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Purpose: The purpose of this study was to develop and evaluate lung cancer
segmentation with a pretrained model and transfer learning. The pretrained model was
constructed from an artificial dataset generated using a generative adversarial
network (GAN).

Materials and Methods: Three public datasets containing images of lung nodules/lung
cancers were used: LUNA16 dataset, Decathlon lung dataset, and NSCLC
radiogenomics. The LUNA16 dataset was used to generate an artificial dataset for
lung cancer segmentation with the help of the GAN and 3D graph cut. Pretrained
models were then constructed from the artificial dataset. Subsequently, the main
segmentation model was constructed from the pretrained models and the Decathlon
lung dataset. Finally, the NSCLC radiogenomics dataset was used to evaluate the main
segmentation model. The Dice similarity coefficient (DSC) was used as a metric to evaluate
the segmentation performance.

Results: The mean DSC for the NSCLC radiogenomics dataset improved overall when
using the pretrained models. At maximum, the mean DSC was 0.09 higher with the
pretrained model than that without it.

Conclusion: The proposed method comprising an artificial dataset and a pretrained
model can improve lung cancer segmentation as confirmed in terms of the DSC metric.
Moreover, the construction of the artificial dataset for the segmentation using the GAN and
3D graph cut was found to be feasible.
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INTRODUCTION

Segmentation of lung cancer is an important research topic,
and various studies have been conducted so far.
Segmentation results are used to determine the
effectiveness of anticancer drugs (Mozley et al., 2012;
Hayes et al., 2016) and to perform texture analyses on
medical images (Bashir et al., 2017; Yang et al., 2020). To
use the segmentation results of lung cancer effectively, the
segmentation accuracy is an important factor. Segmentation
is typically done manually by radiologists; however, manual
segmentation can sometimes yield inaccurate results
because of interobserver variability. Semiautomatic
segmentation has lower interobserver variability than
manual segmentation (Pfaehler et al., 2020). To overcome
this interobserver variability, an automatic segmentation of
lung cancer is desirable.

Recent years have witnessed significant development in the
application of deep learning to various domains, including in the
area of segmentation. For example, deep learning has been
applied to the automatic segmentation of organs, such as the
lungs, liver, pancreas, uterus, and bones, and to the automatic
segmentation of tumors in these organs, with good segmentation
performance (Roth et al., 2015; Chlebus et al., 2018; Isensee et al.,
2018; Chen et al., 2019; Gordienko et al., 2019; Kurata et al., 2019;
Noguchi et al., 2020; Hodneland et al., 2021).

One of the problems in the application of deep learning is a
dataset. Deep learning does not perform well when the dataset is
small. In general, it is difficult to increase the size of datasets
containing medical images compared with other domains. This is
due to the high cost of acquiring medical images and the need to
protect personal information. To this end, transfer learning with
pretrained models (Shin et al., 2016; Tschandl et al., 2019), data
augmentation (Zhang et al., 2017; Yun et al., 2019), and artificial
generation of datasets using generative adversarial networks
(GANs) (Muramatsu et al., 2020) have been developed.

The GAN was first proposed by Goodfellow et al. (2014). The
recent improvements made to the GAN have made it possible to
generate high-quality, high-resolution images. Various attempts
have been made to apply the GAN to medical image processing.
Several studies have shown that it is possible to generate CT
images of lung nodules using the GAN (Jin et al., 2018; Han et al.,
2019; Onishi et al., 2019; Yang et al., 2019; Yi et al., 2019;
Armanious et al., 2020).

To overcome the small dataset problem for segmentation,
we proposed to use deep learning models pretrained with an
artificially generated dataset using the GAN. We
hypothesized that transfer learning with the proposed
pretrained models could improve the automatic
segmentation accuracy when using the lung cancer dataset.
In general, a segmentation model obtained through
supervised learning requires an image and its label as the
dataset. In our study, to generate a dataset for segmentation,
we used the GAN for image generation and the 3D graph cut
method for generating labels of the generated images. No
manual task for labeling was required to generate the dataset
for pretraining.

