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“To do or not to do” is a fundamental decision that has to be made in daily life.
Behaviors related to multiple “to do” choice tasks have long been explained by
reinforcement learning, and “to do or not to do” tasks such as the go/no-go task have
also been recently discussed within the framework of reinforcement learning. In this
learning framework, alternative actions and/or the non-action to take are determined
by evaluating explicitly given (overt) reward and punishment. However, we assume that
there are real life cases in which an action/non-action is repeated, even though there
is no obvious reward or punishment, because implicitly given outcomes such as saving
physical energy and regret (we refer to this as “covert reward”) can affect the decision-
making. In the current task, mice chose to pull a lever or not according to two tone cues
assigned with different water reward probabilities (70% and 30% in condition 1, and 30%
and 10% in condition 2). As the mice learned, the probability that they would choose to
pull the lever decreased (<0.25) in trials with a 30% reward probability cue (30% cue)
in condition 1, and in trials with a 10% cue in condition 2, but increased (>0.8) in trials
with a 70% cue in condition 1 and a 30% cue in condition 2, even though a non-pull
was followed by neither an overt reward nor avoidance of overt punishment in any trial.
This behavioral tendency was not well explained by a combination of commonly used
Q-learning models, which take only the action choice with an overt reward outcome
into account. Instead, we found that the non-action preference of the mice was best
explained by Q-learning models, which regarded the non-action as the other choice,
and updated non-action values with a covert reward. We propose that “doing nothing”
can be actively chosen as an alternative to “doing something,” and that a covert reward
could serve as a reinforcer of “doing nothing.”

Keywords: reinforcement learning, reward, doing nothing, mouse behavior, decision making

INTRODUCTION

Animals decide what to do depending on their past experience, and try to act to increase reward
and decrease punishment as much as possible (Mazur, 1990). In go/no-go tasks, an action after one
cue is rewarded, whereas the same action after another cue is punished (Carandini and Churchland,
2013). After learning the task, animals choose to act in response to the former cue and to not act
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in response to the latter one. This choice-learning depends on
explicitly given (overt) outcomes (Guitart-Masip et al., 2012). In
multiple choice tasks, animals choose one of the multiple actions
with different outcomes (including reward and/or punishment)
in each trial. For example, when an action with a large reward
is presented in choice 1 and another action with a small reward
is presented simultaneously in choice 2, and these actions have
the same cost (e.g., left and right turns), animals choose choice
1. By contrast, when the decision is over choice 2 or another
action with a smaller reward (choice 3), animals choose choice
2. Thus, the decision on which action to choose depends on
the relative outcome between choices (Wang et al., 2013). Such
animal behaviors have been understood in the framework of
reinforcement learning, in which the agents learn the policy to
take actions (and/or non-action) to maximize some overt reward
or avoidance of punishment (Schultz et al., 1997; Sutton and
Barto, 1998; Tremblay and Schultz, 2000; Rangel et al., 2008).
In this framework, the non-action is considered irrelevant to
any overt reward or punishment, and is frequently neglected
from the analysis.

However, animals sometimes appear to actively choose non-
action, even if the non-action results in no overt reward or
avoidance of overt punishment. In such cases, animals may find
a positive value (covert reward) in not acting because non-
action saves the physical cost of acting and negative feelings such
as disappointment and regret that may emerge when action is
followed by no reward (Anderson et al., 2003; Niv, 2007; Kühn
et al., 2009; Lee et al., 2016; Cheval et al., 2018; Sweis et al., 2018).
If this is the case, can learning of the non-action be explained
by an increase in the value of the non-action according to such
a covert reward? If not, is the non-action chosen because of the
reduction in the action value?

To address these issues, we developed a new behavioral
paradigm in which head-fixed mice choose to either pull a lever
with their right forelimb or to not pull the lever after either of
two tone cues with different reward probabilities is presented in
each trial (Terada et al., 2018). Although the head-fixed condition
was more stressful for the mice than a free-moving condition, we
head-fixed them so that two-photon and/or one-photon calcium
imaging could be applied during this behavioral paradigm in
future experiments to detect the relevant cortical activity.

During learning of this task, the mice decreased their action
rate to <0.25 in trials with a cue assigned to a low reward
probability when the other trials had a high reward probability,
whereas they increased their action rate to >0.8 when the other
trials had a much lower reward probability. To explain this
behavior, we assumed that the current task was a two-choice task
with pull and non-pull choices, and employed several Q-learning
models from the theory of reinforcement learning (Schultz et al.,
1997; Sutton and Barto, 1998). The behavior was well explained
by the models that updated the non-pull value with a covert
reward every time the non-pull was chosen. In addition, our
models suggest that the subjective goodness of the overt reward
depended on the inverse of the total expected outcome included
in the task. We propose that the animals learn “not to do,” even
if no reward is explicitly presented as the outcome of “not to do,”
and no punishment is explicitly given as the outcome of “to do.”

MATERIALS AND METHODS

Animals
All animal experiments were approved by the Institutional
Animal Care and Use Committee of the University of Tokyo,
Japan. Male C57BL/6 mice (aged 2–3 months at the starting point
of the behavioral training; SLC, Hamamatsu, Shizuoka, Japan)
were used in the experiments in this study. The mice had not
been used for other experiments before this study. All mice were
provided with food and water ad libitum, and were housed in a
12:12 h light–dark cycle starting at 8 am. All behavioral sessions
were conducted during the light period.

Head-Plate Implantation
Mice were anesthetized by intramuscular injection of ketamine
(74 mg/kg) and xylazine (10 mg/kg) before an incision was
made in the skin covering the neocortex. After the mice had
been anesthetized, atropine (0.5 mg/kg) was injected to reduce
bronchial secretion and improve breathing, an eye ointment
(Tarivid; 0.3% w/v ofloxacin; Santen Pharmaceutical, Osaka,
Osaka, Japan) was applied to prevent eye-drying, and lidocaine
jelly was applied to the scalp to reduce pain. Body temperature
was maintained at 36–37◦C with a heating pad. After the exposed
skull was cleaned, a custom head-plate (Tsukasa Giken, Fuji,
Shizuoka, Japan) was attached to the skull using dental cement
(Fuji lute BC; GC, Bunkyo, Tokyo, Japan; and Bistite II or
Estecem II; Tokuyama Dental, Taito, Tokyo, Japan). The surface
of the intact skull was coated with dental adhesive resin cement
(Super bond; Sun Medical, Moriyama, Shiga, Japan) to prevent
drying. An isotonic saline solution with 5% w/v glucose and the
anti-inflammatory analgesic carprofen (5 mg/kg, Rimadyl; Zoetis,
Parsippany, NJ, United States) was injected once intraperitoneally
after the surgery. Mice were allowed to recover for 3–5 days
before behavioral training.

