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Abstract: The Canary Islands are a well known tourist destination with generally stable and clement
weather conditions. However, occasionally extreme weather conditions occur, which although very
unusual, may cause severe damage to the local economy. The ViMetRi-MAC EU funded project
has among its goals, managing climate-change-associated risks. The Spanish National Meteorology
Agency (AEMET) has a network of weather stations across the eight Canary Islands. Using data
from those stations, we propose a novel methodology for the prediction of maximum wind speed
in order to trigger an early alert for extreme weather conditions. The methodology proposed has
the added value of using an innovative kind of machine learning that is based on the data stream
mining paradigm. This type of machine learning system relies on two important features: models
are learned incrementally and adaptively. That means the learner tunes the models gradually and
endlessly as new observations are received and also modifies it when there is concept drift (statistical
instability), in the modeled phenomenon. The results presented seem to prove that this data stream
mining approach is a good fit for this kind of problem, clearly improving the results obtained with
the accumulative non-adaptive version of the methodology.

Keywords: short-term wind speed prediction; data stream mining; extreme weather forecasting;
adaptive learning; linear regression; sensor network; touristic destinations

1. Introduction

The Canary Islands are a world-class tourist destination for many reasons, namely their
accessibility from Europe, their European-standard services, and the hospitality of the locals after
decades of tourism being their main industry. According to the Canary Island Statistics Institute
(ISTAC), tourism makes up nearly 35% of all the economic activity in the Canary Islands.

Another crucial element for the attractiveness of this destination is the year-round temperate
climate. However, there are exceptions to this benevolent climate. There have been episodes of
extreme weather where, to some degree, the safety of the population and the local economy has been
compromised. Tropical storm Delta [1,2] in November 2005, for instance, cost a loss of up to 364 million
USD and at least 7 direct fatalities [3]. Over 225,000 residents experienced power outages and 12,000
lost telephone services. The peak gust recorded in the island of La Palma was 95 mph (152 km/h), and
in Tenerife the maximum gust was 90 mph (147 km/h).

According to [4], there is strong evidence of the link between climate change, especially
anthropogenic warming, and an increase in extreme rainfalls and the wind speed of tropical cyclones.
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A positive trend in the number of Atlantic tropical cyclones has been observed since 1990, although it
is not possible to directly extrapolate those results to the Canary Islands’ local conditions.

In addition, there is not a large corpus of research on climate change implications in the Canary
Islands. In [5] for instance, there is no clear evidence of an increase in extreme rainfall for the whole
archipelago as a consequence of climatic change. However, in [6], the authors found a clear, strong
correlation between extreme strong wind episodes for an area including both the Canary Islands and
the nearby archipelago of Cape Verde.

Therefore, it would seem desirable to improve the Canary Islands’ resilience to extreme weather;
one way to do this may be through early alert predictive modeling tools. This work presents a new
methodology for predicting maximum wind speed using a sensor network deployed in the Canary
Islands that consists of the 68 AEMET weather stations.

In recent years, big data and data science are permeating many research areas due to the accelerated
growth of data availability and the development of data warehousing architectures and data mining
methodologies. One of these fields is weather forecasting, which has been an active research topic in
recent years mainly because of its deep implications in the economy, safety, and the environment.

With regard to wind forecasting, many approaches have been designed based on traditional
machine learning algorithms, using techniques such as probabilistic modeling [7], decision trees [8],
or advanced deep learning [9], to name a few. Nevertheless, most of these weather data usually come
continuously in the form of high speed and high volume data streams. There are at least two reasons
why that traditional data mining is not an optimal fit to model such phenomena. When applying the
traditional off-line model learning paradigm, separating a training and testing data-set (sometimes
also a cross-validation data-set), huge amounts of data have to be collected for a long period of time,
assuming both the statistical stability of the phenomenon to be modeled and an infinite available
computing power (memory and CPU). This is not very realistic in most cases because that approach
does not seem capable of efficiently analyzing an increasing amount of data [10]. Thus, there is an
alternative, newer approach that we can call online machine learning or data stream mining, where
the model learning is incrementally performed using a prequential learning strategy [11].

The main objective of this paper is to share research done around the use of adaptive and
incremental machine learning strategies to predict the average maximum wind speed (VMAX10m)
in a 60 min horizon, in a way that is reliable and robust enough to cope with the diversity of the
geographical position of each station in the region. In order to do this, the predictive modeling task was
tackled through a data-stream-mining-based methodology, which means the models to be developed
are learned incrementally and can adapt to the stochastic instability of the process to be modeled,
in this case, maximum wind speed.

The present work is framed within the ViMetRi-MAC (“Sistema de vigilancia meteorológica para
el seguimiento de riesgos medioambientales”, is funded under Programa de Cooperación Territorial.
INTERREG V A España-Portugal. MAC 2014-2020) project. It is classified in Priority axis 3, the goal
of which is to improve the capacity to respond to possible natural risks that affect the Macaronesic
archipelagos in the North Atlantic Ocean Area, including Madeira, Azores, Cape Verde, and the Canary
Islands, with an emphasis on adaptation to climate change and prevention and risk management. The
main objective of ViMetRi-MAC is promote the development of public–private synergies to address
the risks linked to meteorological events potentially causing disasters. A system will be developed in
real time that facilitates the optimal management of catastrophes in terms of population and territory.