MATERIALS AND METHODS

Our study used anonymized data extracted from public databases.
Therefore, institutional review board approval was waived in
accordance with the regulations of our country. Figure 1 shows
the outline of the proposed method for the segmentation model.

Dataset
Three public datasets containing computed tomography (CT)
images were used: LUng Nodule Analysis 2016 (LUNA16)
dataset, Decathlon lung dataset, and NSCLC radiogenomics.
Table 1 shows a summary of the three datasets.

The LUNA16 dataset includes 888 sets of 3D CT images
(Grand-Challenges, 2016; Setio et al., 2017) constructed for
lung nodule detection. Therefore, the original LUNA16 dataset
is unsuitable for segmentation. A previous study used the
LUNA16 dataset to generate images of lung nodules using the
GAN (Nishio et al., 2020a). We used the same dataset and a GAN
model to generate the dataset for segmentation. For image
preprocessing, the voxel size of the 3D CT images in the
LUNA16 dataset was changed (1 mm × 1 mm × 1 mm
isotropic). To generate lung cancer–like nodules and their
labels in the LUNA16 dataset, large true nodules are
problematic because labels of true nodules are not available
in the LUNA16. Therefore, sets of 3D CT images with small lung
nodules (the size of each nodule was <6 mm) were selected. As a
result, 165 sets of 3D CT images in the LUNA16 dataset were
used to generate an artificial dataset for segmentation.

The Decathlon challenge (http://medicaldecathlon.com/) was
held to provide a fully open source and comprehensive benchmark
for general purpose algorithmic validation and testing, covering
several segmentation tasks. Decathlon includes several
segmentation datasets, from which the Decathlon lung dataset
(Task06) was used as the training and validation sets for our study.
The Decathlon lung dataset includes 63 sets of 3D CT images and
their segmentation labels. To simulate the small dataset, 10 and 30
sets of 3D CT images were selected from the Decathlon lung
dataset; the image files of Decathlon lung dataset (NIfTI files) were
sorted by file name, and the first 10 or 30 files were selected. As a
result, three types of training datasets were prepared from the
Decathlon lung dataset: 63 sets from the original Decathlon lung
dataset (Decathlonfull), 30 sets (Decathlonmid), and 10 sets
(Decathlonsmall). No image preprocessing was performed on the
Decathlon lung dataset.

The NSCLC radiogenomics dataset (https://wiki.
cancerimagingarchive.net/display/Public/NSCLC-Radiomics)
contains images from 211 patients with non–small-cell lung
cancer (Cancer Imaging Archive, 2021; Bakr et al., 2018;
Gevaert et al., 2012; Clark et al., 2013). The dataset comprises
CT, positron emission tomography/CT images, and segmentation
maps of tumors in the CT scans. From the 211 patients, 3D CT
images of 144 patients and their segmentation labels were selected
for the current study. Segmentation labels are not available for the
other 67 patients. The NSCLC radiogenomics dataset was used as
the test set. For image preprocessing, the voxel size of the 3D
CT images in the NSCLC radiogenomics dataset was changed
(1 mm × 1 mm × 1 mm isotropic). Themedian volume of the lung
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cancer was 8,219 mm3 (interquartile range: 3,461.5–25,357 mm3)
in the NSCLC radiogenomics dataset.

Dataset Generation
The LUNA16 dataset was used to generate an artificial dataset for
segmentation. First, lung segmentation was performed for the
chest CT images of the LUNA16 dataset, covering the lungs
entirely. A pretrained deep learning model (a variant of U-net
(Ronneberger et al., 2015)) was used for the lung segmentation
(https://github.com/JoHof/lungmask (Hofmanninger et al.,
2020)). Subsequently, 3D images of the nodule were generated
using the GAN model, which is based on the variant of 3D
pix2pix (Nishio et al., 2020a). While the GANmodel can generate
lung nodules at any location in the lungs, we used locations of true

