W) Check for updates

3 Turning the Phage on Treatment of Antimicrobial-Resistant

Pneumonia

Lower respiratory tract infections cause 79% of all infectious disease
deaths in the United States each year (1). Many of these pneumonia
deaths are from community-acquired pneumonia or severe viral
pneumonia, but hospital-acquired pneumonia (HAP), including
ventilator-associated pneumonia (VAP), continues to play a major
role. Sixty-four percent of the infections being treated in the ICU
on any single day are pneumonia (2).

The development of multidrug-resistant, extremely drug-
resistant, and pandrug-resistant bacterial pathogens is forcing changes
in the manual of nosocomial pneumonia treatment. For decades, the
backbone of antibiotic treatment for serious gram-negative
pneumonia has been a B-lactam (penicillins, cephalosporins, or
carbapenems). Of particular concern with regard to antimicrobial-
resistant (AMR) pneumonia are new and emerging carbapenem-
resistant pathogens, including Pseudomonas aeruginosa,
Acinetobacter spp., and carbapenem-resistant Enterobacteriaceae.

Previous “new” chapters in AMR pneumonia treatment have
really been edits of prior chapters—adding various B-lactamase
inhibitors to address specific resistance mechanisms (3, 4), optimizing
pharmacokinetic/pharmacodynamics to treat borderline resistance (5),
and even aerosolizing antibiotics to address adverse tissue penetration
issues (6). A rereading of truly early chapters has been needed
to correctly dose colistin and be reminded of its associated
nephrotoxicity (4). Not since linezolid came on the market has a truly
new class of antibiotics for HAP/VAP been introduced. The
availability of this class of drugs has resulted in substantially less
concern regarding the adequacy of treatment for methicillin-resistant
S. aureus (MRSA) HAP/VAP (7) and the rare vancomycin-resistant
Enterococcal pneumonia in immunocompromised patients.

Two complementary studies published in this issue of the Journal
suggest that we may be turning the page to a truly new chapter of AMR
pneumonia treatment. Both papers demonstrate the potential and the
limitations of lytic bacteriophage therapy for pneumonia owing to AMR
pathogens. In contrast to the more common temperate phages, which
integrate into the host bacterial chromosome as prophages, lytic phages
are rapidly bactericidal. In this issue of the Journal, Prazak and colleagues
(pp. 1126-1133) present a comprehensive evaluation of the benefit of an
intravenous cocktail of four bacteriophages in a mouse MRSA
pneumonia model (8). They demonstrate that the phage cocktail was
equivalent to treatment with teicoplanin, a glycopeptide equivalent to
vancomycin. Unfortunately, neither additive nor synergistic effects of
combination antibiotic and phage therapy were demonstrated. In
contrast to the disappointing results of the animal study, Maddocks and
colleagues (pp. 1179-1181) report a case of multilobar cavitary extremely
drug-resistant Pseudomonas VAP, complicated by an infected
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bronchopleurocutaneous fistula, that responded dramatically to both
intravenous and aerosol treatment with a customized four-phage cocktail
(9). Not only did the patient respond clinically, but repeat sampling
could not detect any further P. aeruginosa. A beneficial response of this
degree is virtually unknown with conventional antibiotic treatment.

Some would claim that phage therapy is the oldest chapter in the
treatment of bacterial infections, dating back to work during the
preantibiotic era in Russia. However, research at that time was never
challenged by AMR pathogens, and antibiotic therapy rightly eclipsed
phage therapy because it showed equal or greater efficacy and was
substantially easier to administer, as was shown in the mouse model (8).
Conversely, phage involvement in human bacterial pneumonia has likely
been occurring occultly for years. Shotgun metagenomic sequencing of
BAL fluid from a culture-positive pneumonia occasionally reveals lytic
bacteriophages (10). The occult presence of bacteriophages may explain
some of the variable response to antibiotic treatment in AMR HAP/VAP.

