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Abstract: In this paper, density functional theory and wave function theory calculations are carried
out to investigate the strength and nature of the intermolecular C-X···N bond interaction as a function
of the number of cyano groups, CN, in the X-bond donor while maintaining the X-bond acceptor
as fixed. Specifically, complexes of X-cyanomethanes with trimethyl amine CH3−n(CN)nX···NMe3

(n = 0–3; X = H, Cl, Br, I) are used as model systems. Geometrical parameters and vibrational
C-X-stretching frequencies as well as interaction energies are used as relevant indicators to gauge
hydrogen or halogen bond strength in the complexes. Additional characteristics of interactions that
link these complexes, i.e., hydrogen or halogen bonds, are calculated with the use of the following
theoretical tools: the atoms in molecules (AIM) approach, the natural bond orbital (NBO) method,
and energy decomposition analysis (EDA). The results show that, for the specified X-center, the
strength of C-X···N interaction increases significantly and in a non-additive fashion with the number
of CN groups. Moreover, the nature (noncovalent or partly covalent) of the interactions is revealed
via the AIM approach.

Keywords: halogen bond; hydrogen bond; density functional theory; ab initio calculations

1. Introduction

A hydrogen bond, D-H···A, is commonly understood as the attractive, non-covalent
interaction between a hydrogen bond donor, D-H, and a hydrogen bond acceptor, A [1–8].
Likewise, a halogen bond, D-Hal···A (Hal = F, Cl, Br, or I), is understood as the attractive,
non-covalent interaction between a halogen bond donor, D-Hal, and a halogen bond
acceptor, A [9–16]. Thus, a halogen bond could be considered in principle as an extension of
the hydrogen bond concept. It has also been suggested that a hydrogen or a halogen bond
could be thought of as a Lewis acid–base interaction, with the donor (D-H or D-Hal) as the
Lewis acid, and the acceptor, A, as the Lewis base [13–17]. The distinctive characteristics
of the hydrogen and halogen bond interactions, as well as their corresponding IUPAC
(International Union of Pure and Applied Chemistry) definitions, have been provided
recently [18,19].

Similarities and differences between hydrogen and the halogen bonds have been
pointed out in a variety of studies [20–25]. For example, both interactions have been
shown to be highly directional, although the halogen bond tends to be more linear than
the hydrogen bond [26–30]. Additionally, both the hydrogen bond and the halogen bond
have been shown to be highly tunable [14–17,31]. Tuning the strength of the hydrogen
or halogen bond interaction for a fixed acceptor or Lewis base can be made through the
interplay of a number of factors pertaining the D-H or the D-Hal donor group. With more
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than one type of halogen atom that can be used in D-Hal, the halogen bond also renders
greater flexibility for fine-tuning compared with the hydrogen bond [32–44]. One factor
that can be used to fine tune the D-H or the D-Hal donor ability is the electronegativity
of the atom covalently bonded to hydrogen or halogen. In the case of the hydrogen bond
donor, an increase in electronegativity reduces electron density in the hydrogen atom in
D-H, making it more susceptible to interact with a Lewis base. Thus, C-H is considered
a weak hydrogen bond donor when compared with either the O-H or the N-H hydrogen
bond donor. In the case of the halogen bond donor ability of D-Hal, it has been found that
both the size and the magnitude of the positive electrostatic potential (known as the σ-hole)
of the halogen atom increases with the increasing electronegativity of the atom covalently
bonded to the halogen atom in D-Hal. It is worth noting that the σ-hole on the halogen
atom acts as the Lewis acid site that interacts with a suitable electron donor species acting
as the Lewis base, and that the location of the σ-hole (opposite to the covalent D-Hal bond)
results in the highly distinctive linearity of the halogen bond [9,32,44]. Further studies have
demonstrated that the ability of a halogen atom to engage in halogen bonding correlates
with the size of the σ-hole. Accordingly, the C-Hal is deemed a weak halogen bond donor
when compared with either the O-Hal or the N-Hal donor. Moreover, it has also been
found that for the same D, the size of the σ-hole increases with the size of the halogen
(F � Cl < Br < I). The correlation between the halogen atom size and the σ-hole adds
flexibility for fine-tuning the halogen bond donor ability of D-Hal when compared with
the fine-tuning of the hydrogen bond donor ability of D-H. Another factor that has been
shown to influence hydrogen or halogen bond donor ability is the hybridization of the
atom covalently bonded to the hydrogen (in D-H) or halogen atom in (D-Hal). Specifically,
the donor ability of C-H or C-Hal tends to increase with the increasing s-character of
the hybridized carbon, i.e., C(sp3) < C(sp2) < C(sp) [45–48]. The presence of electron-
withdrawing groups have also been shown to enhance the donor ability of either the
D-H or the D-Hal group. Thus, even a weak hydrogen (C-H) or halogen (C-Hal) bond
donor with hybridized sp3 carbon can increase its donor ability by adding suitable electron-
withdrawing groups to the carbon atom [40,42,45].

In this work, the enhancing effect on the hydrogen bond or the halogen bond donor
ability of methane or halomethane is investigated by sequentially adding up to three
electron-withdrawing cyano groups, CN, as substituents on the hybridized sp3 carbon of
the methane or the halomethane. Specifically, the strengthening of the hydrogen or the
halogen bond is examined as a function of the number of cyano groups in the complexes
CH3−n(CN)nX···NMe3 (n = 0–3; X = H, Cl, Br, I). The following are the reasons for the
choice of the CN group as a substituent: It is known as a strong electron-withdrawing
substituent that also possesses simple structure. Moreover, this group has not been analyzed
extensively as a factor influencing halogen bond strength, and not as extensively as fluorine
and other halogens, for example.