The rest of this paper will be organized as follows. In Section 2, a brief discussion is included
on the state-of-the-art regarding short-term wind speed prediction. In Section 3, a brief conceptual
introduction to Data Stream Mining is included, followed by Section 4, which gives a description of the
data-set used, together with a brief exploratory analysis of it. In Section 5, the proposed methodology
is described in detail, and in Section 6, the preliminary results obtained so far are shown. In Section 7,
the main results and contributions of this work are discussed. The conclusions and future work ideas
are finally shared in Section 8.
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2. State of the Art

Short-term wind speed prediction is a very active research field of special interest today when
climate change and the need for greenhouse gas emission reduction are of utmost importance for many
governments. For instance, in the European Union, the goals of the Europe 2020 strategy for smart,
sustainable, and inclusive growth include a 20% cut in greenhouse gas emissions with respect to 1990
levels, 20% of all EU energy production coming from renewable sources, and a 20% improvement in
energy efficiency [12].

An essential part of this is wind farming. Therefore, short-term wind speed prediction is an
important challenge, in particular regarding the optimization of the automatic control of wind turbines.
For instance, blade pitch control is essential for maintaining a given number of r.p.m. On a longer
time scale, wind speed predictions with a horizon of hours may help in the slow procedure of turning
turbines on and off [13].

For this task, there is an extensive corpus of literature with a focus on time series analysis: a single
variable is monitored across time and its seasonality, trend, and auto-correlation are learned to build
the best possible mathematical (analytical) model, typically trying to capture directly or indirectly the
probability distribution of wind speed. Much research has been carried out in this area. To name a
few, on the more classical analytical side, there are many autoregressive models such as [14] or those
using hidden Markov models (HMMs), as in [15]. In [14], autoregressive moving average process
(ARMA) and persistence models have been developed for forecasting wind speed in a 10-h horizon at
five different locations by transforming and standardizing the training time series. In [15], first- and
second-order discrete HMMs have been developed for forecasting wind power and have been applied
to real wind power data.

In the more recent machine learning realm, there is a large segment of literature where artificial
neural networks are the central methodology, such as [16,17], or [18]. In [16], Salcedo-Sanz et al.
presents a variation of the hybridization of the fifth-generation mesoscale model (MM5) using neural
networks for the prediction of short-term wind speed, applied to the hourly averaged wind speed at a
wind park. Their ultimate goal is to predict the total power production of the wind farm.

In [17], the authors share a comparative study on the use of adaptive linear element (ADALINE),
back propagation, and radial basis function for their application in 1-h-ahead wind speed forecasting.
Again, hourly mean wind speed was the prediction variable, using data from two sites in North Dakota.

Feature engineering and deep learning is used for predicting ultra-short-term wind speed in [18].
Their results seem to indicate that carefully selected deep neural networks outperform classical
neural networks.

Moreover, in recent works, advanced deep learning techniques based on recurrent neural
networks [9] and convolutional neural networks [19] are proposed for wind power forecasting and
for the forecasting of the concentration of suspended particles with a diameter equal to or less than
2.5 µm, respectively. In both cases, the experimental results showed that compared with the traditional
machine learning methods, the proposed systems obtained the best forecasting.

There are also support vector machine (SVM)-based works like [20], where they compare this
technique to the results obtained with a multilayer perceptron for mean daily wind speed prediction
in Madina, Saudi Arabia. Experiments seem to support the superiority of SVMs in this case.

Kalman filtering is also frequently used in several works such as [13] or [21]. Kalman filtering
was used in [13] to predict one-minute-average wind speeds for Stornoway in order to reduce the error
of the “persistence” forecast. In [21], the authors used Kalman filtering applied to the direct output of
other numerical models, correcting systematic errors.

Other, less common probabilistic techniques may be Bayesian networks like those used in [7,22],
decision trees as in [8,23], or hybrid methodologies like the one in [24], where the automatic feature
selection procedure is the central element.

In [7], an advanced technology of modeling dependence structures based on the regular vine
copula was introduced to the field of probabilistic wind power forecasting. The model obtained good
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performances in both complete and missing data cases, with the added value of describing forecast
conditions. In addition, in [22], a Bayesian time series forecasting model is proposed. One very
interesting element in Bayesian analysis that this work benefits from is the possibility of incorporating
domain expert knowledge into the models. The authors’ methodology incorporates high frequency
wind speeds collected from wind turbines and takes advantage of the concept of structural breaks.

In [8], an ensemble model based on random forests was used to predict wind energy. Authors
used the spatial average of the wind speed and the wind direction in addition to past power values as
inputs to the system. Results showed better forecasts than classical methods such as neural networks.
In addition, in [23], a hybrid between transfer learning and gradient boosting decision trees (GBDT) is
proposed for developing a wind power quantile regression model. Instance-based transfer learning is
a very appropriate method for the generalization of the models to different geographical sites.

A quite different approach is proposed in [24], where the researchers combine a Coral Reef
Optimization (CRO) algorithm with operators from the Harmony Search in order to select the best
possible meteorological attribute to train an Extreme learning machine (ELM) network.

