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ABSTRACT Stenotrophomonas maltophilia is a Gram-negative bacterium known to cause
respiratory tract infections and other diseases in humans. Here, we describe the isolation
and genome annotation of S. maltophilia siphophage Suzuki. Its 56,042-bp genome
has 83 predicted protein-coding genes and demonstrates similarity with Xylella phages
Sano and Salvo.

S tenotrophomonas maltophilia is a Gram-negative bacterium found in the environ-
ment, most commonly aquatic habitats. Since it is a multidrug-resistant pathogen

capable of causing human infection, it is especially concerning for immunocompro-
mised individuals (1). Due to the emergence of multidrug-resistant organisms, phage
therapy could play an important role by offering an alternative treatment modality to
traditional therapeutic antibacterials (2). Here, we present the complete annotated ge-
nome sequence of S. maltophilia siphophage Suzuki.

Phage Suzuki was isolated as previously described (3) from a freshwater sample col-
lected from Bastrop Bayou in Richwood, TX (29.147505, -95.314471), in 2019. Suzuki
was isolated using S. maltophilia (ATCC 17807) as propagation host using the soft agar
overlay method described by Adams (3). Host bacteria were cultured aerobically at
30°C in tryptone nutrient broth (0.5% tryptone, 0.25% yeast extract, 0.1% glucose,
and 0.85% NaCl [wt/vol]). Phage genomic DNA was purified using a Promega Wizard
DNA cleanup system as previously described (4). DNA sequencing libraries were prepared
as 300-bp inserts using a Swift 2S Turbo kit. and the prepared libraries were sequenced
on an Illumina MiSeq with paired-end 150-bp reads using v2 300-cycle chemistry. Raw
reads were quality controlled using FastQC (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/) and trimmed with FastX-Toolkit v0.11.6 (http://hannonlab.cshl.edu/fastx
_toolkit/), and the resulting 72,362 trimmed reads were assembled using SPAdes v3.5.0
(5) into a single contig at 57-fold coverage. The complete sequence of the contig assem-
bly was confirmed by Sanger sequencing of a PCR product amplified off the contig ends
(primer sequences, 59-CAGTGAACACGCCTGCATC-39 and 59-ACTCGCAGTAGCAAATCGCA-
39). The completed genome sequence was annotated using the CPT Galaxy-Apollo phage
annotation platform (https://cpt.tamu.edu/galaxy-pub) (6–8). Structural annotations were
performed using Glimmer v3 and MetaGeneAnnotator v1.0, and tRNA sequences were
detected using ARAGORN v2.36 and tRNAScan-SE v2.0 (9–12). Gene functions were pre-
dicted using InterProScan v5.48, BLAST v2.9.0, TMHMM v2.0, HHPred, LipoP v1.0, and
SignalP v5.0 (13–18). BLAST searches were executed against the NCBI nonredundant and
UniProtKB Swiss-Prot/TrEMBL databases with a 0.001 maximum expectation value cutoff
(19). Genome-wide DNA sequence similarity was calculated by progressiveMauve v2.4 (20).
All tools were run with default settings unless otherwise specified. Phage morphology
was determined by negatively staining with 2% (wt/vol) uranyl acetate and viewing by
transmission electron microscopy at the Texas A&M Microscopy and Imaging Center.
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Phage Suzuki was determined to be a siphophage (Fig. 1). The genome of Suzuki is
56,042 bp long with 62.6% G1C content and a 94.6% coding density. Out of 83 predicted
protein-coding genes, 30 genes were assigned a putative function; among them is the pre-
dicted endolysin N-acetylmuramidase (InterPro accession no. IPR024408) needed for host
lysis as part of a lysis cassette with nonembedded i- and o-spanins and a holin-antiholin
pair. BLASTp comparisons (E value of ,0.001) showed Suzuki shares 67 similar unique pro-
teins with Xylella fastidiosa phage Sano (GenBank accession no. NC_042344), a 56-kb virulent
siphophage with the potential to treat plant diseases caused by X. fastidiosa and Xanthomonas
(21). At the whole-genome nucleotide level, Suzuki is most similar to Xylella fastidiosa phages
Sano (78.13% overall similarity) and Salvo (GenBank accession no. NC_042345; 60.31% overall
similarity) as determined by progressiveMauve.

Data availability. The genome of Suzuki was deposited in GenBank with accession
number MZ326855. The associated BioProject, SRA, and BioSample accession numbers are
PRJNA222858, SRR14095247, and SAMN18509290, respectively.
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