nodules for nodule generation. In addition, we generated only one
nodule per CT scan. To determine the location of the generated
lung nodule, one location of true nodule was selected from the
annotation of the LUNA16 dataset, for each CT scan. Therefore,
the locations of generated lung nodules were fixed (no
randomness). The true nodule was replaced with the nodule
generated using the GAN model. For the nodule generation, 3D
CT images were cropped with a volume of interest of 40 × 40 × 40
voxels for the location of the true nodules, and the cropped
images were fed to the GAN model. While the size of the
generated lung nodules can be adjusted with the GAN model,
the GAN model generated the largest nodule as the model (the
generation target size was 3 cm or higher). After nodule
generation, the segmentation label was automatically generated

FIGURE 1 | Outline of the proposed method for the segmentation model.

TABLE 1 | Summary of three datasets.

Dataset Number of all
CT

scans

Number of CT
scans used in
this study

Selection criteria Usage of dataset

LUNA16 888 165 3D CT images with small lung nodules (the size of
each nodule was <6 mm) were selected

From the LUNA16 dataset, the GAN generated
an artificial dataset with generated lung nodules.
The pretrained model for lung cancer
segmentation was obtained from the artificial
dataset with original nnUnet.

Decathlon (task06,
lung)

63 ■ 63 (Decathlonfull)
■ 30 (Decathlonmid)
■ 10 (Decathlonsmall)

For Decathlonfull, no selection criteria. The image
files of the Decathlon dataset were sorted by file
name, and the first 10 or 30 files were selected for
Decathlonsmall and Decathlonmid

Decathlon dataset was used for training and
validation sets of lung cancer segmentation.
Modified nnUnet was trained based on the
validation set of the Decathlon dataset and the
pretrained model.

NSCLC radiogenomics 211 144 Segmentation labels are available NSCLC radiogenomics was used for test set of
lung cancer segmentation (not used for the
validation set).

Abbreviations: GAN, generative adversarial network.
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using the 3D graph cut and Gaussian mixture (https://github.
com/mjirik/imcut) (Jirík et al., 2013). Because the intensity of the
seed point on the CT images was used to train the Gaussian
mixture model, the center area of the generated images (40 ×
40×40 voxels) was specified as seed points of the nodule, and the
marginal area of the generated images was specified as seed points
of the non-nodule (background). The output of the 3D graph cut
was used as the segmentation label of the generated nodule. Next,
the generated CT images of the nodule were merged with the
original CT images. When merging the CT images of the
generated nodules, only the areas that were assigned as lung

labels in the lung segmentation were targeted for the merging.
The areas of the generated CT images that were assigned as non-
lung labels were not merged. Figure 2 shows the representative
images of the generated nodules and their labels. In total, 165 lung
nodules were generated for the 165 sets of 3D CT images in the
LUNA16 dataset.

Segmentation Model
Open-source software (nnUnet) (Isensee et al., 2018) was used for
the deep learning model of lung cancer segmentation, which is
available at https://github.com/MIC-DKFZ/nnUNet. nnUnet is a

FIGURE 2 | 3D CT images of the chest. (A) Original CT images in the LUNA16 dataset. The red circle represents the true nodule specified in the LUNA16 dataset.
(B) Lung nodule is artificially generated at the location of the true nodule. Label obtained with the 3D graph cut is superimposed on the 3D CT images.
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variant of U-net (Ronneberger et al., 2015). Originally, nnUnet
was used for the Decathlon datasets (Isensee et al., 2018). Because
the original nnUnet has no functionality of transfer learning, we
modified the source code of nnUnet. With the modification,
nnUnet could use a pretrained model and perform transfer
learning. In addition, the number of epochs in the training
nnUnet could be changed. Except for these two points, no
modifications were made to nnUnet. Dataset splitting (training
and validation sets) was performed with the default setting of
nnUnet.