Behavioral Training
After recovery from the head-plate implantation, the mice were
water-deprived in their home cages. They received about 1 mL
water per session every day, and were sometimes given additional
water to maintain their body weight at 80–85% of their initial
weight throughout the experiments. The mice were usually
trained for five consecutive days per week, and were given a
1.2–1.4 g agar block (Oriental Yeast Co., Ltd., Itabashi, Tokyo,
Japan) on days without training. The behavioral apparatus (sound
attenuation chamber, head-fixing frame, body holder, sound
presentation system, water-supply system, and integrated lever
device) was manufactured by O’hara & Co., Ltd. (Nakano, Tokyo,
Japan). The lever position was monitored by a magnetic sensor
and was continuously recorded at an acquisition rate of 1000 Hz
by a NI-DAQ (USB-6001, USB-6221, USB-6229, or PCIe-6361;
National Instruments, Austin, TX, United States). The sound
control and water delivery were controlled using a program
written in LabVIEW (National Instruments).

Pre-training
On the first pre-training day, mice were inserted into body
chambers and their heads were fixed to the task device for 40 min.
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Two tones (6 and 10 kHz pure tones, each with a duration of 0.1 s)
were alternately presented every three trials. During the first 10–
20 trials, a 4 µL drop of water was given from a spout in front
of the mice immediately after the tone cues. Over 2–3 days, the
mice gradually learned to obtain the water reward by licking the
spout after the tone cues. They were then changed to the next
task, in which they had to pull the lever more than 1.6 mm for
longer than 0.2 s to obtain the reward, instead of just licking the
spout. The weight of the lever was fixed at 0.07 N, which was
more than twice that used in our previous lever-pull task (0.03 N)
(Masamizu et al., 2014). Over 2–5 days, the mice learned to pull
the lever for a duration of more than 0.2 s within 1 s after the cue
presentation (at 91.9± 7.2% of trials after presentation of tone A,
and 91.0± 10.0% after tone B, in the last session). The mice then
started the lever-pull task with different reward probabilities.

Lever-Pull Task With Different Reward Probabilities
In the lever-pull task with different reward probabilities
(Figure 1A), either of the tone cues used in the pre-training
sessions was randomly presented, but tone A was presented in
30% of trials and tone B was presented in 70% of trials. The
mice were head-fixed in a way that allowed them to pull the
lever within 1 s after the cue presentation, as in the pre-training
sessions. The difference from the pre-training sessions was that
a different reward probability was assigned to each tone cue. In
condition 1, if the mice pulled the lever for longer than 0.2 s,
they received a 4 µL drop of reward water at probabilities of 70%
and 30% in tone A and B trials, respectively, while in condition
2, the corresponding probabilities were 30% and 10% for tone A
and B trials, respectively. If they did not pull the lever, they did
not receive the water reward. The next trial started 3–4 s after
the last time point at which the lever was returned to the home
position (after the lever went below the 1.6 mm threshold), or
after the presentation of the previous tone cue when the lever did
not exceed the threshold. The presentation probability for tone A
was fixed at 30% so that the expected reward per unit of time (if
the mice pulled the lever in all trials) was similar between both
cues (expected rewards in tone A and B, 0.7 × 0.3 and 0.3 × 0.7
in condition 1, and 0.3× 0.3 and 0.1× 0.7 in condition 2).

Analysis of Behavioral Data
The data were analyzed using MATLAB (MathWorks, Natick,
MA, United States). The behaviors of 13 mice were used for
condition 1, and eight mice for condition 2. In these mice, the
lever-pull choice probability had decreased below 0.25 in tone B
trials by training session 20. The latter session of two consecutive
sessions in which the mice pulled the lever for more than 80%
of tone A trials and less than 25% of tone B trials was set
as the last session. No apparent abnormal choice behavior was
observed on the day after a break (e.g., on Monday). Therefore,
the behavior of the mice was analyzed from the start session
to the last session. To omit periods when the motivation of the
mice could be considered to be too high or too low within each
session, the behavioral data used was taken from the first trial
after the mice obtained 30% of the total amount of the reward
they got through the session to the last trial before they obtained
70% of the total amount of the reward. The lever-pull rates (the
number of successful lever-pull trials divided by the number of

presented cues) averaged over the tone A and tone B trials in
the early part of each session covering the first 30% of rewarded
trials, the middle part of each session covering the 30th–70th
percentiles of the rewarded trials, and the late part of each session
covering the 70th–100th percentiles of the rewarded trials, were
0.613 ± 0.100, 0.543 ± 0.123, and 0.253 ± 0.087, respectively in
condition 1 (n = 13 mice), and 0.555± 0.101, 0.481± 0.097, and
0.367± 0.115 in condition 2 (n = 8 mice).

Although movement onset latency between the cue
presentation and movement onset has frequently been used
to estimate attention and reward expectation (Robbins, 2002;
Ohmura et al., 2009), it was very similar between the two tone
trials in the first session (condition 1, 136.4 ± 28.1 ms vs.
138.4 ± 24.0 ms, p = 0.644; condition 2, 174.5 ± 33.7 ms vs.
174.7 ± 28.1 ms, p = 0.640, Wilcoxon signed rank test), and was
not significantly longer in tone B trials than in tone A trials in the
last session (condition 1, 155.1 ± 48.6 ms vs. 202.3 ± 103.4 ms,
p = 0.094; condition 2, 187.6 ± 53.3 ms vs. 191.8 ± 72.6 ms,
p = 1.0, Wilcoxon signed rank test). As the movement onset
latency was defined as the latency from the cue onset to the
first time point that the lever exceeded the threshold, it might
be too short to differentiate session-by-session and trial-by-trial
variability in latency, even if it existed. Therefore, instead of
the movement onset latency, we used the lever-pull duration in
unrewarded trials. This was defined as the duration over which
the lever trajectories starting within the response window were
above the threshold (Figure 1C).

Reinforcement Learning Models
Data Preparation
All behavioral data were summarized as binary data with action
(to pull or not), cue type, and reward. The trial sequence in each
session was determined by the same criterion as the behavioral
analyses. The sequences from a single animal were concatenated
through all sessions (Figure 2A, top). The series of data were
then separated into two sequences consisting of the same tone cue
trials (Figure 2A, bottom), and were used to model the learning
process of the mice.