The challenges of phage therapy for AMR pneumonia are not
insignificant. A great advantage of phage therapy is its high specificity;
however, this approach requires a more accurate etiologic diagnosis than is
currently used for broad-spectrum antibiotics. Even a clear-cut pneumonia
diagnosis may be required, as Prazak and colleagues found that phages did
not appear in the lung without the presence of pneumonia, and instead were
cleared by the spleen (8). Whether tracheal colonization or even purulent
tracheobronchitis would respond to phage therapy is questionable.

Although they are generally specific, some S. aureus
bacteriophages can also infect other gram-positive bacteria,
including other staphylococci and streptococci. Because streptococci
are a common component of the normal lung and upper-respiratory
microbiomes (11), the effect of a large therapeutic inoculum of an S.
aureus lytic phage on the lung microbiome is currently unclear and a
potential limitation of therapy. However, a Pseudomonas phage
poses substantially less concern in this regard.

Just as with antibiotics, susceptibility testing is required for
phage therapy. This is currently only available at specialized centers
and requires growth of the actual pathogen before submission to
these centers. Phage therapy will take longer than the current delay
in antibiotic susceptibilities and will not be immediately available for
patients with HAP/VAP who are in septic shock. Logistics will
therefore be a major limitation for early adoption.

Concerns about the development of resistance over time with
monotherapy led to the use of multiphage cocktails in both studies. A
multiphage approach clearly limits this development of resistance (see
Figure E1 in the online supplement of Reference 8). Bacteria have a
repertoire of antiphage responses that likely exceeds that of
antibacterial strategies, given the much longer exposure in nature. The
emergence of resistance was found to be a cause of treatment failure in
a wound infection study, one of the very few randomized controlled
trials of phage treatment to be conducted in humans (12). The
bacterial clearance in the Pseudomonas pneumonia case despite the
likely high bacterial load is therefore that much more impressive (9).

The optimal method for delivering phage therapy for
pneumonia is also unclear. Addition of aerosolized phages resulted
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in dramatic bacterial clearance in the Pseudomonas case (9), but
intravenous-only administration did not result in eradication of MRSA in
the experimental model (8). A higher lung necrosis score was associated
with nonsurvival (see Figure E3 in Reference 8), raising concerns about
intravenous delivery of both phage and antibiotic to the lumen of cavitary
pneumonia. Phage therapy is not neutral for the host: phages may
transcytose host cells and stimulate Toll-like receptor 9 and other pattern
recognition molecules (13). Generally, phage infusions or mucosal
applications are well tolerated without an inflammatory signal, as was
seen in the mouse model (8). More importantly, neutralizing antibodies
are common in individuals exposed to naturally occurring phages, and
may blunt the benefit of intravenous therapeutic phage therapy. Because
aerosolization is less likely to induce neutralizing antiphage antibodies
and less likely to be blunted by preformed antibodies, this route may be
preferred for pneumonia treatment in the critically ill.

Validation of the benefit of routine phage treatment of AMR
pneumonia requires much more work. Only further data will
demonstrate whether phage therapy is truly a new chapter in
pneumonia treatment or just another interesting footnote.
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3 Another Warning Sign: High Nicotine Content in Electronic Cigarettes
Disrupts Mucociliary Clearance, the Essential Defense Mechanism of

the Lung

Electronic cigarette (e-cigarette) usage has become popular at an
alarming rate and continues to rise, especially among younger
populations in the United States. In 2018 alone, there was an ~40%
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increase in usage (from 12% to 21%) compared with 2017 among
high school students, according to a recent Centers for Disease
Control and Prevention report (1). Many incorrectly believe that
smoking e-cigarettes (vaping) is not harmful to health. The general
misconception by the public that “e-cigarettes are safe,” however,
has been challenged or overturned by many recent studies revealing
the association between e-cigarettes and adverse cardiovascular,
pulmonary, and systemic health effects.

As a nicotine delivery system, e-cigarette liquids typically
contain I) a vehicle (propylene glycol/vegetable glycerin [PG/VG]),
2) a chemical that gives an appealing flavor, and 3) various
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