In [25], the limitations of weather prediction models were studied. In particular, they focused
on the “lateral boundary conditions” of the Canary Islands in accounting for infrequent extratropical
storms such as Delta.

Without denying the merits of the works listed above, some of them quite sophisticated and
accurate, no works were found that focused on developing the wind speed models incrementally and
adaptively, as we propose in the present work. This seems to be an uncovered research niche since, as
explained in [26], wind speed is a very random process, both in time and space, and even with the
best state-of-the-art short-term wind speed models, the parameters fit for a particular location may not
work well at other locations with different probability distributions. In other words, these models are
not easily generalizable once trained.

It seems a logical next step to develop learning models that are robust and flexible enough to be
able to adapt to changing probability distributions. With the proposed methodology and the results
obtained using quite geographically diverse weather stations (Figure 1 and Table 1), we aim to show
that a different approach is possible through data stream mining, but at the cost of reviewing and
tweaking the existing methods to work in such online setups.

Figure 1. Agencia Estatal de Meteorología (AEMET) weather stations in the Canary Islands.
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Table 1. AEMET Weather Stations in the Canary Islands (ID code (IDEMA), location, and island).

IDEMA UBI ISLAND IDEMA UBI ISLAND

C018J TIAS-LAS VEGAS LANZAROTE C457I VICTORIA-DEPÓSITO MARRERO TENERIFE

C019V YAIZA-PLAYA BLANCA LANZAROTE C458A TACORONTE-A S.E.A. TENERIFE

C029O LANZAROTE/AEROPUERTO LANZAROTE C459Z PUERTO DE LA CRUZ TENERIFE

C038N HARÍA-CEMENTERIO LANZAROTE C469N SILOS-DEPURADORA TENERIFE

C048W TINAJO-LOS DOLORES LANZAROTE C611E SAN MATEO (CORRAL DE LOS JUNCOS) GRAN CANARIA

C117A PUNTAGORDA LA PALMA C612F TEJEDA-CRUZ DE TEJEDA GRAN CANARIA

C117Z TIJARAFE-MIRADOR TIME LA PALMA C614H TEJEDA CASCO GRAN CANARIA

C126A EL PASO-C.F. LA PALMA C619X AGAETE-CASCO GRAN CANARIA

C129V FUENCALIENTE-SALINAS LA PALMA C619Y LA ALDEA DE SAN NICOLAS GRAN CANARIA

C129Z TAZACORTE LA PALMA C623I SAN BARTOLOME TIRAJANA (CUEVAS DEL PINAR) GRAN CANARIA

C139E LA PALMA/AEROPUERTO LA PALMA C625O SAN BARTOLOME TIRAJANA-LOMO PEDRO ALFONSO GRAN CANARIA

C148F SAUCES-S.ANDRÉS-BALSA ADEYAHAME LA PALMA C628B SAN NICOLAS T.-TASARTE/COPARLITA GRAN CANARIA

C229J PÁJARA-PUERTO MORRO JABLE FUERTEVENTURA C629Q MOGAN (PUERTO RICO) GRAN CANARIA

C239N TUINEJE-PUERTO GRAN TARAJAL FUERTEVENTURA C629X PUERTO DE MOGÁN GRAN CANARIA

C248E ANTIGUA-EL CARBÓN FUERTEVENTURA C635B SAN BARTOLOME TIRAJANA-H.LAS TIRAJANAS GRAN CANARIA

C249I FUERTEVENTURA/AEROPUERTO FUERTEVENTURA C639M SAN BARTOLOME TIRAJANA-C.INSULAR TURISMO GRAN CANARIA

C258K LA OLIVA (CARRETERA DEL COTILLO) FUERTEVENTURA C639U SAN BARTOLOME TIRAJANA (EL MATORRAL) GRAN CANARIA

C259X LA OLIVA-PUERTO DE CORRALEJO FUERTEVENTURA C648C AGÜIMES-EL MILANO GRAN CANARIA

C314Z VALLEHERMOSO-ALTO IGUALERO LA GOMERA C648N TELDE-CENTRO FORESTAL DORAMAS GRAN CANARIA

C317B AGULO-JUEGO BOLAS LA GOMERA C649I LAS PALMAS DE GRAN CANARIA/GANDO GRAN CANARIA

C319W VALLEHERMOSO-DAMA LA GOMERA C649R TELDE-MELENARA GRAN CANARIA

C328W HERMIGUA-DEPÓSITO AYUNTAMIENTO LA GOMERA C656V TEROR-OSORIO GRAN CANARIA

C329Z SAN SEBASTIÁN DE LA GOMERA LA GOMERA C658X LAS PALMAS G.C.-TAFIRA/ZURBARÁN GRAN CANARIA

C406G CAÑADAS PARADOR TENERIFE C659H LAS PALMAS G.C. SAN CRISTÓBAL GRAN CANARIA

C419X ADEJE-CALDERA B TENERIFE C659M LAS PALMAS DE GC. PLAZA DE LA FERIA GRAN CANARIA

C428T ARICO-DEPURADORA LA DEGOLLADA TENERIFE C665T VALLESECO GRAN CANARIA

C429I TENERIFE/SUR TENERIFE C668V AGAETE - SUERTE ALTA GRAN CANARIA

C430E IZAÑA TENERIFE C669B ARUCAS-BAÑADEROS GRAN CANARIA

C438N CANDELARIA-DEPOSITO CUEVECITAS TENERIFE C689E MASPALOMAS GRAN CANARIA

C439J TENERIFE-GÜIMAR TENERIFE C839X TEGUISE LA GRACIOSA-HELIPUERTO LA GRACIOSA

C446G LAS MERCEDES-LLANO LOS LOROS TENERIFE C916Q PINAR-DEPÓSITO EL HIERRO

C447A TENERIFE/LOS RODEOS TENERIFE C925F SAN ANDRÉS-DEPÓSITO CABILDO EL HIERRO

C449C SANTA CRUZ DE TENERIFE TENERIFE C929I EL HIERRO/AEROPUERTO EL HIERRO

C449F ANAGA-COL. REP. ARGENTINA TENERIFE C939T SABINOSA-BALNEARIO EL HIERRO

3. Data Stream Mining

We are undergoing social and economic change driven by data. The availability of data in every
aspect of our lives has become a gargantuan source of possibilities, and great efforts are put into how
to automatically extract knowledge from them. The exponential acceleration of data production is