Q-Learning Models
We used several extended versions of the Q-learning model
(Sutton and Barto, 1998; Barraclough et al., 2004; Ito and Doya,
2009; Guitart-Masip et al., 2012; Akaishi et al., 2014; Skvortsova
et al., 2014; Katahira, 2015; Palminteri et al., 2015; Bari et al.,
2019), assuming that the current task is a two-choice task with
pull and non-pull choices (Guitart-Masip et al., 2012; Swart et al.,
2017). First, we built a “simple model” that assumed a value for
pulling of the lever QX,pull(t) and a value for non-pulling of the
lever QX,non-pull(t) in the t-th trial for each tone cue (X ∈ {A, B}).
QX,pull(t) was updated when the mice pulled the lever as follows:

QX,pull (t + 1) = QX,pull (t)+ αl(RX,pull(t)− QX,pull(t)) (1)

RX,pull (t) = κrrX (t) (2)

where αl is the learning rate, κr is the subjective goodness
of a water reward, and rX(t) is 1 when the water reward
was delivered, or is otherwise 0 in the t-th trial for tone X.
QX,non-pull(t) was updated when the mice did not pull the lever
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FIGURE 1 | Behavioral task and performance changes over sessions. (A) Schematic illustration of the lever-pull task with different reward probabilities.
(B) Representative lever trajectories of an example mouse in condition 1 in sessions 1 and 9. (C) Representative lever trajectories (gray lines) for the same mouse as
in (B) aligned to the onset of the tone presentation in tone A (left) and B (right) trials with unrewarded successful lever-pulls in sessions 1 (top) and 9 (bottom). A blue
arrow indicates the lever-pull duration. (D) Representative changes in lever-pull rate for the same mouse as in (B) in tone A (red) and B (blue) trials across sessions.
(E) Changes in mouse-averaged (n = 13) lever-pull rate in tone A (red) and B (blue) trials in condition 1. L indicates the last session. *p < 0.05, **p < 0.01, Wilcoxon
signed rank test. (F) Lever-pull duration in unrewarded trials in the first and last sessions in condition 1. Each line represents an individual mouse, and red and blue
dots represent the average of the mice in tone A and B trials, respectively. **p < 0.01, Wilcoxon signed rank test. (G) Changes in mouse-averaged (n = 8) lever-pull
rate in tone A (red) and B (blue) trials in condition 2. *p < 0.05, **p < 0.01, Wilcoxon signed rank test. (H) The same as (F) in condition 2. **p < 0.01, Wilcoxon
signed rank test. See also Supplementary Figure S1.
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FIGURE 2 | Simple Q-learning model to explain the pull-choice probability. (A) Representative time course of the 10-trial moving-average of the pull-choice across
nine concatenated sessions in condition 1 (top), and the time course separated into tone A (bottom, left) and tone B (bottom, right) trials. Even sessions are shaded.
Asterisks indicate short periods in which the pull-choice probability decreased in both tone A and B trials. (B,C) Representative predicted pull-choice probability of
the simple (B) and forgetting (C) models in tone A (left) and B (right) trials. Orange and cyan traces represent the 10-trial moving-average of the actual pull-choice
[the same as in (A)]. Red and blue traces represent the predicted pull-choice probability.

as follows:

QX,non-pull (t + 1) = QX,non-pull (t)

+ αl
(
RX,non-pull(t)− QX,non-pull (t)

)
(3)

RX,non-pull (t) = κrrX (t) = 0 (4)

because rX(t) was always 0 in non-pull trials. In the “F (forgetting)
model” (Barraclough et al., 2004; Ito and Doya, 2009), QX,pull(t)
and QX,non-pull(t) were updated in the same manner as in the
simple model, but QX,pull(t) in trials without the lever-pull was
also updated as follows:

QX,pull (t + 1) = (1− αf) QX,pull (t) (5)

where αf is the forgetting rate. In any models without “F”
described below, αf was set to zero. QX,non-pull(t) in trials with
the lever-pull was updated as follows:

QX,non-pull (t + 1) = (1− αf) QX,non-pull (t) (6)

The pull-choice probability for the (t + 1)-th trial for
tone X, PX,pull(t + 1), was calculated using the following
softmax function:

PX,pull (t + 1) =
exp

{
QX,pull (t)

}
exp

{
QX,pull (t)

}
+ exp

{
QX,non-pull (t)

}
=

1
1+ exp{−(QX,pull (t)− QX,non-pull (t))}

(7)
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We set the initial value QX,pull(1) to be 0.9 κr and QX,non-pull(1) to
be 0 because the mice pulled the lever with the reward probability
of 100% in pre-training sessions before the first model-fitted
session started. Since RX,non-pull(t) was zero in equation (4),
QX,non-pull(t) = 0 through the whole sessions in all models,
except for the following “saving” and its derivative models. Thus,
equation (7) in the “simple” and “F models” equals to

PX,pull (t + 1) =
1

1+ exp{−QX,pull (t)}
(8)

In the “cost model” and “cost-F model” (Skvortsova et al.,
2014), RX,pull(t) is calculated as follows:

RX,pull(t) = κr rX (t)− κc (9)

where κc (≥0) represents the subjective cost accompanying
pulling of the lever. RX,pull(t) can also be reduced by the
aversiveness when the lever-pull is not rewarded. In this case,
RX,pull(t) can be written as κr rX(t)−κe (1− rX(t)), where κe
(≥0) represents the subjective emotion evoked by an unrewarded
lever-pull and is deformed as follows:

RX,pull (t) = (κr + κe) rX (t)− κe (10)

As equations (9) and (10) are mathematically equivalent, we
considered only equation (9) as the cost model. PX,pull(t + 1) was
determined by equation (8).

In the “irregular REL (irREL) model” and “irREL-F model,”
we modified the RELATIVE model, which refers to the value of
the “context” when updating the Q-value (Palminteri et al., 2015;
Klein et al., 2017). In our task, we assumed that the “context” was
the set of the task, and that in tone A trials, the counterfactual
situation was tone B trials, and vice versa. When the mice pulled
the lever in the t-th trial for tone X and the t-th trial for tone X
corresponded to the tAB-th trial among the total trials including
both tone A and B trials, QX,pull(t + 1) was calculated referring
to the contextual value V(tAB) calculated with the estimated
counterfactual option value QY ,pull(tY ) (Y (∈ {B, A}) as follows:

QX,pull (t + 1) = QX,pull (t)

+ αl
(
RX,pull(t)− V(tAB)− QX,pull (t)

)
(11)

V (tAB + 1) = V (tAB)+ αv (RV (tAB)− V(tAB)) (12)

RV (tAB) = (RX,pull(t)+ QY,pull (tY))/2 (13)

where αv is the update rate of contextual value V. RX,pull(t) is
determined as equation (2). V was updated every trial regardless
of the tone type, and was used for the update of both QA,pull
and QB,pull. QY,pull(tY ) is the value for the pull for tone Y in the
tone Y trial immediately before the t-th trial for tone X. When
the lever was not pulled in the t-th trial for tone X, QX,pull(t)
was updated according to equation (5). In tone A (or B) trials,
QB,pull (or QA,pull) was not updated. PX,pull(t + 1) was calculated
according to equation (8).