For convenience, the hydrogen or the halogen bond interaction studied in this work
is jointly represented as C-X···N. Moreover, the relatively strong and neutral Lewis base
trimethyl amine, NMe3, is used throughout as the halogen bond acceptor. Lastly, in this
work, the correlation between the halogen bond strength and the halogen atom size is also
examined. The choice of small Lewis acid (CH3−n(CN)nX) and Lewis base (NMe3) units
allow us to apply various theoretical tools and consequently to analyze different charac-
teristics of interactions. The particular attention is paid here on the comparison between
hydrogen and halogen-bonded systems. The competition between these interactions is
often observed in crystal structures; thus, the results presented here allow us to understand
the influence of these interactions on the arrangement of molecules and ions in crystals.

2. Computational Details

Geometry optimizations, frequency calculations, and interaction energies were carried
out using the GAUSSIAN 16 program [49]. Geometry optimizations for all complexes,
CH3−n(CN)nX···NMe3 (n = 0–3; X = H, Cl, Br, I) and constituent monomers were first
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carried out using the ωB97X-D [50] density functional method and the aug-cc-pVTZ-
PP [51] basis set for the iodine atom and the aug-cc-pVTZ [52–55] basis set for all other
atoms. Corresponding frequency calculations demonstrated that theωB97X-D-optimized
geometries were minimum energy structures with no imaginary frequencies. Subsequent
geometry optimizations for all monomers and complexes were carried out using the
MP2 [56,57] method with both the aug-cc-pVTZ-PP and the aug-cc-pVDZ-PP [58] basis
sets for the iodine atom and the corresponding aug-cc-pVTZ or aug-cc-PVDZ basis sets
for all other atoms. The MP2 geometries optimized with the smaller of the two basis sets
(aug-cc-pVDZ-PP, aug-cc-pVDZ) were shown to be minimum energy structures with no
imaginary frequencies calculated at the same level of theory.

The ωB97X-D geometries of complexes optimized with the larger basis set (aug-cc-
pVTZ-PP, aug-cc-pVTZ) were used for all subsequent analyses including interaction energy,
NBO, and AIM analyses. In particular, topological features of electron density according to
the theory of atoms in molecules (AIM) of Bader [59] were obtained with the AIMALL [60]
software package. MP2 interaction energies were obtained for all complexes and corrected
for basis set superposition error, BSSE, using the counterpoise method [61]. BSSE-corrected
interaction energies were also obtained with the CCSD(T) [62] method for the X = H- or
X = I-containing systems.

The BP86-D3/TZ2P calculations were carried out with the ADF 2019.302 program
codes [63] for the decomposition of interaction energies [64,65] for theωB97X-D-optimized
dimer complexes described previously. That is, the BP86 functional [66,67] with Grimme
dispersion corrections [68] was applied, and for all elements the uncontracted Slater-type
orbitals (STOs) as basis functions with triple-ζ quality [69] were applied. Relativistic scalar
ZORA corrections [65] were applied for species containing heavier atoms (Br and I).

The NBO method [70,71] was used to calculate the atomic charges, the energies of
orbital–orbital interactions, the Wiberg bond indices [72], and the natural binding indices.
The NBO 6.0 program [73] implemented in the ADF2019 set of codes [63] was applied to
perform NBO calculations.

The calculations of interaction energies were performed with the splitting of the
complexes CH3−n(CN)nX···NMe3 into the CH3−n(CN)nX and NMe3 units. The same
splitting was carried out in the decomposition of interaction energies as well as in other
calculations where interactions between Lewis acid and Lewis base units were considered.

3. Results and Discussion
3.1. Geometries and Vibrational Frequencies

Optimized geometries for all CH3−n(CN)nX···NMe3 (n = 0–3; X = H, Cl, Br, I) com-
plexes were first obtained with the ωB97X-D/aug-cc-pVTZ level of theory. Harmonic
vibrational frequency calculations, at the same level of theory, demonstrated that all the op-
timized geometries were minima in their respective potential energy surfaces (no imaginary
frequencies present). Geometry optimizations and corresponding frequency calculations
at the MP2/aug-cc-pVDZ level of theory also resulted in minimum energy structures for
all complexes with no imaginary frequencies. Lastly, the MP2/aug-cc-pVDZ-optimized
geometries were used as initial guess geometries for further geometry optimizations at the
MP2/aug-cc-pVTZ level. Frequency calculations at the MP2/aug-cc-pVTZ were generally
not possible given our computer capabilities, and thus were not performed. It should be
noted that, in all calculations, either the aug-cc-pVDZ-PP or the aug-cc-pVTZ-PP basis set
was used for the iodine atom, where applicable. Figures 1 and 2 show theωB97X-D/aug-
cc-pVTZ-optimized geometries of the CH3−n(CN)nH···NMe3 and CH3−n(CN)nCl···NMe3
complexes; the X···N distances are also presented there for all complexes, X = H, Cl, Br,
I. The corresponding relevant geometrical parameters for each complex at all levels of
theory can be found in Tables 1–4. Accordingly, the inspection of Tables 1–4 shows that
the ωB97X-D/aug-cc-pVTZ level of theory predicts C-X bond lengths and intermolecular
X···N distances that are smaller and longer, respectively, than the corresponding results
predicted in the MP2/aug-cc-pVDZ level of theory. Interestingly, the MP2/aug-cc-pVTZ
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results are closer to those of the ωB97XD/aug-cc-pVTZ level of theory for the C-X covalent
bond lengths and to those of the MP2/aug-cc-pVDZ level of theory for the hydrogen or
halogen bond distances and angles, X···N and C-X···N, respectively.
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Figure 1. ωB97X-D/aug-cc-pVTZ-optimized geometries of the CH3−n(CN)nH···NMe3 (n = 0–3)
complexes.
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Figure 2. ωB97X-D/aug-cc-pVTZ-optimized geometries of the CH3−n(CN)nCl···NMe3 (n = 0–3)
complexes; X···N distances for X = Cl, Br, I are presented in the figure.