driven mainly by the pervasiveness of computing (i.e., personal computing devices), the deployment
of sensor networks, and global hyper-connectivity. It is the so-called Internet of Everything (IoE, [27]),
and it yields big data in the 5 V’s sense: volume, velocity, variety, veracity, and value, as enunciated
in [28,29].

When it comes down to volume and velocity in particular, it is clear there is a big bottleneck ahead.
It is becoming increasingly impractical to store all the produced data in order to extract knowledge
from it at a later date. New online methodologies need to be developed. A whole new realm of
machine learning literature needs to be developed in order to build models in real time capable of
extracting knowledge as new data observations are arriving in an incremental and adaptive way.

Data stream mining [30,31], this new dynamic approach to data mining, is the natural evolution
of machine learning and data mining under the pressure of big data scales and more importantly,
the obsolescence of the concepts modeled during the data acquisition process. This new approach
has many advantages like contention in the required computational resources, or reduced lag in the
learning and execution of the predictive models.
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In data stream mining, a central concept explaining its very need is concept drift [32,33]. Concept
drift is defined as a change in the probability distribution of the modeled variable in the data stream
received. More formally, concept drift between time point t and time point t + 1 happens when the
inequality in Equation (1) is true.

∃t : pt(X, y) 6= pt+1(X, y) (1)

In Equation (1), p0 and p1 denote the joint distribution at times t and t + 1, respectively, between
the set of input variables X and the target variable y.

In other words, there is concept drift when there is stochastic non-stationarity in the phenomenon
that is being modeled. Hence, concept drift can be detected either by direct statistical methods (mean,
variance, and auto-covariance) or by indirect practical methods, like observing statistically significant
worsening in the performance of a previously trained model.

4. Data-Set Used and Exploratory Analysis

The data-set used to apply the proposed methodology has been obtained through the
ViMetRi-MAC project, provided by the Spanish public agency AEMET (Agencia Estatal de
Meteorología). It is a proprietary data-set, and it is not possible to redistribute it. It includes the
variables measured by 68 weather stations spread across the Canary Islands as shown in Figure 1. Each
station is equipped with one of the three following equivalent platforms, with firmware customized
by AEMET:

• Datalogger DLx-MET
• Vaisala HydroMet System MAWS301
• SEAC EMA55

The observations used for this work were selected in a period of time from 12:10:00 on 26 April
2018 to 11:50:00 on 13 December 2018 local time, at a 10-min sampling rate. In total, 61,057,225
observations were used for the present study.

The data used are from a proprietary data set belonging to AEMET, facilitated within the
ViMetRi-MAC project. The data were downloaded from their servers in files per day studied. Each
weather station was equipped to compile several variables, such as max wind speed, average wind
speed, temperature, humidity, precipitation, atmospheric pressure, etc.

Table 1 shows the position, latitude and longitude coordinates, and ID code (IDEMA) of each
weather station. The Canary Islands (Spain) are a group of eight small islands (Gran Canaria, Tenerife,
La Palma, La Gomera, El Hierro, Fuerteventura, Lanzarote, and La Graciosa) situated opposite southern
Morocco, in the bounding box 29◦29′08.4”N, 13◦22′18.8”W and 27◦43′21.7”N , 18◦11′34.8”W. The
population of the islands is 2,127,685, 42.5% of which is located in Gran Canaria and 39.8% in Tenerife,
according to ISTAC. The main economic activity of the islands is tourism. In general, there are 24,368
companies established in Gran Canaria, 27,881 in Tenerife, and 12,135 in the other islands.

The variable used for wind forecasting was VMAX10m, which is the maximum speed of
wind (m/s). In Figure 2 is represented both VMAX10m and VV10m, which is the average wind
speed, both smoothed across the sampled period using a generalized additive model (GAM, [34])
provided by the ggplot2 library [35].
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Figure 2. Smoothed (using GAM) evolution of VMAX10m (Maximum wind speed in red, upper part)
and VV10m (averaged wind speed in blue, lower part) during the sampled period.