In the “saving” and “saving-F” models, QX,pull(t) was updated
according to equations (1), (2), and (5), and QX,non-pull(t)
was updated when the mice did not pull the lever as in

equation (3) and

RX,non-pull (t) = κr rX (t)+ψ (14)

where ψ (≥0) is the goodness of the covert reward, which is
assumed to be constantly obtained as a result of a non-pull (the
saving of the cost accompanying the lever-pull) (Lee et al., 2016;
Cheval et al., 2018). When the lever was not pulled, rX(t) was
zero, so RX,non-pull(t) was ψ. QX,non-pull(t) decayed when the
mice pulled the lever according to equation (6). The pull-choice
probability for the (t + 1)-th trial for tone X, PX,pull(t + 1), was
calculated according to equation (7).

In the “O (offset)” model, the point of inflection of the
sigmoidal function is offset to the right to let PX,pull(t + 1) go
to <0.5 when QX,pull(t) = 0, and PX,pull(t + 1) is estimated
as follows:

PX,pull (t + 1) =
1

1+ exp{−(QX,pull (t)− βo κr)}
(15)

where βo (0 < βo < 1) is an offset term of the sigmoidal function
(or non-pull bias) and is constant throughout the session. If
QX,pull(t) is much smaller than βo, PX,pull(t+ 1) gets close to zero.

In the “I (inertia)” model, we took the history of pull and non-
pull choices in the t-th trial into account (Akaishi et al., 2014;
Katahira, 2018). When the lever was pulled in the tAB-th trial
among the total trials including both tone A and B trials, choice
trace C(tAB) was updated as follows:

C (tAB + 1) = (1− τ) C (tAB)+ τ ϕ (16)

where τ is a decay constant of the choice history (0 ≤ τ ≤ 1) and
ϕ (>0) is the subjective weight for repeating the same choice. The
initial value C(1) was set to zero. When the lever was not pulled
in the tAB-th trial,

C (tAB + 1) = (1− τ) C (tAB)− τ ϕ (17)

Therefore, C ranged from −ϕ to ϕ. PX,pull(t + 1) was calculated
as follows:

PX,pull (t + 1)

=
1

1+ exp[−{(QX,pull (t)− QX,non-pull (t))+ C (tAB)}]
(18)

The parameters used for each model are summarized in Table 1.

Model Fitting
Maximum log likelihood estimation was used to fit the
parameters used in all models. The likelihood (L) was determined
using the following formula:

L =
∏

t
z(t) (19)

where z(t) is the likelihood for the t-th trial, as follows:{
z (t) = P (t) if a (t) = 1
z (t) = 1− P (t) if a (t) = 0

(20)
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TABLE 1 | Summary of the free parameters used in each Q-learning model.

When the lever was pulled,

QX,pull (t+ 1) = QX,pull (t)+ αl
(
κr rX (t)− κc − V(tAB)−QX,pull (t)

)
QX,non-pull (t+ 1) = (1− αf)QX,non-pull (t)

When it was not pulled,

QX,pull (t+ 1) = (1− αf) QX,pull (t)

QX,non-pull (t+ 1) = QX,non-pull (t)+ αl
(
κr rX (t)+ψ−QX,non-pull (t)

)
Action probability calculation:

PX,pull (t+ 1) =
1

1+ exp[−{(QX,pull (t)−QX,non-pull (t)− βo κr)+ C (tAB)}]

αl αf κr κc ψ αv βo τ ϕ

Simple var. 0 var. 0 0 0 0 0 0

Forgetting var. var. var. 0 0 0 0 0 0

Cost var. 0 var. var. 0 0 0 0 0

irREL var. 0 var. 0 0 var. 0 0 0

Saving var. 0 var. 0 var. 0 0 0 0

Cost-F var. var. var. var. 0 0 0 0 0

irREL-F var. var. var. 0 0 var. 0 0 0

Saving-F var. var. var. 0 var. 0 0 0 0

Cost-F-O var. var. var. var. 0 0 var. 0 0

irREL-F-O var. var. var. 0 0 var. var. 0 0

F-O-I var. var. var. 0 0 0 var. var. var.

Cost-F-O-I var. var. var. var. 0 0 var. var. var.

irREL-F-O-I var. var. var. 0 0 var. var. var. var.

Saving-F-I var. var. var. 0 var. 0 0 var. var.

O var. 0 var. 0 0 0 var. 0 0

I var. 0 var. 0 0 0 0 var. var.

F-I var. var. var. 0 0 0 0 var. var.

Cost-O-I var. 0 var. var. 0 0 var. var. var.

irREL-O-I var. 0 var. 0 0 var. var. var. var.

Cost-irREL-F-O-I var. var. var. var. 0 var. var. var. var.

var.: variable. When αv is zero, V(tAB) is zero. When both τ and ϕ are zero, C(tAB) is
zero. See “Materials and Methods” for details.

We took the logarithm of this likelihood and multiplied it
by −1 so that we could use the fmincon function with
appropriate lower and upper bounds for each free parameter
in MATLAB.

To compare the models, Akaike’s information criterion (AIC)
and Bayesian information criterion (BIC) were calculated using
the following formulas (Daw, 2011):

AIC = −2 log (L)+ 2 K (21)

BIC = −2 log (L)+ K log(Tn) (22)

where K is the number of free parameters to fit, and Tn is the
number of trials used for fitting.

For visual presentation of time series of the estimated Q-values
in tone A and B trials in the saving-F model (Figure 9), the values
for each animal were normalized by the spline interpolation.
The estimated values were up-sampled to the series of 5000
data points by spline function, and then averaged across animals
in each condition.

Model Simulation
To analyze the generative performance of the saving-F and
saving-F-I models, we used these models to simulate the lever-
pull choice behavior of the mice (Ahn et al., 2008; Palminteri
et al., 2015, 2017). For each mouse, the same sequences of tones
across sessions were used as in the actual settings, and the fitted
values of the free parameters were used as substitutes for the
equations above. In each trial, the lever-pull choice (pull or
non-pull) was calculated randomly according to the pull-choice
probability estimated by equation (7) in the saving-F model, and
equation (18) in the saving-F-I model. When the lever was pulled
in the simulated t-th trial in which it was actually pulled, rX(t)
was the actual rX(t). When the lever was pulled in the simulated
t-th trial in which it was not actually pulled, rX(t) was defined
according to the determined probability (condition 1, 70% and
30% in tone A and B trials, respectively; condition 2, 30% and
10% in tone A and B trials, respectively). The initial values of
QX,pull(1), QX,non-pull(1), and C(1) were the same as those for the
fitting. The simulation was repeated 1000 times. The lever-pull
rate was calculated in the same way as the analysis of the actual
behavior and averaged over the 1000 simulations. The goodness
of the generative performance was estimated as the proportion of
trials in which the simulated pull/non-pull-choice was the same
as the actual pull/non-pull-choice.

Statistical Analysis
Data are presented as mean ± standard deviation unless
otherwise indicated. Error bars in the line plots represent
the standard error of the mean. The Wilcoxon signed rank
test and the Wilcoxon rank-sum test were used for statistical
testing in the behavioral analyses. All statistical tests performed
were two-tailed.