Table 1. Optimized geometries for the CH3−n(CN)nH···NMe3 complexes; C-H bond lengths, H···N
distances and C-H···N angles are given.

n C-H (Å) H···N (Å) C-H···N (◦)

ωB97X-D/aug-cc-pVTZ
0 1.089 2.595 151.2
1 1.094 2.326 151.0
2 1.108 2.067 157.2
3 1.151 1.765 180.0

MP2/aug-cc-pVTZ
0 1.088 2.569 155.8
1 1.092 2.370 145.1
2 1.106 2.066 153.2
3 1.159 1.711 180.0

MP2/aug-cc-pVDZ
0 1.099 2.522 158.3
1 1.104 2.292 151.8
2 1.118 2.043 154.5
3 1.172 1.693 180.0
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Table 2. Optimized geometries for the CH3−n(CN)nCl···NMe3 complexes; C-Cl bond lengths, Cl···N
distances and C-Cl···N angles are given.

n C-Cl (Å) Cl···N (Å) C-Cl···N (◦)

ωB97X-D/aug-cc-pVTZ
0 1.787 3.321 168.6
1 1.789 3.018 175.5
2 1.804 2.810 178.9
3 1.838 2.620 180.0

MP2/aug-cc-pVTZ
0 1.781 3.115 169.1
1 1.785 2.896 171.1
2 1.804 2.679 177.5
3 1.876 2.385 180.0

MP2/aug-cc-pVDZ
0 1.798 3.116 169.5
1 1.803 2.903 171.7
2 1.823 2.700 177.8
3 1.888 2.439 180.0

Table 3. Optimized geometries for the CH3−n(CN)nBr···NMe3 complexes; C-Br bond lengths, Br···N
distances and C-Br···N angles are given.

n C-Br (Å) Br···N (Å) C-Br···N (◦)

ωB97X-D/aug-cc-pVTZ
0 1.941 3.102 179.9
1 1.953 2.911 179.2
2 1.981 2.725 179.7
3 2.046 2.506 180.0

MP2/aug-cc-pVTZ
0 1.933 2.896 179.5
1 1.951 2.711 178.7
2 1.997 2.505 179.3
3 2.099 2.302 180.0

MP2/aug-cc-pVDZ
0 1.951 2.925 180.0
1 1.969 2.747 179.2
2 2.013 2.548 179.5
3 2.106 2.347 180.0

Table 4. Optimized geometries for the CH3−n(CN)nI···NMe3 complexes; C-I bond lengths, I···N
distances and C-I···N angles are given.

n C-I (Å) I···N (Å) C-I···N (◦)

ωB97X-D/aug-cc-pVTZ
0 2.145 3.099 179.9
1 2.171 2.890 180.0
2 2.217 2.715 180.0
3 2.300 2.536 180.0

MP2/aug-cc-pVTZ
0 2.138 2.875 179.9
1 2.170 2.697 179.7
2 2.222 2.543 179.5
3 2.292 2.424 180.0

MP2/aug-cc-pVDZ
0 2.164 2.889 179.9
1 2.198 2.710 179.8
2 2.248 2.565 179.7
3 2.310 2.457 180.0
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An inspection of Table 1 shows that, at all levels of theory, the covalent C-H bond
length in CH3−n(CN)nH···NMe3 increases nonlinearly with the number of CN groups,
relative to the bond length for the system with no CN groups, n = 3. For example, at the
ωB97X-D/aug-cc-pVTZ level, the C-H bond increases by only 0.5% when n = 2, but then it
increases more substantially when n = 1 (1.7%) and when n = 0 (5.7%). Concomitant with
the C-H elongation there is a nonlinear reduction in the hydrogen bond distance, H···N,
with the number of CN groups that is proportionally larger than the accompanying increase
in the C-H bond length. Thus, at theωB97X-D/aug-cc-pVTZ level, the H···N distance is
decreased by 10.4%, 20.3% and 32.0% for n = 2, 1, and 0, respectively. Lastly, the C-H···N
angle remains far from linear until all three CN groups are present. Overall, the geometrical
changes suggest an important strengthening of the H···N hydrogen bond resulting from
the cumulative electron-withdrawing effects of the CN groups. An inspection of Tables 2–4
reveals that the effects of the CN groups on the C-X bond lengths and the X···N halogen
bond distances qualitatively mirror those in the hydrogen bond complexes, i.e., X = H. A
graphical representation of the effects of the CN groups at theωB97X-D/aug-cc-pVTZ level
can be seen in Figure 3 (for the C-X bond lengths) and in Figure 4 (for the X···N interaction
distances). It is worth noting that the halogen bond angles are linear for both X = Br and I,
regardless of the number of CN groups. For X = Cl, the halogen bond angle increases from
quasilinear 169◦ (n = 3) to linear 180◦ (n = 0).
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Figure 3. Percent change in the covalent C-X bond as a function of the number of CN groups in the
CH3−n(CN)nX···NMe3 (X = H, Cl, Br, or I; n = 0–3) complexes optimized at the ωB97X-D/aug-cc-
pVTZ level of theory.
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Figure 4. Percent change in the intermolecular X···N distance as a function of the number of CN
groups in the CH3−n(CN)nX···NMe3 (X = H, Cl, Br, or I; n = 0–3) complexes optimized at the
ωB97X-D/aug-cc-pVTZ level of theory.
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Changes in the strength of the hydrogen or halogen bond interactions revealed through
geometrical parameters are also revealed in pertinent vibrational frequencies. Specifically,
for any given complex, the elongation of the C-X bond length with the number of CN
groups brings about a reduction in the stretching C-X vibrational frequency, νC-X, as can be
seen in Table 5 for the frequencies calculated at both theωB97X-D/aug-cc-pVTZ and the
MP2/aug-cc-pVDZ levels of theory. In particular, the percent changes in νC-X as a function
of the number of CN groups for the CH3−n(CN)nX···NMe3 systems at theωB97X-D/aug-
cc-pVTZ level are displayed in Figure 5.