In the preliminary studies carried out with this data-set, by far the most important explanatory
variable for the current maximum wind speed was the previous maximum wind speed. In other words,
VMAX10m presented a very high auto-correlation level, which motivated using just that variable and
previous instances of the same variable as independent variables of the proposed model. However,
adding other variables to the model cannot be ruled out in order to improve its efficiency in a future
expansion of this research.

In Figure 3 can be seen that there is a clear northern component for winds in the Canary Islands,
known by the scientific community as “trade wind” for its historical implications in the Spanish and
Portuguese trade with Central and South America during and after the 16th century. That figure
considers only the windiest month in 2018, which was July, for each island. This image is shared to
show that even when there is a predominance of northern winds in July, the wind roses for the eight
islands are quite different. According to [36,37], this archipelago presents numerous micro-climates.
Therefore, a model trained to predict wind has to be generalizable.
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Figure 3. VMAX10m wind roses for each island in July.

5. Methodology

In this research, a data stream mining methodology has been developed to predict maximum
wind speed (VMAX10m) in 68 weather stations in the Canary Islands, with a time horizon of 60 min.
A classic regression method, the linear regression with gradient descent, has been used as a parameter
learning technique, but with modifications so that it can operate in an adaptive and incremental way.

The adaptive learning proposed below is based on the “prequential” paradigm [11]. Instead of
using the classical machine (off-line) learning approach of two independent testing and training sets,
in a prequential setup, the model is firstly evaluated as new observations arrive, and then re-trained
with those new observations.

At this first stage of research, we have picked linear regression as a base model for the maximum
wind speed prediction for two reasons. Firstly, the combination of linear regression with a learner based
on gradient descent is very well known, as is its robustness. Its behavior can be easily understood and
compared to other methodologies. Therefore, the modifications applied to this methodology to make
it incremental and adaptable may be understood by any average reader with basic training in machine
learning. Due to the lack of literature on the use of data stream mining for this application, a baseline
study is needed using a very classic methodology such as linear regression and gradient descent.

The second reason is more technical. The absence of recurrence of these algorithms make them
suitable for observation-based learning, and therefore easily adaptable to online training.

However, it is evident that wind speed prediction is not a linear phenomenon, and we confirm
that hypothesis in a coefficient of determination analysis we have developed as part of the experiments
associated to this research. The adaptability of the proposed methodology copes to some degree with
the lack of linearity of the phenomenon. But, in a future stage of this research, other nonlinear base
models will be adapted and tested.

The model is learned gradually as new batches of data come, so the linear regression equation
parameters are modified over the modifications of previous batches of data. The forgetting strategy is
implemented in two different elements. Firstly, the window size of previous instances of the VMAX10m
(the dimension of the linear regression coefficient vector) is controlled. Secondly, the learning rate
of the Gradient Descent algorithm is adaptively altered. Let us first consider linear regression as a
modeling framework for the prediction of wind as a linear combination of previous instances of the
variable VMAX10m in each weather station.
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5.1. Linear Regression

Let it be assumed that there is a data-set {yi, xi1, . . . , xip}n
i=1, where yi means the i-th observation

of the dependent variable (to be predicted) and the respective i-th occurrence of all the p independent
variables Xi.

Let it be assumed there is also a vector Θ containing p + 1 values.
Then, a linear regression model can be expressed as follows:

yi = θ01 + θ1xi1 + θ2xi2 + . . . + θpxip + εi, i = 1, . . . , n, (2)

ε being the noise, disturbance, or error term, or in other words, everything that cannot be explained by
the linear regression model itself.

In a matrix formulation: Y = XΘ + ε.
The learning process for a linear regression model consists of the minimization of ε. The

conventional choice for the cost function is the mean squared error, which can be formulated as follows:

HΘ = XTΘ, X = 1, x1, x2, . . . , xm (3)

J(Θ) =
1

2m ∑ (HΘ −Y)2 =
1

2m

m

∑
i=1

(εi)
2, (4)

m being the number of training examples.
Gradient Descent or Steepest Descent is a classical method for the minimization of a cost function.

To be precise, it is a first-order iterative optimization algorithm, commonly used for fitting the Θ
parameters in a linear regression function by minimizing J. Essentially, it calculates the steepest
direction, or gradient, of the cost function and adjusts the model proportionally to it. In this work,
Gradient Descent is used to update θ parameters as is indicated in Equation (5).

θj := θj − α
δ

δθj
J(Θ) (5)

In other words, each θi parameter is updated in inverse proportion to the partial derivative of
the J (cost) function with respect to each θi. In this equation, α is the learning rate that calibrates the
dimension of the step made in the direction of the gradient in the cost function J surface. Simply put, α

weights how steepness of the cost function J for each dimension i of Θ translates into a change in the
respective θi.

This α parameter is typically a fixed value. In the proposed methodology, this α parameter is
incremented or decremented depending on the evolution of the cost function in every execution of the
gradient descent routine.