First, the generated dataset for segmentation obtained from
the LUNA16 dataset was used to construct the pretrained
model. Two pretrained models were built: one obtained from
300 epochs of training (PM300) and the other obtained from 500
epochs of training (PM500). Next, transfer learning using the two
pretrained models was performed for the three Decathlon lung
datasets (Decathlonfull, Decathlonmid, and Decathlonsmall) using
the modified nnUnet. At this stage, no new layer was added to
the model. Although several studies used layer freezing in
transfer learning (Nishio et al., 2020b), no layers of the
pretrained model were frozen in this study. To evaluate the
effect of transfer learning, models were constructed without
transfer learning (original nnUnet). Here, “original nnUnet”
means that the source code of nnUnet was not changed, except
for changing the number of epochs. The original nnUnet and its
default setting were used for the model construction without
transfer learning. In the model training, the epochs were set to
100, 300, and 500. The training of each model was started from
epoch 1.

Evaluation of Segmentation Models
As the test dataset, 144 sets of 3D CT images from the NSCLC
radiogenomics dataset were used. For each set, the Dice similarity
coefficient (DSC) was used to evaluate the segmentation models.
In addition, the Jaccard index (JI), sensitivity (SE), and specificity

(SP) were calculated as the evaluation metrics, which is expressed
as follows:

DSC � 2|P ∩ L|
|P| + |L|, (1)

JI � |P ∩ L|
|P| + |L| − |P ∩ L|, (2)

SE � |P ∩ L|
|L| , (3)

SP � |I| − (|L| + |P| − |P ∩ L|)
|I| − |L| , (4)

where |P|, |L|, and |I| denote the number of voxels for the
segmentation results, label of the lung cancer segmentation,
and 3D CT images, respectively. |P ∩ L| represents the number
of voxels where nnUnet can accurately segment the lung cancer
(true positive). Before calculating the four metrics, a threshold
of 0.5 was used to obtain the segmentation mask from the output
of nnUnet.

Differences of DSC were statistically tested with the Wilcoxon
signed rank test. To control the family-wise error rate, the
Bonferroni correction was used; p-values less than 0.01666
were considered statistically significant. Statistical analyses
were performed using R (version 4.0.4, https://www.r-project.
org/).

RESULTS

Figures 3–5 show the mean DSC of the test set with and without
PM300 and PM500 when Decathlonfull, Decathlonmid, and
Decathlonsmall are used as the training sets, respectively. In
these figures, the results without PM correspond to those of
original nnUnet. Generally, PM300 and PM500 improved the mean
DSC of nnUnet, compared with the original nnUnet (without the

FIGURE 3 | Mean DSC of the test set when using Decathlonfull.
Abbreviation: PM, pretrained model; PM300, pretrained model obtained from
300 epochs of training; PM500, pretrained model obtained from 500 epochs of
training.

FIGURE 4 | Mean DSC of the test set when using Decathlonmid.
Abbreviation: PM, pretrained model; PM300, pretrained model obtained from
300 epochs of training; PM500, pretrained model obtained from 500 epochs of
training.
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pretrained model). In particular, the effectiveness of the
pretrained model was high when using Decathlonmid as the
training set. Neither PM300 nor PM500 was useful for DSC
improvement when Decathlonfull and Decathlonsmall were used
in the 500-epoch training. The DSC improvement was greater in
the 100 and 300 epochs than that in the 500 epochs.

Tables 2–4 list the mean and standard deviation of the four
metrics of the test set with and without PM300 and PM500 when
Decathlonfull, Decathlonmid, and Decathlonsmall are used as the
training sets, respectively. Because the volume ratio between
cancer and noncancerous regions is extremely low, SP was
extremely high in the current study. Regarding DSC, JI, and
SE, the same trend can be observed. PM300 and PM500 improved
the mean values of the three metrics; improvement in JI and SE
was greater in the 100 and 300 epochs than that in the 500 epochs.
Table 5 shows p-values for differences of DSC in Decathlonfull,
Decathlonmid, and Decathlonsmall.