Table 5. Stretching frequencies, νC-X (cm−1), for CH3−n(CN)nX···NMe3 (X = H, Cl, Br, or I; n = 0–3).

n νC-H νC-Cl νC-Br νC-I

ωB97X-D/aug-cc-pVTZ
0 3033 748 632 556
1 3024 762 452 418
2 2846 493 411 358
3 2210 465 345 298

MP2/aug-cc-pVDZ
0 3045 747 624 542
1 3034 747 427 389
2 2854 473 374 340
3 2160 387 308 302
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Figure 5. Percent change in the harmonic stretching frequency of the C-X bond, νC-X, as a function
of the number of CN groups in the CH3−n(CN)nX···NMe3 (X = H, Cl, Br, or I; n = 0–3) complexes
optimized at theωB97X-D/aug-cc-pVTZ level of theory.

3.2. Intermolecular Interaction Energies and AIM Analyses

Table 6 displays the BSSE-corrected interaction energy associated with the formation
of each complex calculated at the MP2/aug-cc-pVTZ level using the geometries optimized
at theωB97X-D/aug-cc-pVTZ level of theory. An inspection of Table 6 shows that, even
in the absence of a CN group, all complexes are stabilized by the C-X···N interaction. In
particular, the strength of the interaction follows the order H < Cl < Br < I when n = 0.
However, H and Cl swap places when n = 1–3. Table 6 also shows that the increase in the
magnitude of the interaction energy for any given complex increases nonlinearly with the
number of CN groups. The rather substantial and non-additive increase in the interaction
energy per CN group is presented in Figure 6. Specifically, the magnitude of the interaction
energy per CN group increases with the number of CN groups for all halogen bonds. This
increase also correlates with the size of the halogen. For the hydrogen bond, the magnitude
of the interaction energy per CN group increases with one CN group but then shows a
small decline with two CN groups followed by a somewhat large increase with three CN
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groups. It is worth noting that the increases in the magnitude of the interaction energies for
the hydrogen bonds are consistently larger than in the chlorine bonds.

Table 6. BSSE-corrected MP2//ωB97X-D/aug-cc-pVTZ interaction energies, ∆E(kcal/mol), for
CH3−n(CN)nX···NMe3 (X = H, Cl, Br, or I; n = 0–3).

n H Cl Br I

0 −1.47 −1.73 −3.10 −5.41
1 −4.90 −3.28 −5.50 −8.94
2 −8.02 −5.33 −8.89 −13.89
3 −13.17 −8.50 −15.03 −21.49
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Figure 6. Changes in the magnitude of the interaction energy per CN group added in the
CH3−n(CN)nX···NMe3 (X = H, Cl, Br, or I; n = 0–3) dimer complexes. Values calculated at
MP2//ωB97X-D/aug-cc-pVTZ level of theory.

Table 7 displays the BSSE-corrected interaction energies associated with the formation
of the C-H···N and C-I···N links in complexes calculated at the CCSD(T)/aug-cc-pVTZ
level using the MP2/aug-cc-pVTZ-optimized geometries. An inspection of Table 7 shows
similar qualitative trends in interaction energies as a function of the CN groups, as seen
at the corresponding MP2 level. The magnitude of the interaction energies in all cases,
however, appears somewhat overestimated at the MP2 level when compared with the
corresponding CCSD(T) results.

Table 7. BSSE-corrected CCSD(T)//MP2/aug-cc-pVTZ interaction energies, ∆Es (kcal/mol), for
CH3−n(CN)nX···NMe3 (X = H, I; n = 0–3).

n H I

0 −1.46 −4.30
1 −4.69 −7.53
2 −7.49 −12.19
3 −12.21 −18.93

The presence of a halogen (hydrogen) bond in each of the CH3−n(CN)nX···NMe3-
optimized complexes was further confirmed by the topology of the corresponding electron
density [24,74]. In particular, a bond critical point was found for each of the C-X···N
interactions along the path connecting the nitrogen atom with the related hydrogen (X = H)
or halogen (X = Cl, Br, I). The strength and nature of the interaction was gauged by
examining properties evaluated at the bond’s critical point. In particular, the electron
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densities, ρc, evaluated at the C-X···N bond critical points, are typically used as indicators
of bond strength. Moreover, the total electron energy densities, Hc, and their kinetic and
potential energy density components, Gc and Vc, respectively, can provide insight on
the nature of the hydrogen or halogen bond. [24,74–77] Table 8 shows the relevant AIM
parameters for the various complexes considered (X = H, Cl, Br, and I).