RESULTS

The Mice Chose to Act in Relatively
Higher Reward Probability Trials and to
Not Act in Relatively Lower Reward
Probability Trials
We trained head-fixed mice to perform a lever-pull task with
different reward probabilities (Figure 1A). In condition 1, a
group of mice (n = 13 mice) received a water reward at a
probability of 70% after a lever-pull in trials with tone A
presentation (tone A trials) and at 30% after a lever-pull in trials
with tone B presentation (tone B trials). If they did not pull the
lever, they did not receive a water reward. In pre-training, the
mice received a water reward every time they pulled the lever after
either tone cue was presented (see “Materials and Methods”).
As the training days progressed, the lever-pull rate (the session-
averaged lever-pull-choice probability) in tone A trials remained
high (approximately 0.8), while the lever-pull rate in tone B trials
decreased to less than 0.25 (Figures 1B,D,E and Supplementary
Figure S1A). In the last session, we also found that the lever-
pull duration in unrewarded trials was longer in tone A trials
than in tone B trials (Figures 1C,F). These results suggest that as
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the session progressed, the mice came to expect the reward more
strongly, and learned to pull the lever for longer in tone A trials
than in tone B trials.

In condition 2, another group of mice (n = 8 mice) were
trained to perform the lever-pull task with the reward delivered
in 30% of lever-pulls in tone A trials and 10% of lever-pulls in
tone B trials. As the training progressed, the lever-pull rate in
tone A trials in condition 2 increased to >0.8, even though the
reward probability was the same (30%) as in the tone B trials in
condition 1 (Figure 1G and Supplementary Figure S1B), and the
lever-pull rate in tone B trials decreased to <0.25 (Figure 1G and
Supplementary Figure S1B). In the last session, the lever-pull
duration in unrewarded tone A lever-pull trials was longer than
that in tone B trials (Figure 1H). These results indicate that the
decision on whether to pull or not does not depend solely on the
absolute outcome assigned to each tone.

The number of rewarded lever-pulls per minute was similar
between the first session and the last session (condition 1,
2.74 ± 0.92 vs. 2.66 ± 0.53, p = 0.735; condition 2, 1.30 ± 0.59
vs. 1.30 ± 0.20, p = 0.945, Wilcoxon signed rank test). Although
the saving of working time (lever-pull time) could mean more
overt (water) reward availability, the similar number of rewards
per minute between the first and last sessions suggests that the
reason why the mice decreased the pull rate in tone B trials was
not because the time saved by skipping the lever-pull in tone B
trials increased the overt reward. We postulated that the mice
might learn a strategy to not pull in tone B trials to save on the
pull-associated cost.

The Simple Q-Learning Model Does Not
Explain the Mouse Choice Behavior
Throughout Learning
We then attempted to model these mouse behaviors in
the framework of reinforcement learning. In a standard
reinforcement learning scheme such as Q-learning, the outcome
after action choices is evaluated according to an explicitly given
reward (Sutton and Barto, 1998). To apply this to our task, we
assumed that the mice chose either of the pull or non-pull choices.
When the action value defined as Qaction and the non-action value
defined as Qnon-action are assigned to a sigmoidal function, the
action probability, Paction, is written as follows:

Paction =
1

1+ exp{−(Qaction − Qnon-action)}
(23)

The action has some value because it has a probability
of obtaining a reward (that is, Qaction is positive), whereas
the non-action may have no value because it presents no
opportunity to obtain the reward (that is, Qnon-action is zero).
If so, the action rate should be >0.5 in this equation. We
used this simplest Q-learning model (“simple model”) as the
starting model to predict the sequence of lever-pull choices
concatenated session-to-session for each mouse (Figure 2A; see
“Materials and Methods”).

As expected, the predicted pull-choice probability in tone B
trials was not below 0.5, and the trial-by-trial fluctuation of
the pull-choice probability was poorly predicted by the simple

model (Figure 2B). We then introduced the forgetting rate αf,
which represents decay of the action value when the action is not
chosen (Barraclough et al., 2004; Ito and Doya, 2009; Katahira,
2015). In this “forgetting (F) model,” adding αf to the simple
model resulted in a better fit to the trial-by-trial fluctuation
of pull-choice probability (Figure 2C), although the predicted
pull-choice probability in tone B trials was still not below 0.5.

Assuming That Non-action Saves the
Cost of Pulling Explains the Mice’s
Behavior
Next, we assumed three improved models with extra parameters
to fit the decreased pull-choice probability in tone B trials. In
the first “cost model,” we considered that some physical cost
accompanied the action (pull). If the expected reward per pull
was lower than the physical cost per pull, the pull value would be
negative, and as a result, the predicted action choice probability
would decrease to <0.5. In the cost model, a constant subjective
cost κc accompanying the lever-pull (since the weight of the lever
was constant in the whole session) was introduced into the simple
model (Skvortsova et al., 2014).

In the second model, we assumed that the animals updated
QX,pull according to the relative goodness of the reward outcome
in tone X trials, comparing it to the expected reward in
this task context (Palminteri et al., 2015; Klein et al., 2017).
The expected reward in the task context was calculated as
the mean of the actual reward in the factual tone trials
and the Q-value in the counterfactual tone trials (if in tone
A trials, consider QB,pull, and vice versa). This model is
analogous to the “RELATIVE model” (Palminteri et al., 2015),
which suggested the relative value compared with the expected
reward obtained in the context as the critical decision-making
factor, and it well explained the choice action behavior when
the different cues were simultaneously presented. Although
tones A and B were not simultaneously presented in the
current task, we assumed that the mice determined whether
to pull according to the difference in the values between the
presented and unpresented (factual and counterfactual) tone
trials. If QA,pull is much larger than QB,pull in this model,
the contextual value (task-environment value) V should be
larger than the actual reward in tone B trials. Then, QB,pull
would be updated to be negative, resulting in PB,pull < 0.5
(see “Materials and Methods”). As the different cues are not
simultaneously presented, we call this model the “irregular
RELATIVE (irREL) model.”

In the third “saving model,” we assumed that the animals
might find a positive value (“covert reward”) in the non-action
(non-pull) because a non-pull would save the physical cost
involved in performing the lever-pull (or allow a rest), and avoid
the negative emotion after a lever-pull was not rewarded (Lee
et al., 2016; Cheval et al., 2018; Sweis et al., 2018). Thus, in this
scenario, if the pull value is smaller than the non-pull value, the
predicted pull-choice probability would be <0.5. In the saving
model, a constant reflecting the subjective goodness of the cost-
saving (as covert reward) ψ accompanying the non-pull was
introduced into the simple model, although the mice did not

Frontiers in Behavioral Neuroscience | www.frontiersin.org 8 September 2020 | Volume 14 | Article 141

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-14-00141 September 2, 2020 Time: 17:5 # 9

Tanimoto et al. Non-action Learning With Covert Reward

explicitly obtain anything when they did not pull the lever (see
“Materials and Methods”).

