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Mitigating Viral Dispersion during Respiratory Support Procedures in
the ICU

Over the past year, the world has been in the grip of a pandemic
caused by the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2). The coronavirus is causing an ever-increasing
number of infections globally and to date is responsible for infection
in more than 124 million individuals and more than 2.73 million
deaths. SARS-CoV-2 infection can cause serious hypoxemia
that requires hospitalization in approximately 20% of infected
individuals. Depending on the severity of their illness, 10–25% of
hospitalized patients need ICU admission and ventilator assistance.

Various modalities are employed for the treatment of patients
hospitalized with coronavirus disease (COVID-19), the disease
caused by SARS-CoV-2. Besides antiviral drugs, immune-based
therapy, monoclonal antibodies, and convalescent plasma, prone
positioning and supplemental oxygen are essential adjunctive
measures for relief of hypoxemia. An assortment of interfaces for
delivery of supplemental oxygen, including nasal prongs, facemasks

of various types, high-flow nasal oxygen (HFNO), or oxygen
supplementation with noninvasive ventilation (NIV), are routinely
used in critically ill patients.

Aerosols are generated during many respiratory support
procedures. Among the aerosol-generating procedures (AGPs)
identified by the CDC (1) and the World Health Organization (2) in
the ICU, endotracheal intubation, open suctioning, tracheotomy,
manual ventilation, and bronchoscopy stimulate coughing and
deep respirations and could increase production of bioaerosols
containing pathogens from infectious patients. Other AGPs
disperse aerosols to the environment (e.g., oxygen administration
with nasal prongs or facemasks, HFNO, and NIV) (3). The
dispersion effects of the virus in ambient air rely on the amount of
virus production, particle size of patient-generated droplets, and
the speed and distance of transportation (3). Aerosols generated
by these latter AGPs produce “fugitive emissions,” comprising a
mixture of aerosols generated by the device and bioaerosols from
the patient. The role of fugitive emissions in enhancing the spread
of viruses to bystanders or healthcare workers has been a matter for
debate (4).

In this issue of the Journal, Avari and colleagues (pp. 1112–1118)
used a mannequin that simulated the breathing pattern of
spontaneously breathing patients with mild to moderate respiratory
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distress and exhaled a constant breath-to-breath viral load of a
bacteriophage generated by a vibrating mesh nebulizer as a
surrogate for SARS-CoV-2 (5). They simulated the clinical
situation in a negative-pressure ICU room. Viral dispersion was
quantitated at various locations in the room during invasive
mechanical ventilation via a cuffed orotracheal tube and a filter
placed at the expiratory port of the ventilator and was compared
with noninvasive respiratory support using nasal prongs, HFNO,
a nonrebreather face mask with N99 high-efficiency particulate air
filter, helmet ventilation with positive end-expiratory pressure
(PEEP) valve, and bilevel positive-pressure NIV (5). The lowest
bacteriophage concentrations occurred during invasive mechanical
ventilation, whereas the highest concentrations were recorded
while using HFNO or nasal prongs. Moreover, viral concentrations
were highest closer to the mouth and lower toward the foot end of
the bed. The variability in bioaerosol dispersion led the
investigators to conclude that the risk of transmitting infection, and
appropriate infection control, differs among several respiratory
procedures used in the ICU (5).

Ideally, Avari and coinvestigators would have reported on
aerosol generation during intubation and extubation of the
mannequin because a burst of aerosol generation during these
procedures could pose a significant risk of spreading infection (6).
Such a comparison would provide a balance of the risks associated
with mechanical ventilation versus other noninvasive respiratory
support procedures. However, such a study requires exploring
aerosol generation during a whole range of clinical scenarios
involving intubation and extubation of critically ill patients.

A major strength of Avari and colleagues’ investigation was
to use a bacteriophage to model viral exposure, unlike previous
studies that used nonviral particles (References 17–21 in Reference
5). Viruses can spread in the hospital environment by airborne
transmission. Tang and colleagues generated an aerosol of live
attenuated influenza virus with a jet nebulizer from a mannequin,
and when a home jet nebulizer and simple mask was used, they
found viral contamination in the environment that decreased with
increasing distance from the mouth (7). Lednicky and coworkers
used a liquid sampling system placed 2–4.8 m away from a patient
with COVID-19 and demonstrated live virions of SARS-CoV-2 in
the hospital room even in the absence of AGPs (8). In hospital
rooms with patients with COVID-19, SARS-CoV-2 contamination
should be expected, especially in the ICU environment (9).
Although live virions are present at low concentrations and
only in a small percentage of air samples (9), it is essential to
reduce exposure to the virus and protect healthcare workers.