Table 8. MP2//wB97X-D/aug-cc-pVTZ topological parameters (a.u.) for CH3−n(CN)nX···NMe3

(X = H, Cl, Br, I).

n ρc Gc Vc Hc |Gc/Vc|

CH3−n(CN)nH···NMe3
0 0.0089 0.0058 −0.0048 0.0010 1.21
1 0.0162 0.0106 −0.0095 0.0011 1.12
2 0.0280 0.0183 −0.0198 −0.0015 0.92
3 0.0550 0.0322 −0.0485 −0.0163 0.66

CH3−n(CN)nCl···NMe3
0 0.0071 0.0049 −0.0037 0.0012 1.32
1 0.0134 0.0097 −0.0081 0.0016 1.20
2 0.0208 0.0153 −0.0141 0.0012 1.09
3 0.0320 0.0230 −0.0240 −0.0010 0.96

CH3−n(CN)nBr···NMe3
0 0.0137 0.0093 −0.0081 0.0012 1.15
1 0.0200 0.0138 −0.0130 0.0008 1.06
2 0.0296 0.0200 −0.0209 −0.0009 0.96
3 0.0473 0.0302 −0.0372 −0.0070 0.81

CH3−n(CN)nI···NMe3
0 0.0176 0.0110 −0.0104 0.0006 1.06
1 0.0263 0.0166 −0.0175 −0.0009 0.95
2 0.0372 0.0231 −0.0275 −0.0044 0.84
3 0.0900 0.0407 −0.0786 −0.0379 0.52

Inspection across Table 8 shows, for any given complex system, an increase in ρc with
the number of CN groups, n. A closer examination of the data reveals a non-additive
effect on ρc. In the C-H···N hydrogen bond interaction, for example, ρc increases by 0.0073
a.u. when n = 1, but more than twice this amount when n = 2 (0.0191 a.u.), and more
than six times (0.0461 a.u.) when n = 3. Table 9 summarizes the non-additive changes
in ρc per CN group for any given C-X···N interaction. The strengthening of the C-X···N
bond, reflected in the non-additive increase in ρc with the number of CN groups, is further
verified through the correlations found between ρc and the corresponding magnitude of
interaction energies, |∆E|, as shown in Figure 7. In general, for any X, the larger the
magnitude of the interaction energy is, the larger the corresponding ρc is. More specifically,
ρc and |∆E| correlate linearly when X = Cl or Br, and nonlinearly when X = I or H.

Table 9. Changes in electron density at C-X . . . N bond critical points (a.u.) per number of CN groups,
∆ρc/n, present in CH3−n(CN)nX···NMe3.

CN Groups H Cl Br I

1 0.0073 0.0063 0.0063 0.0087
2 0.0096 0.0069 0.0080 0.0098
3 0.0154 0.0083 0.0112 0.0241
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Figure 7. Correlations between ρc and the corresponding magnitude of interaction energies, |∆E|,
in the CH3−n(CN)nX···NMe3 (X = H, Cl, Br, or I; n = 0–3) dimer complexes.

Insight into the nature of the C-X···N bond in a given complex is gained by exam-
ining the sign of the corresponding electron energy density at the bond’s critical point
(Hc) [24,74–77]. Indeed, a positive sign of Hc would correspond to a closed-shell inter-
molecular interaction, but a negative sign would correspond to a partly covalent one.
Further confirmation on the nature of the interaction can be found in the absolute ratio
of the kinetic, Gc, and potential, Vc, electron energy density components of Hc |Gc/Vc|.
Accordingly, if |Gc/Vc| > 1, then the interaction is noncovalent. On the other hand, if
0.5 < |Gc/Vc| < 1, then the nature of the interaction is deemed to be partly covalent.
Accordingly, Table 8 shows that the nature of the C-H···N hydrogen bond transition from a
closed-shell noncovalent interaction into a partly covalent one when the number of CN
groups is two. Likewise, the transition to the partly covalent interaction in C-Br···N occurs
when n = 2. The transition to partly covalent for the C-Cl···N halogen bond interaction
occurs only when there are three CN groups (Table 8). In turn, Table 8 reveals that only
one CN group suffices for C-I···N halogen bond interaction to exhibit a partly covalent
nature. In general, the |Gc/Vc| ratio decreases with the number of CN groups in accord
with a systematic strengthening of the C-X···N bond interaction brought about by the
electron-withdrawing CN groups.

3.3. Energy Decomposition Analysis

In the decomposition scheme [63,64], the total interaction energy is partitioned accord-
ing to the equation given below.

∆Eint = ∆Eelstat + ∆EPauli + ∆Eorb + ∆Edisp (1)

The term ∆Eelstat is usually attractive and it corresponds to the quasi-classical elec-
trostatic interaction between the unperturbed charge distributions of atoms. The Pauli
repulsion, ∆EPauli, is the energy change associated with the transformation from the su-
perposition of the unperturbed electron densities of the isolated fragments to the wave
function that properly obeys the Pauli principle through the antisymmetrization and renor-
malization of the product wave function. The orbital interaction, ∆Eorb, corresponds to the
charge transfer and polarization phenomena, i.e., to electron charge shifts resulting from
the complex formation; the dispersion interaction energy term, ∆Edisp, is also included
(Equation (1)). In agreement with the convention adopted in the majority of studies, the
attractive energy terms are negative while the Pauli repulsion is positive. Table 10 presents
the results of the decomposition of the energy of interaction (Equation (1)) for complexes
analyzed in this study.
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Table 10. The interaction energy terms (in kcal/mol) and the ∆Eorb/∆Eelstat ratio for the
CH3−n(CN)nX···N(CH3)3 complexes (X = H, Cl, Br, I).