Figure 6 shows all the DSC values of the test set when using
Decathlonmid with and without the pretrained model. Figures
7, 8 show the representative segmentation results. Figures 7, 8
show the CT images in which PM is ineffective and effective,
respectively. Supplementary Table 1 includes the segmentation
results when the generated dataset consisted of variable-
size–generated nodules. In addition, the Supplementary
Table 2 includes visual evaluation results of cases with low
DSC values.

DISCUSSION

In this study, we proposed a pretrained model for segmentation
constructed from an artificial dataset of lung nodules generated
using the GAN and 3D graph cut. Our results show that the

FIGURE 5 | Mean DSC of the test set when using Decathlonsmall.
Abbreviation: PM, pretrained model; PM300, pretrained model obtained from
300 epochs of training; PM500, pretrained model obtained from 500 epochs of
training.

TABLE 2 | Segmentation metrics of test set using Decathlonfull.

Model DSC mean SD JI mean SD SE mean SD SP mean SD

W/o PM, epoch 100 0.5813 0.2495 0.4505 0.2352 0.7049 0.2514 0.99984 0.00027
W/PM300, epoch 100 0.6510 0.2104 0.5150 0.2110 0.7672 0.1947 0.99987 0.00024
W/PM500, epoch 100 0.5810 0.2474 0.4510 0.2411 0.7511 0.2133 0.99982 0.00020
W/o PM, epoch 300 0.6939 0.2409 0.5741 0.2360 0.7371 0.2542 0.99992 0.00011
W/PM300, epoch 300 0.7221 0.2055 0.5995 0.2172 0.7580 0.2102 0.99991 0.00023
W/PM500, epoch 300 0.6995 0.2302 0.5789 0.2347 0.7514 0.2119 0.99992 0.00012
W/o PM, epoch 500 0.7273 0.2266 0.6120 0.2315 0.7334 0.2464 0.99995 0.00009
W/PM300, epoch 500 0.7301 0.2145 0.6122 0.2239 0.7662 0.2061 0.99990 0.00025
W/PM500, epoch 500 0.7255 0.2424 0.6139 0.2386 0.7428 0.2484 0.99993 0.00012

Abbreviations: DSC, Dice similarity coefficients; JI, Jaccard index; SE, sensitivity; SP, specificity; PM, pretrained model; PM300, pretrained model obtained from 300 epochs of training;
PM500, pretrained model obtained from 500 epochs of training.

TABLE 3 | Segmentation metrics of test set using Decathlonmid.

Model DSC mean SD JI mean SD SE mean SD SP mean SD

W/o PM, epoch 100 0.5744 0.2704 0.4493 0.2486 0.6122 0.2830 0.99993 0.00008
W/PM300, epoch 100 0.6624 0.2305 0.5342 0.2303 0.6999 0.2221 0.99992 0.00012
W/PM500, epoch 100 0.6452 0.2351 0.5155 0.2302 0.7144 0.2302 0.99990 0.00015
W/o PM, epoch 300 0.6600 0.2572 0.5398 0.2509 0.6750 0.2579 0.99993 0.00013
W/PM300, epoch 300 0.6822 0.2470 0.5631 0.2463 0.7234 0.2294 0.99991 0.00015
W/PM500, epoch 300 0.7024 0.2308 0.5823 0.2344 0.7292 0.2201 0.99990 0.00022
W/o PM, epoch 500 0.6708 0.2689 0.5570 0.2629 0.6892 0.2608 0.99991 0.00019
W/PM300, epoch 500 0.7083 0.2039 0.5819 0.2160 0.7479 0.1936 0.99992 0.00012
W/PM500, epoch 500 0.7112 0.2228 0.5909 0.2293 0.7266 0.2215 0.99993 0.00013

Abbreviations: DSC, Dice similarity coefficients; JI, Jaccard index; SE, sensitivity; SP, specificity; PM, pretrained model; PM300, pretrained model obtained from 300 epochs of training;
PM500, pretrained model obtained from 500 epochs of training.
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accuracy of lung cancer segmentation could be improved when this
pretrained model was used for transfer learning in the segmentation
process. The effectiveness of the pretrained model was higher on the
Decathlonmid and Decathlonsmall datasets than that of the pretrained
model on the Decathlonfull dataset, suggesting that our proposed
method may be effective on small datasets.