In all three models, the long-term trends in the
pull-choice probability fitted well for both tone trials,
including the pull-choice probability under 0.5 in tone B
trials (Figures 3A–C).

Next, to fit the trial-by-trial variability, we added the forgetting
rate αf to the cost, irREL and saving models (cost-F, irREL-F, and
saving-F models), and then predicted the pull-choice probability
again. In the cost-F and irREL-F models, the fitting of the trial-
by-trial variability of the pull-probability in both tone trials
appeared to be better than that in the cost and irREL models
(Figures 4A,B). However, in approximately half of mice, the pull-
choice probability in tone B trials approached 0.5 (Figures 4A,B).
This was probably because repeated non-pull behaviors in tone B
trials attracted the negative QB,pull to zero by multiplying (1−αf)
many times. By contrast, in the saving-F models, the prediction
of the trial-by-trial fluctuations was better, with the prediction of
the lever-pull choice probability of <0.5 being well maintained
by all mice in conditions 1 and 2 (Figure 4C and Supplementary
Figure S2). Adding αf considerably reduced the AIC and BIC
values in the saving model, as well as in the simple model,
in almost all mice (Figure 4D). This indicates that αf was an
important parameter to explain mouse behavior in the models,
especially those in which it did not directly inhibit the prediction
of a lever-pull choice probability of <0.5.

As above, the negative value of Qpull in “cost-F” and “irREL-F
models” switches the direction of the αf effect (from decreasing

to increasing to zero; see “Discussion”). To reduce the pull-
choice probability in tone B trials beyond 0.5 in the “+F
models,” we also added a parameter to modify Qpull after
the update; namely, the offset βo was added to the equation
for the pull-choice probability (see “Materials and Methods”)
to shift the inflection point. If Qpull is below βo, the pull-
choice probability is less than 0.5. The introduction of βo
to the cost-F and irREL-F models (cost-F-O and irREL-F-
O models, respectively) reduced the pull-choice probability
in tone B trials beyond 0.5 (Figures 5A,B). However, the
predictions appeared to be worse than those of the saving-F
model (Figure 4C).

Over some short periods of time, the choice probability
in tone A and B trials appeared to change together (asterisks
in Figure 2A). It is reported that animals show persistency
in previous choices (inertia) (Akaishi et al., 2014; Bornstein
et al., 2017; Bari et al., 2019). To fit the choice behavior
better, we further introduced the tendency to repeat the same
choice (inertia) into the equation for the choice probability.
This inertia derives from the pull and non-pull-choice
history, independent of the tone type or reward presence
or absence (see “Materials and Methods”) (Akaishi et al.,
2014; Katahira, 2018). When this inertia was introduced
into the cost-F-O and irREL-F-O models (cost-F-O-I and
irREL-F-O-I models, respectively) and their derivatives, the
predictions improved (Figures 5C–E and Supplementary
Figure S3). Similarly, when the inertia was introduced
into the saving-F model (saving-F-I model; see “Materials

FIGURE 3 | Three Q-learning models to explain the pull-choice probability. Six representative predicted pull-choice probabilities of the models in tone A (left) and B
(right) trials in conditions 1 (top three rows) and 2 (bottom three rows). Orange and cyan traces represent the 10-trial moving-average of the actual pull-choice (the
same as in Figure 2). Red and blue traces represent the predicted pull-choice probability in cost (A), irREL (B), and saving (C) models.
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FIGURE 4 | The saving-F model well-explains the pull-choice probability and trial-by-trial fluctuation. (A–C) Six representative predicted pull-choice probabilities of
the models in tone A (left) and B (right) trials in conditions 1 (top three rows) and 2 (bottom three rows). Orange and cyan traces represent the 10-trial
moving-average of the actual pull-choice (the same as in Figure 2). Red and blue traces represent the predicted pull-choice probability in cost-F (A), irREL-F (B),
and saving-F (C) models. (D) Differences in AIC (1AIC, left) and BIC (1BIC, right) between the models (simple, cost, irREL, or saving) with and without introduction
of αf as a free parameter (w/F-term–w/o/F-term). Top, condition 1. Bottom, condition 2. Each dot indicates a single mouse. A negative value indicates that the model
prediction with αf was better than that without it. Red dots indicate positive values.

and Methods”), it also predicted the choice probability
well (Figure 5F).

The Saving-F or Saving-F-I Model
Explained the Mouse Choice-Behaviors
the Best
To estimate which model explained the mouse choice-behaviors
the best, we used AIC and BIC. The saving-F and saving-F-I

models were the best-fitting models in 20 and 21 of the 21 mice
in the AIC and BIC comparisons, respectively (Figures 6A,B).
When the BIC values were compared, the saving-F model was the
best in seven out of 21 mice. In addition, for six out of 14 mice in
which the saving-F-I model was the best, the second-best model
was the saving-F model. In the seven mice in which the saving-
F model was the best, the second-best model was the saving-F-I
model in five of the mice. Thus, the second-best model was the
saving-F or saving-F-I model in 12 mice. The simple model with
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FIGURE 5 | Choice-behaviors predicted by cost-F-O, irREL-F-O, F-O-I, cost-F-O-I, irREL-F-O-I, and saving-F-I models. Six representative predicted pull-choice
probabilities of the models in tone A (left) and B (right) trials in conditions 1 (top three rows) and 2 (bottom three rows). Orange and cyan traces represent the 10-trial
moving-average of the actual pull-choice (the same as in Figure 2). Red and blue traces represent the predicted pull-choice probability in cost-F-O (A), irREL-F-O
(B), F-O-I (C), cost-F-O-I (D), irREL-F-O-I (E), and saving-F-I (F) models.

the inertia (I model) or forgetting model with the inertia (F-I
model) was not better than the saving-F model in any mice except
for two in condition 1 (Figures 6C,D). These results suggest that

the update of the non-pull value with covert reward, as well as
the forgetting rate parameter, was essential to explain the mouse
choice-behaviors in this task.
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FIGURE 6 | Model comparisons with AIC and BIC. (A,B) Z-scored AIC (left) and BIC (right) in cost-F, iREL-F, F-O-I, cost-F-O-I, iREL-F-O-I, saving-F, and saving-F-I
models in conditions 1 (A) and 2 (B). (C,D) Z-scored AIC (left) and BIC (right) in I, F-I, saving-F, and saving-F-I models in conditions 1 (C) and 2 (D). Red dots
indicate the model with the minimum score for each mouse. Each number indicates the number of the red dots in the corresponding model.