5.2. Adaptive Learning Strategy—Data-Stream-Mining-Based

The first part of our proposed adaptive learning methodology consists of having a variable
number of θ parameters or previous instances considered in the linear regression model. When concept
drift is indirectly detected by the degradation observed in the performance of the current model, the
past observations window considered for the learning of the linear regression model is gradually
reduced. The oldest element in that window is simply cut off, disabling that last parameter of the Θ
vector when the cost (J) is incremented in a statistically significant amount (greater than 5%). On the
other hand, when stability is detected by the improvement of the performance of the model as new
observations come, one by one, more parameters or past instances of VMAX10m are added again (with
the respective θi parameter initialized to 0).
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The independent or explanatory variables considered in the linear regression trained model
are simply the past values of the response or dependent variable to be predicted (maximum wind,
VMAX10m) up to a maximum window of NMax previous values.

This means that in Equation (2), the explanatory variables matrix X is defined as follows for
each station:

X = {1, VMAX10mt−H , VMAX10mt−(H+p), VMAX10mt−(H+2p), . . . , VMAX10mt−(H+NMax×p)}, (6)

where H is the prediction horizon, p is the sampling time period, and NMax is the maximum number
of previous epochs considered.

The second part of the proposed adaptive learning strategy consists of reducing the α learning
rate parameter in Equation (5) when there is an increment of the cost function J. In every run of the
gradient descent routine, the α parameter is reduced by a very small factor. Likewise, when the cost J
is reduced, α is gradually incremented.

Figure 4 shows the learning curve corresponding to the first batch of data for weather station
ID “C619Y”. It can clearly be seen how different values of α mean different behaviors of the gradient
descent algorithms. Small values of α mean a slow convergence, even too slow to converge in a timely
manner. And larger values may mean too large jumps in the J space, even preventing convergence in
some cases.

Algorithm 1 describes our adaptive incremental linear regression proposal based on
Gradient Descent.

Figure 4. Learning curve of Gradient Descent applied to station ID C619Y during the first batch,
varying α.
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Algorithm 1: Adaptive incremental linear regression gradient descent learner

W (window size) is initialized max_W;
while TRUE do

Data: A new batch of data is loaded (Xb, Yb)

Result: Θ is updated (pruned by zero padding, if W is reduced)
initialization;
J = Calculate_Cost(Xb, Yb, Θ, α) for the batch is calculated;
if J>J0 × 1.05 then

if W > min_W then
W = W − 1

else
if W < max_W then

W = W + 1

while Convergence condition is not reached do
Θ = Update_Θ_Gradient_Descent(Θ, Xb, Yb, α)

if J > J−1 then
α = α× (1− fα)

else
α = α× (1 + fα)

To reduce the size of the window W, firstly J0 is calculated simply by averaging a number (WJ) of
previous J values. To be a bit more conservative, the current J is only considered significantly larger
than the averaged J0 if it is 5% larger.

Regarding the learning rate α, the proposed method is to reduce it by a small factor (1− fα) if the
final cost J at the end of the Gradient Descent algorithm is larger than the J obtained in the previous
batch, and likewise, to increment it by a small proportion (1 + fα) if the cost has been reduced or stays
the same, fα being a small number between 0 and 1. That way, when there is a small deterioration of
the performance of the model, the Gradient Descent algorithm will take slightly smaller steps, and
when it seems like the model is improving batch after batch, α is allowed to grow slightly, to go further
into convergence during the gradient descent run.

The convergence condition of the gradient descent routine is when the end of the batch is reached
or the cost cannot be smaller, then the averaged previous observation-wise cost or the maximum
number of iterations is reached.

5.3. Accumulative Strategy

As a way of comparing our results with the strategy based on data stream an alternative
fixed approach has been designed. The forgetting and adaptation mechanisms are suppressed by
maintaining fixed the window of past instances of the VMAX10m variable and the learning rate α

value, ( fα = 0).
In other words, this strategy does not consider concept drift, but instead it learns the regression

model incrementally by tuning the Θ parameters with all the new observations that arrive continuously.

6. Experimental Design and Results

As explained above, for the sake of the application of this methodology, the used observations
were sampled from 12:10:00 on 26 April 2018 to 11:50:00 on 13 December 2018, Canary Island local
time, at a 10-min sampling rate, gathering 61,057,225 observations in total.

The initial W size was set at 20, meaning 20 previous values of VMAX10m, ranging from 60, 70,
80 up to 250 min before, sampled every 10 min. The minimum window size was 3 and the maximum
was 20 time lags. This means from 30 min to up to 4 h and 10 min of past VMAX10m samples would
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be used to predict 60 min into the future. When concept drift is indirectly detected, the number of
previous instances is reduced. When there is stability, W is expanded to a maximum of 20.

The initial α (learning rate) value was set to 1e−4. The batch size was 100 observations. The
maximum number of iterations of the gradient descent algorithm (if convergence was not achieved
earlier) was set to 1000. J0 is calculated by averaging 10 previous J values (WJ = 10). Finally, the fα

value is 0.01 (1 percent) for increasing or reducing the value of α during the gradient descent run.
The results of the application of the methodology based on data stream (“adaptive”) versus the

linear “accumulative” method are presented. Both strategies were explained in the previous section.
In the table depicted in Figure 5, the average cost (mean squared error, MSE) values obtained with
both methodologies across the entire data-set are listed. The adaptive strategy was always superior
to the accumulative strategy, as can be observed in the “delta” column (Accumulative Averaged
Cost—Adaptive Averaged Cost).