The pretrained model was more effective when the number of
training epochs was low. In other words, the number of epochs
required to achieve a sufficient segmentation performance was

lower with the pretrained model than without it. This may be
attributed to the fact that the pretrained model provides good
initial values for the trainable parameters of nnUnet.

Previously, a study used U-net and GAN combinedly for multi-
organ segmentation on 3D CT images (Dong et al., 2019). However,
the study did not use a pretrained model. Another study was
conducted on a classification model using a dataset generated with
GANs and a pretrained model (Onishi et al., 2020). To the best of our
knowledge, no studies have been reported on segmentation models
with GANs and a pretrained model. Our results and those of Onishi
et al. (2020) indicate that theGANgenerated dataset, and its pretrained
models may be useful for various tasks.

Several studies have reported the use of artificially generated
datasets using the GAN for data augmentation (Jin et al., 2018;
Onishi et al., 2019; Yang et al., 2019; Muramatsu et al., 2020).
Similarly, in this study, we tried to use a dataset generated using
the GAN for data augmentation. However, we could not obtain
effective results for lung cancer segmentation when the artificial
dataset was used as data augmentation (data not shown in this
article). Instead, we constructed a pretrained model for the
segmentation using the generated lung nodules and performed
transfer learning based on the pretrained model, yielding higher
lung cancer segmentation accuracy. Although it was difficult to
perform accurate classification between the generated lung
nodules and the true lung nodules (Nishio et al., 2020a), the
generated lung nodules had little variation as lung cancer. It is
speculated that mixing the generated lung nodules with the true
lung nodules could distort the distribution as the dataset of lung

TABLE 4 | egmentation metrics of test set using Decathlonsmall.

Model DSC mean SD JI mean SD SE mean SD SP mean SD

W/o PM, epoch 100 0.5124 0.2857 0.3928 0.2555 0.4671 0.2838 0.99997 0.00007
W/PM300, epoch 100 0.5702 0.2513 0.4400 0.2388 0.5183 0.2524 0.99996 0.00007
W/PM500, epoch 100 0.5608 0.2681 0.4352 0.2491 0.5190 0.2761 0.99997 0.00006
W/o PM, epoch 300 0.5515 0.2742 0.4274 0.2510 0.4950 0.2811 0.99997 0.00007
W/PM300, epoch 300 0.6090 0.2414 0.4781 0.2361 0.5511 0.2510 0.99997 0.00007
W/PM500, epoch 300 0.5844 0.2607 0.4574 0.2466 0.5215 0.2719 0.99997 0.00006
W/o PM, epoch 500 0.5525 0.2855 0.4316 0.2573 0.5109 0.2851 0.99997 0.00006
W/PM300, epoch 500 0.5536 0.2856 0.4338 0.2629 0.4934 0.2878 0.99998 0.00005
W/PM500, epoch 500 0.5670 0.2731 0.4435 0.2557 0.5089 0.2786 0.99997 0.00006

Abbreviations: DSC, Dice similarity coefficients; JI, Jaccard index; SE, sensitivity; SP, specificity; PM, pretrained model; PM300, pretrained model obtained from 300 epochs of training;
PM500, pretrained model obtained from 500 epochs of training.

TABLE 5 | p-values for differences of DSC in Decathlonfull, Decathlonmid, and
Decathlonsmall.