Lewis Acid Unit ∆Eint ∆EPauli ∆Eelstat ∆Eorb ∆Edisp ∆Eelstat/∆Eorb

CH3H −1.76 3.56 −1.91 −1.12 −2.29 1.7
CH2CNH −5.60 7.87 −6.56 −3.05 −3.85 2.2
CH(CN)2H −9.52 14.13 −11.47 −7.22 −4.96 1.6
C(CN)3H −17.09 33.66 −23.78 −21.54 −5.44 1.1
CH3Cl −1.31 5.41 −2.65 −1.81 −2.26 1.5
CH2CNCl −3.41 9.38 −6.21 −4.12 −2.47 1.5
CH(CN)2Cl −6.99 17.86 −12.42 −9.75 −2.68 1.3
C(CN)3Cl −13.79 45.54 −28.65 −27.26 −3.41 1.1
CH3Br −3.70 12.95 −8.76 −5.00 −2.89 1.8
CH2CNBr −7.40 22.39 −15.97 −10.41 −3.42 1.5
CH(CN)2Br −12.76 41.85 −28.96 −21.75 −3.91 1.3
C(CN)3Br −20.87 79.17 −51.76 −44.13 −4.14 1.2
CH3I −6.40 22.76 −16.37 −8.74 −4.05 1.9
CH2CNHI −10.90 37.87 −27.52 −16.75 −4.49 1.6
CH(CN)2I −16.48 59.10 −42.28 −28.61 −4.69 1.5
C(CN)3I −23.35 83.70 −58.90 −43.38 −4.77 1.4

The total BP86-D3/TZ2P interaction energies, ∆Eint’s, are also inserted in Table 10.
The latter energies are in good agreement with those calculated at the MP2/aug-cc-
pVTZ level; for the complexes analyzed here, the linear correlation occurs between the
MP2 and DFT(BP86-D3) interaction energies (R = 0.99). As pointed out earlier for the
CHn(CN)3−nX···N(CH3)3 complexes, the strength of interaction increases, i.e., |∆Eint|
value increases, for the specific substituent X with the increase in the number of CN sub-
stituents. On the other hand, for the specific number of CN substituents in the complex the
strength of interaction increases (|∆Eint|) with the increase in the atomic number of the
halogen atom (X). Additionally, the interactions in CH3−n(CN)nH···N(CH3)3 complexes
are stronger than the corresponding interactions in the CH3−n(CN)nCl···N(CH3)3 systems.
This means that the C-H···N hydrogen bonds are stronger than the C-Cl···N halogen bonds.
However, the other C-X···N halogen bonds (X = Br, I) are stronger than the corresponding
hydrogen bonds. This is in line with other studies where it was found that hydrogen bonds
are stronger than halogen bonds if the chlorine atom is a Lewis acid halogen center, while
for heavier halogens, in contrast, the halogen bonds are stronger than their hydrogen bond
counterparts [21–26]. These findings are in agreement with those based on the DFT results
that are described in the former section. However, there is only one exception: for the
former DFT results, for systems without CN groups (n = 0) the chlorine bond is stronger
than the corresponding hydrogen bond.

Concerning the interaction energy terms, some interesting observations can be made.
For example, the corresponding ∆EPauli, |∆Eelstat| and |∆Eorb| values increase with the
number of CN groups in the following order of X substituents: H < Cl < Br < I; there
are only slight disagreements sometimes. In the case of the increase in the |∆Edisp|
value, the order is slightly different, the same as for the |∆Eint| values: Cl < H < Br
< I. Table 10 also shows that the electrostatic term is the most important attractive con-
tribution of the total interaction energy, followed by the orbital term and the disper-
sion interaction energy term. In other words, the following order of terms is observed:
|∆Eelstat| > |∆Eorb| > |∆Edisp|. However, there are few exceptions that concern the
weaker interactions: in the CH3H···N(CH3)3 complex, the order of |∆Edisp| > |∆Eelstat| >
|∆Eorb| is observed, while for the CH2CNH···N(CH3)3 and CH3Cl···N(CH3)3 complexes,
this order is |∆Eelstat| > |∆Edisp| > |∆Eorb|. The latter three complexes are among those
with the weakest interactions. It is worth noting that for these three complexes exhibiting
“the unusual order”, the repulsion interaction energy term, ∆EPauli, is the lowest in compar-
ison with its value for the remaining complexes (lower than 8 kcal/mol). Interestingly, the
CH2CNCl···N(CH3)3 complex, with just one CN group, shows the same order of attraction
interaction energy contributions as the majority of all other complexes.
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One may expect that the most important electrostatic interaction for the majority
of complexes analyzed here would be contrary to the covalent character of the links in
these complexes. The orbital interaction, related to the electron charge shifts resulting
from complexation, is often attributed to covalency [5,8,71,77,78]. However, in several
studies, it was pointed out that the positive value of the Heitler–London interaction energy
term, ∆EH-L = ∆EPauli + ∆Eelstat, indicates the at least the partial covalent character of the
interaction [78]. A positive ∆EH-L indicates that the electrostatic attraction cannot balance
the Pauli repulsion and that the stabilization is possible due to the electron charge density
shifts expressed by the ∆Eorb term. For all complexes analyzed here, the pertinent ∆EH-L
values are always positive, indicating the covalent character of the interactions.