Next, we conducted model simulation (Ahn et al., 2008;
Palminteri et al., 2015, 2017) to examine whether the saving-F
and saving-F-I models could generate the across-session choice-
behaviors with the lever-pull rate in tone A trials remaining high

while the lever-pull rate in tone B trials decreased under both
conditions. For each mouse, we used the fitted parameters in
the saving-F and saving-F-I models to simulate the lever-pull or
non-pull in each trial in the order of the actual tone A and B
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trials with or without the reward (Figure 7A). The simulation
with the saving-F model using the fitted parameters basically
reproduced the choice-behaviors, whereas the simulation with

the saving-F-I model using the fitted parameters did not generate
the behavior, with the lever-pull rate staying high in tone A trials
(Figure 7B). The saving-F model simulated the choice-behaviors

FIGURE 7 | Simulated lever-pull choice behavior with the saving-F and saving-F-I models. (A) Six representative simulated pull-choice probabilities with the saving-F
(dark green) and saving-F-I (light green) models in tone A (leftmost and second right) and B (second left and rightmost) trials in conditions 1 (leftmost and second left)
and 2 (second right and rightmost). Traces represent the 30-trial moving-average of the actual (black) or simulated pull-choice. Even sessions are shaded.
(B) Mouse-averaged actual (black) and simulated (saving-F model, dark green; saving-F-I model, light green) lever-pull rates in tone A (left) and B (right) trials in
conditions 1 (top; n = 13 mice) and 2 (bottom; n = 8 mice). L indicates the last session. (C) The proportion of trials in which the simulated pull/non-pull-choice was
the same as the actual pull/non-pull-choice (“concordance rate”) in conditions 1 (top) and 2 (bottom). Each line indicates a single mouse. For each mouse, the
concordance rate was calculated for each simulation and averaged over the 1000 simulations. *p = 0.0391, **p = 0.00610.
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better than the saving-F-I model (Figure 7C), which suggests that
the saving-F model was better as the generative model than the
saving-F-I model.

The Expected Subjective Reward per
Action Was Determined by the Inverse of
the Expected Overt Reward
Next, we compared the fitted parameters in the saving-F or
saving-F-I model between conditions 1 and 2. In the saving-
F model, αl, αf, and ψ were similar between conditions 1
and 2 (Figures 8A,B,D), which suggests that the mice did not
make any changes that would affect these parameters between
the conditions with different water reward expectancy per trial
under the assumption that the mice pulled the lever in all trials
(0.42 = [0.7× 0.3+ 0.3× 0.7] vs. 0.16 = [0.3× 0.3+ 0.1× 0.7]).
By contrast, κr was more than 2-fold larger in condition 2 than in
condition 1 (Figure 8C). In the saving-F-I model, the tendency
was also similar, except that αf was larger in condition 2 than
in condition 1 (Supplementary Figures S4A–D). The decay and
weight of the choice history (τ and ϕ) were similar between both
conditions (Supplementary Figures S4E,F). The value ranges
of αl, ψ, and κr were similar between the saving-F and saving-
F-I models, but the values of αf were larger in the saving-F
model than in the saving-F-I model. The introduction of choice
history might play a role in fitting with the persistency effect
from a few preceding choices, without changing the values for
the pull and non-pull. By contrast, in the saving-F model, this
persistency effect might be substituted by the decay of the value
of the non-persistent choice with the larger αf. In both models,
the ratio of the median κr in condition 2 to that in condition
1 (2.32 = 13.77/5.93 and 2.75 = 11.89/4.33 in the saving-F and
saving-F-I models, respectively) was comparable to the inverse
of the expected overt reward per trial in condition 2 divided by
that in condition 1 (2.59 = [0.16/0.42]−1). These results suggest
that the mice recognized the infrequent water delivery as being
more valuable than the frequent delivery, while the learning rate
and the weight of the choice history did not depend on the
combination of the reward probabilities assigned to the tones.

Q-Values for Pull and Non-pull Explained
the Different Choice-Behaviors in 30%
Reward Probability Cue Trials Between
Conditions 1 and 2
We evaluated the changes in Q-values in the saving-F model.
Throughout the training sessions, QA,pull still remained high,
while QB,pull gradually decreased in both conditions 1 and 2
(Figures 9A–D). By contrast, QA,non-pull remained low and
QB,non-pull gradually increased (Figures 9A–D). Thus, both the
values for the pull and non-pull appeared to be acquired through
learning. Although the reward probability in tone A trials in
condition 2 was lower than that in condition 1, the time course of
QA,pull was similar between conditions 1 and 2 (Figures 9C,D).
This was probably because the larger κr in condition 2 increased
QA,pull per rewarded lever-pull trial more than κr in condition 1
did. The time course of the gradual increase in QB,non-pull was
also similar between conditions 1 and 2 (Figures 9C,D). This was
probably because the increase in QB,non-pull by ψ per non-pull was
similar between these conditions. The model suggests that these
Q-value changes were the basis of the similarity in the time course
of the lever-pull rate between the same tone trials in conditions 1
and 2 (Figures 1E,G).

Finally, we compared the Q-values of the trials with a reward
probability of 30% in the last session between conditions 1 and
2. Although QB,pull in condition 1 and QA,pull in condition 2
were the values for the actions in trials with the same reward
probability, only the former was near to zero (Figure 9E). In
concert with this, QA,non-pull in condition 2, but not QB,non-pull in
condition 1, was near to zero (Figure 9F). As expected from the
large difference in κr between conditions 1 and 2, the expected
subjective reward per action (0.3 × κr) was smaller than the
median ψ in condition 1 (0.3 × 5.97 < 2.6), and vice versa in
condition 2 (0.3 × 13.77 > 3.36). These relationships were the
same in the saving-F-I model (Supplementary Figures S4G,H).
These results suggest that the non-action could be more valuable
than the action in trials with a reward probability of 30%
in condition 1, but less valuable in those trials in condition
2. Because of the effect of αf, the values of the unchosen

FIGURE 8 | Model parameters in the saving-F model. (A) Learning rate (αl). Mean ± standard deviation, 0.069 ± 0.037 in condition 1, 0.070 ± 0.028 in condition 2,
p = 0.587. (B) Forgetting rate (αf). 0.247 ± 0.131 in condition 1, 0.343 ± 0.092 in condition 2, p = 0.0550. (C) Subjective goodness of water reward (κr).
5.567 ± 1.101 in condition 1, 13.604 ± 4.469 in condition 2, ***p = 1.92 × 10−4. (D) Subjective goodness of covert reward (ψ). 2.673 ± 0.626 in condition 1,
3.170 ± 0.521 in condition 2, p = 0.0550.
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FIGURE 9 | Time courses of Q-values in the saving-F model. (A,B) Six representative time courses of QA,pull (red) and QA,non-pull (red-purple) (left), and QB,pull (blue)
and QB,non-pull (purple) (right), in conditions 1 (A) and 2 (B). (C,D) The mouse-averaged time courses of QA,pull (red), QA,non-pull (red-purple) (top row), QB,pull (blue)
and QB,non-pull (purple) (middle row) in conditions 1 (C) and 2 (D). The total trial number was normalized across animals. Shading indicates ± SEM. (E) Pull values in
tone X trials in the last session. X is B in condition 1 and A in condition 2. ***p = 1.92 × 10−4. (F) Non-pull values in tone X trials in the last session. X is B in
condition 1 and A in condition 2. ***p = 1.92 × 10−4. Gray dots represent individual mice, and black bars represent the mean.

lever-pull (QB,pull) in condition 1 and the unchosen non-lever-
pull (QA,non-pull) in condition 2 became close to zero in the last
session. Together with the previous section, the same reward
probability-assigned trials induced different choice behavior,
which could be determined by the inverse of the expected overt
reward through the task.