In Figure 6, the same evidence is observed in a more visual way. Further very important evidence
to point out in this analysis is about extreme cost values obtained for the accumulative strategy
in comparison to the adaptive strategy. This seems to confirm the hypothesis that the adaptive
methodology is able to cope much faster with concept changes than the accumulative methodology,
which carries a much bigger inertia of the previous concept in its model.

Figure 5. Mean accumulative and adaptive cost ((m/s)2) for weather stations (estimated values vs.
observed values for the two strategies) and difference between the two.
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Figure 6. Cost (mean squared error (MSE), (m/s)2) box-plot comparison between both methods for
each weather station.

For a more detailed understanding of the proposed methodology, the best and worst cases’ results
are shown in Figures 7 and 8, respectively. In the lower part of the graphs, the evolution of the cost
(MSE) value across time can seen for both methodologies. The purple (upper) curve of both Figures 7
and 8 is the resulting cost value for the accumulative strategy, and in the black dotted (lower) curve,
the cost value evolution for the adaptive strategy is seen.
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Figure 7. Weather station ID C619Y: Best performance case for the adaptive method. In the lower part,
cost (MSE, (m/s)2) obtained with the adaptive strategy (black) and with the accumulative strategy
(blue). In the upper part, window size (red) and learning rate (green), both for the adaptive strategy.

Figure 8. Weather station ID C457I: Worst performance case for the adaptive method. In the lower part,
cost (MSE, (m/s)2) obtained with the adaptive strategy (black) and with the accumulative strategy
(blue). In the upper part, window size (red) and learning rate (green), both for the adaptive strategy.

In the upper part of the two figures (Figures 7 and 8), there are two curves relating to the adaptive
strategy methodology. Here, the evolution of the window W of previous instances of VMAX10m size
is represented (in red, thicker), going from 3 previous instances to a maximum of 20 previous instances.
Finally, the top part shows how the α value evolves across time (green line made up of triangles).
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Note that for the graph in Figure 7, the extreme values of the accumulative strategy cost
representation have been pruned for a clearer graph. See the box-plot of the weather station “C619Y”
in Figure 6 for the actual range of the extreme cost calculations for that station.

In both extreme cases, it is clear how the adaptive strategy contains the mean squared error of the
regression function.

In Figure 9a, the distribution of values of VMAX10m for the entire studied period is represented.
In that figure, the stronger wind speed situations have been analyzed separately, more specifically
the episodes of VMAX10m above the third quartile plus 1.5 times the interquantile range and those
above the third quartile plus 3 times the interquantile range (Q3 + 1.5× IQR and Q3 + 3× IQR). For
the data studied Q3 = 8.5 m/s and IQR = 5.2 m/s. Therefore, the two thresholds set for this analysis
were VMAX10m above 16.3 m/s (36.5 mph, 58.7 Km/h) and VMAX10m above 24.1 m/s (53.91 mph,
86.76 km/h).

In Figure 9b, the box-plot representation of the cost obtained across all of the weather stations
during the outlier VMAX10m speed episodes is shown. In Figure 10, the considered VMAX10m outlier
events are represented for the whole period studied. The episodes of maximum wind speed above the
first threshold represent 6.39% of all observations, while the episodes of maximum wind speed above
24.1 m/s account for 0.21%.

Figure 11 shows the boxplot representation of the coefficient of determination Equation (7)
calculated through the study period for both models. r2 is a statistic measure that gives information
about the goodness of fit of a model. It tells how much of the variance of the response variable
(VMAX10m in our case) can be explained by the model, or how well the regression model approximates
new observations.

r2 =
∑(ŷi − y)2

∑(yi − y)2 (7)

(a) VMAX10m (m/s) values
distribution.

Figure 9. Cont.
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(b) Outliers cost (MSE (m/s)2) representation for each weather
station, VMax10m > Q3 + 1.5 × IQR (16.3 m/s , 36.5 mph ,
58.7 Km/h), and VMax10m > Q3 + 3.0× IQR (24.1 m/s, 53.91 mph,
86.76 km/h).

Figure 9. Outliers analysis (VMAX10m > 16.3 m/s).

Figure 10. Outliers cost (MSE (m/s)2) representation for each weather station,
VMax10m > Q3 + 1.5× IQR (16.3 m/s , 36.5 mph , 58.7 Km/h), and VMax10m > Q3 + 3.0× IQR
(24.1 m/s, 53.91 mph, 86.76 Km/h).
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Figure 11. Coefficient of determination (r2) box-plot comparison between both methods for each
weather station.
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7. Results Discussion

In Section 6, the results of the application of the two proposed strategies, namely accumulative
and adaptive, were shown. By the inspection of the average cost, calculated as the MSE of the
estimated VMAX10m versus the actual VMAX10m across the entire period of study in Figure 5, it
can be seen that for every case (every weather station), the obtained cost is always larger (worse)
when using the accumulative strategy. This means that, even acknowledging that the results are more
significant for some stations than for others, in every case, the adaptive regression model outperforms
the accumulative strategy.

Figure 6 shows the cost distribution across the entire period of study. This figure is added mainly
to show the distribution of outliers or extreme values of cost. Here, apart from showing the better
performance of the adaptive strategy for every station, it is clear that there are much larger peaks or
cost for the accumulative strategy than for the adaptive one, again for every station. This seems to be
related to concept change episodes, where the previously learned concept was weighted too much
in the model, negatively affecting the current concept prediction. The adaptive strategy seems more
reactive to those concept changes.