It is known that all interaction energy terms increase (repulsive Pauli term and ab-
solute values of the attractive terms) with the increase in the strength of the interaction.
However, the |∆Eorb| increases faster than |∆Eelstat| and |∆Edisp| [78]. Hence, the
|∆Eelstat|/|∆Eorb| ratio decreases with the increase in the strength of interaction, or more
specifically, with the increase in the covalent character of interaction. It was found, for ex-
ample, that for extremely strong hydrogen bonds this ratio is lower than unity [78]. Table 10
shows that, in the case of the complexes analyzed here, for the specified X substituent the
|∆Eelstat|/|∆Eorb| ratio generally decreases with the increase in CN substituents. The low-
est value of this ratio, of 1.1, occurs for the C(CN)3H···N(CH3)3 and C(CN)3Cl···N(CH3)3
complexes.

As mentioned above, all interaction energy terms increase with the increase in the
strength of interaction (absolute values for attractive terms). Particularly, the attractive
terms increase to compensate for the increase in the Pauli repulsion term [78]. Figure 8
presents an excellent linear correlation (R = 1.000) between the repulsion term and the sum
of attractive terms if the halogen is the Lewis acid center, i.e., if the complexes are linked by
halogen bonds. However, the hydrogen-bonded systems not presented in this figure are
not so far from this linear correlation.
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Figure 8. The linear correlation between the Pauli repulsion interaction energy and the sum of all
attractive interaction energy terms for halogen-bonded dimers.

3.4. NBO Analyses

Table 11 presents various parameters calculated with the use of the NBO6 program.
These parameters include the NBO atomic charges of X and N centers that are in contact.
The nitrogen center which belongs to the N(CH3)3 Lewis base unit is always negative. The
most negative charges of nitrogen occur for complexes linked by the CH···N hydrogen
bonds, between −0.34 au and −0.37 au. For the remaining complexes, this charge is located
between −0.25 au and −0.34 au. Various situations are observed for the X charge of the
Lewis acid species. The hydrogen center (X = H) is always positive, which may indicate
the electrostatic character of the C-H···N hydrogen bond. The same goes for iodine as
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the Lewis acid center: it is characterized by a positive charge. This is in line with other
studies where it was found that the Lewis acid properties of halogen increase with the
increase in its atomic number [27,79]. Similarly, the atomic charge for another heavier
halogen, bromine, is positive, although less so than the corresponding iodine of the Lewis
acid unit possessing the same number of CN substituents. There is one exception here: in
the CH3Br···N(CH3)3 complex, the bromine center is negative. In the case of the chlorine
center, its charge is negative except for the CH(CN)2Cl···N(CH3)3 complex, which shows a
positive charge, albeit very close to zero.

Table 11. CH3−n(CN)nX···N(CH3)3 complexes (X = H, Cl, Br, I); the properties of X···N contact are
given. Q(X)—NBO charge of X; Q(N)—NBO charge of N; WBI—Wiberg bond index; NBI—natural
binding index; n→σ* is n(N)→σCX* orbital–orbital interaction energy (in kcal/mol).

Lewis Acid Unit Q(X) Q(N) WBI NBI n→σ*

CH3H 0.230 −0.348 0.0055 0.0743 0.69
CH2CNH 0.283 −0.363 0.0151 0.1227 2.49
CH(CN)2H 0.320 −0.367 0.0474 0.2177 8.07
C(CN)3H 0.344 −0.344 0.1479 0.3845 29.15
CH3Cl −0.082 −0.339 0.0159 0.1263 0.89
CH2CNCl −0.026 −0.336 0.0424 0.2059 2.22
CH(CN)2Cl 0.004 −0.315 0.0972 0.3118 5.02
C(CN)3Cl −0.012 −0.260 0.2190 0.4680 13.65
CH3Br −0.039 −0.335 0.0486 0.2204 3.78
CH2CNBr 0.013 −0.325 0.0975 0.3123 6.99
CH(CN)2Br 0.040 −0.296 0.1820 0.4267 13.55
C(CN)3Br 0.059 −0.250 0.3091 0.5560 27.98
CH3I 0.039 −0.337 0.0858 0.2929 6.51
CH2CNHI 0.097 −0.326 0.1513 0.3890 11.84
CH(CN)2I 0.143 −0.308 0.2338 0.4835 19.74
C(CN)3I 0.187 −0.290 0.3235 0.5688 30.21

It is worth noting, however, that electrostatic potentials are better indicators of the
Lewis acidity–basicity than the charges [27,79]. The electrostatic potential (EP) surfaces
of the CH3−n(CN)nCl units acting as the Lewis acids in the complexes analyzed here are
presented in Figure 9. These EP calculations were performed at the ωB97XD/aug-cc-pVTZ
level. The EP surfaces correspond to the electron density of the 0.001 au; this electron
density value was proposed by Bader and coworkers as corresponding approximately to
the van der Waals spheres [80]. The EP values corresponding to the σ-holes at the halogen
centers of all CH3−n(CN)nX units (X = Cl, Br, I) are presented in Figure 9. One can see
that the EP value for the fixed halogen center increases with the increase in the number of
CN substituents; similarly, for the fixed number of CN substituents, greater EP values are
observed for a greater atomic number of the halogen center. The latter is in agreement with
former studies where, for the same group elements, the EP value increased with the increase
in atomic number [27,79]. One can see that the EP value refers approximately to the Lewis
acid properties of the center considered. The EP value of the Lewis acid unit correlates
often with the strength of interaction for complexes characterized by the same Lewis base
units. For the halogen-bonded complexes analyzed in this study, a good second-order
polynomial correlation is observed between the EP values presented in Figure 9 and the
BP86-D3/TZ2P interaction energies (Table 10), R = 0.962.
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are listed (in au) for X = Cl, Br, I. The number of CN groups increases from 0 to 3.

