The DAVID functional
annotation resulted in the 110 clusters listed in Supplementary
Table S4. The top cluster (enrichment score of 20.35) is clearly
reflecting the existence of a robust and well-correlated cluster of
ribosome-related genes (see discussion about Relevance graphs
above).

4 DISCUSSION

If the tools of functional genomics can be applied to peripheral
blood cell samples to develop biomarkers for other organs, two
questions are apparent: To what extent does expression in WBCs
reflect expression in other organ systems? Why should WBCs reflect
expression in other organ systems? This investigation focuses on the
first question and we review some possibilities with regard to the
second at the end of this discussion.

Before a further discussion of our findings, here we comment
on the general validity of our approach. Two sets were defined and
compared, the WBC and OO. The OO set is composed of a large
number of different solid tissues (~95% of all samples come from
such tissue, see Fig. 2). Also, there was no discrimination between
diseased or normal samples in OO or the WBC sets (i.e. ~8% of the
samples in OO are from malignant tissues). In a sense, we compare
WBC expression to expression of an ‘averaged or generalized’
human tissue. A question might arise about the general validity of
such a procedure. To address it, we have redone the bulk of our
analyses for the case of an OO set defined as a superposition of
five samples taken at random from the solid tissue distribution in
Figure 2. The specific differences seen do not affect the quantitative
conclusions reported below (results not shown).
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A bird’s eye view of the correspondence between the WBC and
OO transcriptome is provided by the GO (Ashburner, 2000). We
have performed a systematic mapping of the three main branches
of GO categories in the cases of the most correlated and expressed
genes, across the WBC and OO datasets. From the results listed
in Figure 1 and Table 1, one is able to characterize the similarities
and the difference between the WBC and OO transcriptomes. First,
the top most common annotations across the datasets show a tight
match, with the notable exception of the ribosome, cell adhesion
and the immune response GO codes; the nucleic acid binding
and spliceosome-related processes are added to this when one
considers all GO categories that change the most between WBC
and OO. Overall, 90% of the GO categories change only ~2% in
average across datasets. Next, focusing on the GO categories shared
between WBC and OO in the expression and correlation spaces, the
intersections between the distinct gene sets across GO branches are
consistently larger than the distinct sets themselves, which is a highly
improbable for only 4.5% of measured genes (P=0.0004998 by
Monte Carlo sampling simulation in the %2 test; Table 2). This result
rules out the enrichment-by-chance hypothesis and suggests the high
level of overlap in GO annotation categories across the WBC and
0O. Supplementary Figure S2 also demonstrates the overall stability
of GO categories change across WBC and OO, in both expression
and correlation spaces, as exemplified by their change scores.

Two of the most changing (from WBC to OO) GO categories
and their corresponding genes are the ‘sensory perception of
sound’ (biological process, GO code BP:7605) and ‘sugar binding’
(molecular function, MF:5529) listed in the second column
in Table 1. Some of the individual genes in the BP:7605
category are WRDI1 (WD repeat domain 1), MYH14 (myosin,
heavy polypeptide 14) and DIAPH1 [diaphanous homolog 1
(Drosophila)]. Sugar-binding most frequent genes are LGALSS8
[lectin, galactoside-binding, soluble, 8 (galectin 8)], PKDI1
[polycystic kidney disease 1 (autosomal dominant)] and BCAN
(brevican). Additionally, the ‘nucleosome assembly’ BP:6334 GO
category is quite overrepresented in going from OO to the WBC
datasets (3 — 14). Some of the genes included in this GO
category are H3F3A (H3 histone, family 3A), NAP1L4 (nucleosome
assembly protein 1-like 4) and HISTIHIT (histone 1, H1t). The
complete lists of the genes included in these two GO categories are
listed in Supplementary Table S5.

To cross-validate the enrichment of sugar-binding and sensory
perception of sound categories in WBC, we have performed
enrichment analysis in DAVID using the ‘Tissue of Expression’
annotation option (see Section 2). For the sugar-binding individual
genes, Clusters #3 (enrichment score of 0.59) and Cluster #9
(enrichment score of 0.38) clearly indicate the relative enrichment of
this group of genes with respect to WBCs as a tissue of expression.
A similar analysis of the hearing genes has yielded a much weaker
WBC tissue association results bordering the method’s sensitivity
(results not shown).