Avari and colleagues reported that viral aerosol dispersion was
reduced to levels comparable to those seen with invasive mechanical
ventilation when a helmet device fitted with a PEEP valve was used
(5). Likewise, in previous investigations it was reported that
connecting a filter to an oxygen mask (e.g., HiOx Oxygen mask
[Novus Medical Inc] or Respan’s Tavish mask) reduced aerosol
dispersion (10). In spontaneously breathing patients on HFNO,
placing a surgical mask on the patient’s face or using tissue to cover
the mouth or nose could reduce the dispersion distance (11) or
virus load (12). Adopting appropriate personal protective measures
markedly reduces the risk of transmitting SARS-CoV-2 during
AGPs (3, 13). In the initial phases of the pandemic, intubation
and invasive mechanical ventilation was preferred over NIV
and HFNO to diminish aerosol spread. However, with a better

understanding of the transmission of SARS-CoV-2 (3), many
centers have advocated a more conservative approach to oxygen
supplementation in hypoxemic patients with COVID-19 that relies
on initiating NIV or HFNO for critically ill patients in whom
invasive mechanical ventilation is not essential (14, 15). The
investigation by Avari and colleagues (5) highlights the need for
further study of SARS-CoV-2 contamination in ICU environments.
Furthermore, when NIV or HFNO are used in patients with
COVID-19, it is all the more important to develop new methods
and devices and promote other control measures that reduce the
transmission of SARS-CoV-2 and mitigate the risk to healthcare
workers in the ICU. n
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The Yin and Yang of the Renin–Angiotensin–Aldosterone System in
Acute Kidney Injury

Despite intensive research, the pathophysiology of acute kidney
injury (AKI) in critical illnesses remains poorly understood, as
do the links between AKI and poor outcomes. Post–cardiac
surgery AKI is not exempt. Multiple, heterogeneous mechanisms
are likely in play. Hemodynamic factors, systemic inflammatory
response, and cardiopulmonary bypass–induced hemolysis
certainly contribute (1, 2). Other contributing factors remain
unrecognized or underexplored, such as the complex role of the
renin–angiotensin–aldosterone system (RAAS) (3).

In a fascinating study published in this issue of the Journal,
Kul̈lmar and colleagues (pp. 1119–1126) report the association
between postoperative plasma renin level and the risk of developing
AKI after cardiac surgery (4). Plasma renin levels measured 4 hours
after cardiopulmonary bypass were strongly associated with AKI,
whereas preoperative values were not. Patients with higher
postoperative plasma renin levels and higher changes in plasma
renin compared with preoperative values (D-renin) developed
more AKI than patients with lower levels and smaller changes.
Patients with AKI had a median (interquartile range) rise in
plasma renin of 99.6 mU/ml (6.7, 318.0; P, 0.001). This D-renin
was the strongest predictor of postoperative AKI in the study (area
under the curve–receiver operating characteristic, 0.817) and
superior to urinary AKI biomarkers DKK3 and [TIMP-2]*
[IGFBP7].

The primary hypothesis of the authors is that an angiotensin
II deficit occurs after cardiac surgery to explain these findings. In a
feedback loop, renin is released in response to decreased
activation of the AT1R (angiotensin II type 1 receptor) by
angiotensin II (Figure 1, Scenario 1). This can be caused
by either impaired generation of angiotensin II or AT1R
blockade. Angiotensin II is produced when the endothelial
membrane–bound enzyme ACE (angiotensin-converting
enzyme) cleaves angiotensin I. Conditions associated with
endothelial dysfunction, such as septic shock or cardiopulmonary

bypass, can reduce ACE activity, decrease angiotensin II, and
increase renin levels (5, 6). Decreased expression of AT1R was also
reported in sepsis-associated AKI (7). This hypothesis is supported
by several findings in Kul̈lmar and colleagues, including higher
and more prolonged vasopressor requirements, high D-renin levels,
and higher renin over aldosterone ratio in patients with AKI. Of
note, although patients treated with ACE inhibitors (ACEi) or
angiotensin receptor blockers (ARB) had higher plasma renin levels
and overall higher risk of AKI, no interaction was found between
ACEi/ARB therapy and D-renin for predicting AKI.

An alternative hypothesis to that of Kul̈lmar and colleagues is
that significant activation of the RAAS occurs after cardiac surgery
(with consequently high angiotensin II tone), triggering intrarenal
vasoconstriction, decrease in renal blood flow, and regional
inflammation (Figure 1, Scenario 2). Unfortunately, plasma
angiotensin II levels were not available in the study, thus making
it impossible to definitively distinguish the two possibilities.
The alternate hypothesis is supported by lower blood pressures
(a trigger for RAAS activation) in the group with AKI and
supranormal plasma levels of both renin and aldosterone after
surgery (8). Furthermore, there are many reports of decline in
renal blood flow associated with elevated intrarenal vascular
resistance and increased angiotensin II levels after cardiac
surgery (9, 10). In this line, the use of intrarenal vasodilators
has long been proposed to decrease the risk of post–cardiac surgery
AKI.

What Are the Implications of This Study?
This study clearly demonstrates that plasma renin elevation after
cardiac surgery is associated with AKI risk and strongly implicates
the RAAS. The RAAS clearly holds a pivotal pathophysiologic role
in cardiovascular and renal diseases, including AKI (11). Elevated
plasma renin is associated with poor outcomes both in chronic
conditions such as heart failure and acute conditions such as
vasodilatory shock. A post hoc analysis of the ATHOS-3 trial
(angiotensin II versus placebo in catecholamine-resistant
vasodilatory shock, defined as a need for norepinephrine .0.2
mg/kg/min) demonstrated that high plasma renin was associated
with a risk of death and nonrecovery from AKI (6, 12).
Angiotensin II has long been known as a mediator of renal injury
in the subacute and chronic settings. Angiotensin II promotes
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