Table 11 presents the energies of the most important orbital–orbital interactions; they
correspond to the n(N) → σCX* overlaps (* designates the atibonding orbital here and
further in the text). For the A-H···B hydrogen bond, the nB → σAH* overlap is the most
important orbital–orbital interaction [70,71]. nB designates the lone electron pair of the
B proton-accepting centre; σAH* is an antibonding orbital of the A-H bond of the Lewis
acid unit. The interaction energy of this overlap is expressed by the following equation
(Equation (2)):

∆E (nB→σAH*) = qi〈nB|F|σAH*〉2/(ε (σAH*) − ε (nB)) (2)

〈nB|F|σAH*〉 is the Fock matrix element, (ε (σAH*) − ε (nB)) is the orbital energy
difference and qi is the donor orbital occupancy. The nN→σCH* overlaps occur for the C-
H···N intermolecular interactions, i.e., for the hydrogen bonds discussed here in complexes
where the hydrogen is the Lewis acid center. For the remaining complexes, the nN→σCX*
overlaps are observed with X being the halogen center. However, if all centers (X = H, Cl, Br
and I) are considered for the nN→σCX* overlaps, the following observations can be noted.
For the specified substituent, the interaction energy corresponding to the orbital overlap
discussed above increases with the increase in the number of CN substituents in the Lewis
acid unit. For the specified number of CN substituents for the changing X, there is the
following order of the increase in the interaction energy of this overlap Cl < H < Br < I.
When the Lewis acid species do not contain CN substituents, the order is slightly different:
H < Cl < Br < I.

Table 11 presents also the Wiberg bond indices (WBIs) and the natural binding indices
(NBIs) for the X···N intermolecular interactions discussed here. The Wiberg index [72,81]
corresponds approximately to the bond order, while the NBI is an interaction parameter
that can be expressed as the strength (matrix norm) of off-diagonal couplings between
the atomic blocks of the natural atom orbital (NAO) density matrix. However, the NBI is
also related to the Wiberg index and consequently to the bond order; approximately both
indices correspond to the strength of the interatomic link. For all the results presented in
Table 11, a linear correlation between the NBI and WBI indices (R2 = 0.955) is found. The
correlation is even better if the potential function is considered (R2 = 1.000), as shown in
Figure 10.
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Figure 10. Correlation between NBI and Wiberg indices. Potential regression is applied; all dimers
linked by halogen (black circles) and hydrogen (open circles) bonds are taken into account in
this correlation.

Both WBI and NBI indices correlate with other measures of the interaction strength.
In particular, for the halogen-bonded systems, the Wiberg index correlates linearly with
∆Eint (Table 10 R2 = 0.993, as demonstrated in Figure 11. The systems linked by hydrogen
bonds (not included in Figure 11) are excluded from this linear dependence, but show
the same tendency, i.e., the increase in WBI index for stronger interactions. A similar
linear correlation is observed between NBI and ∆Eint (R2 = 0.961) when only the halogen-
bonded complexes are considered; again, the H-bonded systems do not follow a linear
correlation but show the same tendency, i.e., an increase in the NBI index with increasing
interaction strength.
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4. Conclusions

Density functional theory and wave function theory calculations were performed to
examine the effects that the electron-withdrawing cyano group CN have on the hydrogen
donor ability of methane and the halogen bond donor ability of halomethane. Trimethyl
amine was used throughout as the hydrogen or the halogen bond acceptor. Specifically,
the equilibrium geometries, vibrational frequencies, and BSSE interaction energies for the
complexes CH3−n(CN)nX···NMe3 (n = 0–3; X = H, Cl, Br, I) were investigated.

The computational results reveal a substantial and non-additive strengthening of the
C-X···N interaction with the number of CN groups in the X-bond donor molecule. This
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interaction strengthening is indicated, for example, by a large increase in the covalent
C-X bond, concomitant with a sizeable decrease in the intermolecular X···N distance. The
increase in the covalent C-X bond brings about a corresponding shift to the red in the
corresponding vibrational C-X-stretching frequency. Moreover, direct evidence of the non-
additive strengthening of the C-X···N bond is provided by changes in the BSSE interaction
energies per CN group, relative to the interaction when there are no CN groups (n = 0). Both
the strength and the nature of the C-X···N bond interactions as a function of the number of
CN groups were examined within the framework of the atoms in molecules theory.

Further evidence of the enhancement effects of the CN group on the C-X···N bond is
given by the results of both the energy decomposition and the NBO analyses. Particularly,
the absolute values of all interaction energy terms increase with the increase in the number
of CN groups for the specified X-center. The electrostatic interactions accompanied by the
electron charge shifts follow the increase in the Pauli repulsion with the decrease in the
C-X···N bond length, since the sum of attractive interaction energies correlates with the
repulsion interaction energy. The electrostatic interaction is the most important attractive
term for all complexes, except for the species where methane acts as the Lewis acid unit
where the dispersion interaction plays the crucial role. For the majority of complexes
investigated here, the next important factor is the orbital–orbital interaction energy; only
for the weakest interactions is the dispersion more pronounced than orbital interaction. The
NBO approach shows that the n→σ* orbital–orbital overlap is a signature of both hydrogen
and halogen bonds. This kind of interaction is strengthened for the specified X-center with
the increase in the number of CN groups.
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