Pair Decathlonfull Decathlonmid Decathlonsmall

Epoch 100 — — —

w/o PM vs. w/PM300 7.857 × 10−5 1.877 × 10−7 0.0006931
w/o PM vs. w/PM500 0.9682 0.0001075 0.0009121
w/o PM300 vs. w/PM500 1.606 × 10−5 0.4642 0.1499

Epoch 300 — — —

w/o PM vs. w/PM300 0.2346 0.04381 6.662 × 10−5

w/o PM vs. w/PM500 0.7664 0.000649 0.001194
w/o PM300 vs. w/PM500 0.1493 0.01325 0.3050

Epoch 500 — — —

w/o PM vs. w/PM300 0.9743 0.2322 0.5990
w/o PM vs. w/PM500 0.7243 0.005435 0.8746
w/o PM300 vs. w/PM500 0.9534 0.06595 0.9229

Abbreviations: DSC, Dice similarity coefficients; PM, pretrainedmodel; PM300, pretrained
model obtained from 300 epochs of training; PM500, pretrainedmodel obtained from 500
epochs of training.

FIGURE 6 |DSC values of the test set when using Decathlonmid with andwithout the pretrainedmodel. (A)Cases 1–50, (B) cases 51–100, and (C) cases 101–144.
Note: DSC values are obtained with models obtained from 500 epochs of training. Abbreviation: PM, pretrained model; PM300, pretrained model obtained from 300
epochs of training; PM500, pretrained model obtained from 500 epochs of training.
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FIGURE 7 | Results of segmentation in case 3 of test set. (A) CT images
and ground-truth labels. (B)CT images and segmentation results without PM.
(C) CT images and segmentation results with PM300. (D) CT images and
segmentation results with PM500. Note: Because of PM, a part of the
right upper field is incorrectly segmented as lung cancer in (C) and (D).
Abbreviation: PM, pretrained model; PM300, pretrained model obtained from
300 epochs of training; PM500, pretrained model obtained from 500 epochs of
training.

FIGURE 8 | Results of segmentation in case 104 of the test set. (A) CT
images and ground-truth labels. (B) CT images and segmentation results
without PM. (C) CT images and segmentation results with PM300. (D) CT
images and segmentation results with PM500. Note: With the aid of PM,
lung cancer is correctly segmented in (C) and (D). Abbreviation: PM,
pretrained model; PM300, pretrained model obtained from 300 epochs of
training; PM500, pretrained model obtained from 500 epochs of training.
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cancer segmentation and adversely affect the model training of
nnUnet.

Generally, supervised learning (e.g., nnUnet) requires
annotation data as the dataset. On the datasets of lung cancer
segmentation, clinicians frequently annotate lung cancer on CT
images to build lung cancer datasets, which is time consuming
and labor intensive. Although it is possible to manually annotate
the generated data of our dataset, we decided to use the 3D graph
cut to obtain annotation data of the generated lung nodules. This
made it possible to build an artificial dataset for the segmentation
without requiring any manual task.

Although the generated lung nodules and the pretrained
model based on them could effectively improve the accuracy
of lung cancer segmentation, this pretrained model is not always
effective. For example, the effectiveness of the pretrained model
was not observed in the 500-epoch training of Decathlonfull and
Decathlonsmall. For the former case, this was attributed to the fact
that Decathlonfull had sufficient amount of data and the number
of training epochs was high. In the latter, the number of datasets
was very small (10 cases). Therefore, even when the pretrained
model was used, the training segmentation model was unstable,
and the effectiveness of the pretrained model was limited.

Our study has some limitations. First, we used three public
datasets containing images of lung nodules and/or lung cancer.
However, we did not verify whether the generalizability of our
segmentation model can be improved under external variation.
Second, we focused on lung nodules and/or lung cancer in the
current study. Therefore, the effectiveness of our method for
other diseases or other organs has not been validated. In
particular, it is necessary to confirm whether the automatic
generation of annotation data using the 3D graph cut can be
applied to other diseases and other organs. Third, because of the
GAN model’s limitation (Nishio et al., 2020a), it was impossible
to generate lung nodules larger than 40 mm. Therefore, the effect
of large generated nodules is not investigated in the current study.

In conclusion, the proposed method comprising an artificial
dataset and a pretrained model can improve the accuracy of lung
cancer segmentation; however, it should be further investigated
for other diseases and other organs.
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