We next took a more detailed look at some of the individual
genes in the least-changing group as presented in the Supplementary
Table S2. A GO terms enrichment analysis of those genes reveals
that two of the most overrepresented types of categories are
‘oxygen transport’ (GO: 15671, BP), and ‘antigen presentation’-
related categories (GO:19882, GO:19883 and GO: 19884, BP;
Supplementary Material). These antigen presentation categories are
of course the genes part of the human leukocyte antigen (HLA)

system, the name of the major histocompatibility complex (MHC)
in humans and are expected to be widely expressed across most
tissues (Shiina, 2009). Another story is the ‘oxygen transport’
category as exemplified by a very stable levels of expression of
HBB (hemoglobin B chain) and several other hemoglobin-related
genes found in the list between WBC and OO sets. One remote
but distinct possibility is the presence of contaminating red blood
cells (RBCs) in the samples of both groups. For example, albumin,
transferrin and some other major plasma proteins are quite abundant
in muscle tissues, but the presence of hemoglobin-related genes
in the WBC data is much more counterintuitive. To rule out the
possibility of RBC contamination, we have reviewed the annotation
for the GEO samples assigned to the WBC dataset (Supplementary
Table S6). Although it is difficult to judge the exact sample collection
protocol from just the description field in the GEO GSM format,
it appears that most studies had followed the proper protocols.
Therefore, the finding that HBB (hemoglogin B chain) and other
hemoglobin-related genes are widely expressed in WBC s a true, but
nevertheless a surprising one. The expression of HBB in avascular
and non-hematopoietic tissues has been previously documented thus
providing an example of another human tissue (and embryonic
development stage) where hemoglobin units might possibly play
novel development roles (Mansergh et al., 2008).

Next, we have reviewed the list of 567 human housekeeping
genes (Eisenberg et al., 2003) against the two lists presented in
Supplementary Table S3. It appears that the housekeeping genes
are well represented on both least changing and most changing
from WBC to OO lists. Some of the most stable are e.g. HLA-
A/B/C (major histocompatibility complex, class I, A/B/C), TPT1
(Tumor protein, translationally controlled 1), VIM (Vimentin); some
of the most changing are e.g. TUBB (tubulin, 8), PSAP (prosaposin),
JUNB (Jun-B oncogene), CREBBP(CREB binding protein).

Finally, we would like to briefly touch upon some of the biological
and physiological underpinnings of why the WBC transcriptome
might reflect the state of (including disease) another tissue or set
of tissues. First, as blood cells contact and interact with all human
tissues and transport and convey bioactive molecules (i.e. oxygen,
metabolites, nutrient, cytokines and hormones, etc.), there is a
distinct possibility that the WBC will themselves reflect the state(s)
of those tissues. Conceivably, these subtle changes due to interaction
of WBCs with diseased tissues might trigger specific changes in
the gene expression of the WBCs paralleling the initial stimulus. A
recent study comparing expression in nine human tissues with the
WBC transcriptome has found that ~80% of the WBC expression
profile as being shared with any given tissue (Liew, 2006). After
all, a ‘cell is a cell’ and the most fundamental characteristics of any
cells are expected to be shared across all human tissues. Secondly,
the WBC are the ‘etiological organ or tissue’ for some diseases,
a good example being asthma which is not a disease of the lungs
(Weiss et al., 2009). Thirdly, some diseases affect all tissues, e.g.
Pompe’s disease affects the function of the lysosomes, which are
found in all types of tissue (Vellodi, 2005).

5 CONCLUSION

We study the similarity between the WBC and OO transcriptomes
using public repository expression data (GEO). The OO sets has a
wide representation of solid tissues (~95%) and normal (~92%)
tissue samples.
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We utilize GO mapping and ranking across correlation and
expression level profiles selected by FDR thresholds to quantify
similarity between comparison sets. We first identify that
components of the ribosome, cell adhesion and immune response are
among the most pronounced differences between the transcriptomes.

We next build predictive models of the rank in OO given the
rank in WBC, across correlation (using linear least squares) and
expression level spaces (using general least squares and PCA), after
removing the ribosome-related genes. Two trans-tissue gene lists
were also defined, the most- and least-changing in expression genes.
We also consider the individual genes on both ends of the spectrum
of WBC-0O change and gain further insight using ad hoc analyses,
including looking at TF expression in WBC from Mahoney atlas as
well as GO enrichment in tissue of expression.

We report on an overall very tight, quantitative match between the
WBC human transcriptome and the transcriptome of a generalized
set of solid tissues, across both correlation and expression level
spaces. These findings are essentially independent on exact subset
of tissues in the generalized OO set indicating a shared fundamental
biology connection between the WBCs and OOs in the human body.
Our results underscore the utility of the peripheral blood cells in
applying the functional genomics tools for discovering biomarkers
for other organs.
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