If Figures 7 and 8 are observed with attention, the concept changes can be indirectly detected by
noting the rapid reduction of the window size (in red). In those episodes, it becomes apparent that the
model built with the accumulative strategy (in blue) has a large peak in the calculated cost. However,
the adaptive strategy has a much more contained behavior, seemingly due to its adaptation to the new
concept to be modeled.

In Figures 9a,b, and 10, the focus is placed on how the two compared strategies behave in the upper
part of the VMAX10m range. Specifically, the events of VMAX10m above two defined threshold levels
(Q3 + 1.5× IQR and Q3 + 1.5× IQR) were selected, where there were maximum wind speeds above
16.3 m/s and 24.1 m/s. Everything seems to support the hypothesis that in the (infrequent) extreme
wind speed conditions that this research is focusing on, again the adaptive strategy outperforms
the accumulative one (Figure 9b). Looking at Figure 10, it would be possible to carry out a more
detailed analysis establishing a different threshold for each station since there are obviously more
frequent strong winds at different weather stations. However, the authors understand that the results
obtained with this global threshold sufficiently support the conclusion that the adaptive strategy also
outperforms the accumulative strategy in high wind speed regimes.

Finally, from Figure 11, a very important conclusion can be inferred that may serve as motivation
for future research. A coefficient of determination above 0.6 is conventionally taken as a threshold to
consider that a model explains a sufficient amount of the variance of independent variables. In the
experiments carried out, however, none of the accumulative or adaptive strategies can be considered
as sufficiently fit for all weather stations. Moreover, none of the strategies outperform the other in
that regard. The conclusion is that, even when there is evidence showing a clear improvement in
performance using an adaptive strategy, the bias of a linear regression model prevents the obtained
models from explaining a sufficient portion of the variance observed. This provides a reason to extend
the present research to consider adapting other nonlinear base models to work adaptively, as explained
in Section 8.2.

8. Concluding Remarks and Future Work

8.1. Conclusions

In this paper, a new methodology for the prediction of maximum wind speed is proposed. This
methodology uses the information of 68 weather stations spread across the Canary Islands. Our
proposed methodology is special in the sense that it relies on a new style of machine learning called
data stream mining, in which models are built incrementally and can be adapted to changes in the
stochastic statistical distribution of the variable to be modeled.
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The proposed adaptive methodology results are compared to the results obtained using a classical
setup (without adaptation) of linear regression and gradient descent where only the accumulation of
knowledge is considered. In other words, every new batch of observations triggers another round
of gradient descent learning, re-tuning the Θ parameters continuously. This incremental approach is
interesting but lacks a very important element from the data stream mining point of view because it
does not have any forgetting strategy if concept drift occurs.

The results shown in Section 6 and discussed in Section 7 seem to confirm how our proposed
adaptive learning strategy copes much better with the variation of the concept than the accumulative
strategy. Moreover, the model learned seems to be very generalizable, since it seems to work well
for the geographically dispersed network of weather stations. According to [26], transfer learning
is critical for this kind of modeling task, so wind speed models can be applied to different scenarios
once trained.

8.2. Future Research

As for future work, the plan is to compare this strategy with some other classical time series
forecasting methodologies (for example, from the family of ARIMA models, support vector machines,
or Kalman-filtering-based methods) that will need to be tweaked as in the present analysis with linear
regression and gradient descent, in order to operate in an online setup for a fair comparison. In
addition, within the realm of deep learning, other state-of-the-art machine learning techniques like
recurrent neural networks should be a good comparison point with our proposed methodology. But
in that case, the algorithmic modifications required to make them operative in an online setup in
an incremental learning fashion will prove even harder due to the convolutional nature of most of
them (loopings). It would also be possible to expand the explanatory variables used, accounting, for
instance, for the altitude, the cloud cover, or how frequent strong winds are at each particular weather
station, and then fusing in other directly or indirectly weather-related signals coming from other kinds
of sensors, like the received signal strength (RSS).

Another line of action will be to use a different base model for the predictive modeling. As shown
in the r2 analysis performed, discussed in Section 7, the maximum wind speed is not a linear
phenomenon to model. A linear regression model with a gradient descent strategy has been used
mainly as a baseline starting point, since that combination is a very well-known and easy to understand
approach. The flexible modeling of the proposed methodology, using the incremental and adaptable
strategy, compensates the linearity of these models. However, there are other regression models,
for example support-vector-machine-based regression, which can cope with the nonlinearity of the
modeled phenomenon. The authors plan to extend this research by tweaking the learning routines of
these methodologies so that they become adaptable and incremental.

Finally, the authors are also considering the comparison of their results to those that can be
obtained from other models and weather forecasting services, such as the one provided by the
European Centre for Medium-Range Weather Forecasts (ECMWF).
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Abbreviations

The following abbreviations are used in this manuscript:

EU European Union
AEMET Agencia Estatal de Meteorología
r.p.m. Revolutions per minute
IoE Internet of Everything
VMAX10m Maximum wind speed measured with a 10-min sampling period
MSE Mean squared error
ISTAC Canary Island Statistics Institute
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