DISCUSSION

In this study, we developed a new behavioral paradigm to let
mice choose to pull or not pull a lever according to tone cues
with different reward probabilities. We found that they came
to not pull in relatively lower-reward-expected trials, although
the predicted behavior according to an explicitly given reward-
maximization policy would be to pull the lever in all the trials
unless skipping tone B trials would result in an increase in
the total rewards per unit time. To explain the mouse choice-
behaviors, we constructed several Q-learning models, in which

the pull value was updated by the overt reward, the non-pull
value was updated by the covert reward, the value of the unchosen
option decayed, the pull value was reduced according to the pull
cost, the relative pull value was based on the tone context, and
the pull offset (or non-pull bias) and/or the inertia of the choice
history was included. We found that the best models were saving-
F or saving-F-I models that updated the pull value with the overt
water reward, updated the non-pull value with the covert reward,
and the value of the unchosen choice decayed. To the best of our
knowledge, the current study is the first attempt to indicate that
a covert reward might be engaged in non-action learning using a
reinforcement learning framework.

In the saving-F and saving-F-I models, when the animal
repeatedly chose the non-pull, QX,non-pull increased while QX,pull
decreased to zero. Thus, the non-pull-choice was maintained,
which was different to the other models. Even when the action
offset and/or the choice inertia were added to the simple, F,
cost, and irREL models and their derivatives, the predictions
were worse than that of the saving-F-I model. The prediction by
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the saving-F model was better than those by the I model and
F-I model. Thus, we conclude that the active learning of non-
action with the covert reward contributed to decision-making.
The advantage of the saving-F models may be that the animal
can increase its preference to either the pull or non-pull direction
in each trial, allowing the choice preference to converge to the
final one faster than it can with the models without the non-pull
value updated by covert reward. The effectiveness of the choice
history on the prediction in the saving-F-I model might reflect
the fact that the mice tended to be persistent in pull or non-pull
choices for a few trials. However, the saving-F model was better
than the saving-F-I model as the generative model to describe the
behavioral effect. In the simulation with the saving-F-I model,
the averaged lever-pull rate in tone A trials was around 0.5 in
condition 1 and <0.5 in condition 2. Tone B was more presented
than tone A, and the mice chose not to pull in tone B trials
as the sessions progressed. This might result in that the inertia
of non-pull-choice in tone B trials inhibited maintenance of the
high lever-pull rate in tone A trials in the simulation, and/or the
saving-F-I model was overfitted. The role of inertia needs further
validation in future studies.

Non-action has long been discussed in the context of response
inhibition in go/no-go tasks and stop-signal tasks (Tremblay and
Schultz, 2000; Kühn and Brass, 2009; Schel et al., 2014), and
several models assumed that subjects updated the value for non-
action on the basis of explicitly given reward or punishment
(Guitart-Masip et al., 2012; Collins and Frank, 2014; Kato and
Morita, 2016; Swart et al., 2017). The use of a covert reward
instead of an overt reward to learn a non-action has not yet been
fully discussed in standard reinforcement learning. However, in
the real world, we appear to actively choose non-action to save
on costs such as fatigue accompanying the action, even if the
non-action produces nothing (Lee et al., 2016). A human study
proposed that avoidance of an overt aversive outcome can in
itself be a reward for learning avoidance of that action (Kim
et al., 2006). Our results suggest that our animals could actively
choose the non-action by evaluating the non-action in the form
of the covert reward. Our study sheds light on the favorable aspect
of non-action through preventing an aversive cost (or energy)
inevitably related with the action, and proposes that non-action
could be reinforced by itself.

In the saving-F and saving-F-I models, there were two
subjective parameters for the value update, the subjective covert
reward (ψ) and the subjective goodness of the overt reward (κr).
The physical cost included in ψ would be related to the lever
weight, lever-pull length, and lever-pull duration. These might
be equivalent to repeated pressing of a lever (Walton et al.,
2006; Randall et al., 2012; Sommer et al., 2014) and climbing
a wall or barrier (Walton et al., 2002; Floresco and Ghods-
Sharifi, 2006; Yohn et al., 2015) in previous effortful decision-
making tasks. To validate ψ, it might be useful to examine
the correlation between the value of ψ and quantifications of
the lever weight, lever-pull length, and lever-pull duration. In
contrast to ψ, which was similar between conditions 1 and 2,
κr was ∼2.5-fold larger in condition 2 than in condition 1,
which is in inverse proportion to the net reward expectancy
when the mice pulled in all trials regardless of tone types.

This suggests that the mice recognized the infrequent water
delivery as being more valuable than the frequent delivery. This
may be regarded as being analogous to a puddle found in
the desert. It is necessary to examine the relationship between
κr and the net overt reward using other combinations of
reward probabilities.

Comparison between the neuronal activity and QX,non-pull
would allow us to clarify the neuronal activity relevant to
the non-action learning with the covert reward. The striatum
and orbitofrontal cortex may be the candidate areas for this
neuronal activity because these areas are strongly related to
the value update, and activation of the orbitofrontal cortex is
related to response inhibition (Tremblay and Schultz, 2000;
Yoshida et al., 2018; Jahfari et al., 2019). As the present task
is for head-fixed mice, both two-photon calcium imaging with
a high spatial resolution (Horton et al., 2013; Masamizu et al.,
2014; Kondo et al., 2017; Tanaka et al., 2018) and wide-field
calcium imaging (Ghanbari et al., 2019) could be applied during
task performance, as well as electrical recording. It would be
possible to examine the information flow from the auditory
cortex to the forelimb motor cortex through the striatal and
orbitofrontal cortical areas. In addition, examination of which
brain areas represent ψ and κr is a task for future studies. If
the relationship between the neural activity and these parameters
is weak, it would be better to consider the model parameters
as variable (Ito and Doya, 2009), because the parameters
used in the current models could change during learning. We
hope that the saving model will be verified and modified in
many tasks including a “not to do” choice, and that it will
be helpful for understanding the decision-making process of
“not to do” across species. The covert reward concept might
also be applicable to understanding the mechanism of social
withdrawal and its care, as it is said that socially withdrawn
people tend to choose not to go out (Rubin et al., 2009;
Li and Wong, 2015).
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