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Glomerular disease is a common cause for proteinuria and chronic kidney disease 
leading to end-stage renal disease requiring dialysis or kidney transplantation in children. 
Nephrotic syndrome in children is diagnosed by the presence of a triad of proteinuria, 
hypoalbuminemia, and edema. Minimal change disease is the most common histo-
pathological finding in children and adolescents with nephrotic syndrome. Focal seg-
mental sclerosis is also found in children and is the most common pathological finding 
in patients with monogenic causes of nephrotic syndrome. Current classification system 
for nephrotic syndrome is based on response to steroid therapy as a majority of patients 
develop steroid sensitive nephrotic syndrome regardless of histopathological diagno-
sis or the presence of genetic mutations. Recent studies investigating the genetics of 
nephrotic syndrome have shed light on the pathophysiology and mechanisms of protein-
uria in nephrotic syndrome. Gene mutations have been identified in several subcellular 
compartments of the glomerular podocyte and play a critical role in mitochondrial func-
tion, actin cytoskeleton dynamics, cell–matrix interactions, slit diaphragm, and podocyte 
integrity. A subset of genetic mutations are known to cause nephrotic syndrome that is 
responsive to immunosuppressive therapy but clinical data are limited with respect to 
renal prognosis and disease progression in a majority of patients. To date, more than 
50 genes have been identified as causative factors in nephrotic syndrome in children 
and adults. As genetic testing becomes more prevalent and affordable, we expect rapid 
advances in our understanding of mechanisms of proteinuria and genetic diagnosis will 
help direct future therapy for individual patients.
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iNTRODUCTiON

Proteinuria is a common clinical presentation in children with chronic kidney disease (CKD). In 
the United States, glomerular diseases causing proteinuria account for 22% of CKD in children (1). 
Nephrotic syndrome is defined as a triad of proteinuria (urine protein to creatinine ratio >2 or 
urine dip-3 + protein), hypoalbuminemia (<2.5 g/dl), and edema (2). Nephrotic syndrome occurs 
in approximately 1–3 in 100,000 live births in the United States and 80% of children respond to 
steroid therapy (3). A significant number of children with nephrotic syndrome have known genetic 
mutations identified during their clinical course. Previously, steroid sensitive nephrotic syndrome 
(SSNS) was considered idiopathic in origin and unlikely to be caused by genetic mutations. However, 
recent evidence suggests that a subset of patients with genetic variants or mutations do respond 
to immunosuppressive therapy (4–7). With the advent of genetic testing, we expect to have a bet-
ter understanding of the mechanisms for proteinuria in children and tailor therapy to individual 
patients with the goal of minimizing unnecessary exposure to immunosuppressive agents.

http://www.frontiersin.org/Medicine
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2018.00055&domain=pdf&date_stamp=2018-03-12
http://www.frontiersin.org/Medicine/archive
http://www.frontiersin.org/Medicine/editorialboard
http://www.frontiersin.org/Medicine/editorialboard
https://doi.org/10.3389/fmed.2018.00055
http://www.frontiersin.org/Medicine
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:farzana.perwad@ucsf.edu
https://doi.org/10.3389/fmed.2018.00055
https://www.frontiersin.org/Journal/10.3389/fmed.2018.00055/full
https://www.frontiersin.org/Journal/10.3389/fmed.2018.00055/full
http://loop.frontiersin.org/people/509108
http://loop.frontiersin.org/people/162625


2

Cil and Perwad Proteinuria in Children

Frontiers in Medicine | www.frontiersin.org March 2018 | Volume 5 | Article 55

eTiOLOGY AND CLASSiFiCATiON

Several classification systems have been proposed for nephrotic 
syndrome in children based on etiology, histopathology, response 
to steroid therapy, and genetic diagnosis. Classification is prob-
lematic because nephrotic syndrome is largely a heterogenic 
disease with multiple complex pathogenic mechanisms. Second, 
large clinical studies to characterize and correlate histopathology, 
response to immunosuppression, and genetic diagnosis are lack-
ing. Based on etiology, nephrotic syndrome is classified as primary 
(idiopathic) or secondary due to infection (malaria, hepatitis, and 
HIV), malignancy (Hodgkin’s and non-Hodgkin’s lymphoma, 
bronchogenic carcinoma, and colon carcinoma), or other causes. 
However, in children, secondary causes of nephrotic syndrome 
are very rare. Nephrotic syndrome diagnosed in the first 3 months 
of life is called congenital nephrotic syndrome and is caused by 
genetic mutations in vast majority of the patients (8). An inter-
national study of primary nephrotic syndrome in children was 
conducted between 1967 and 1974 in 24 clinics in North America, 
Europe, and Asia (9). Renal biopsies were performed before start-
ing treatment in 521 children between 12 weeks and 16 years of age 
excluding infants who were diagnosed with congenital nephrotic 
syndrome. The distribution of patients among histopathological 
categories revealed that 76.6% had minimal change disease (MCD), 
7.5% had membranoproliferative glomerulonephritis, and 6.9% 
had focal segmental glomerulosclerosis (FSGS). In addition, the 
above study findings suggested that a histopathological diagnosis 
is not required before initiating therapy in children as a majority 
of patients respond to steroid treatment. Therefore, nephrotic 
syndrome in children is currently classified as SSNS or steroid 
resistant (SRNS) based on response to therapy. Approximately 
20% of children with nephrotic syndrome are steroid resistant 
but calcineurin inhibitors, rituximab and/or ACEI therapy can 
successfully induce complete or partial remission in a large 
number of patients with SRNS with and without known genetic 
mutations (10). The clinical features and genetics of SRNS was 
recently characterized in a large multicenter international study of 
1,655 children (PodoNet registry cohort) (8). The age at diagnosis 
greatly influenced the likelihood of finding a genetic mutation. The 
proportion of patients with a genetic disease cause decreased with 
increasing manifestation age: from 66% in congenital nephrotic 
syndrome to 15–16% in schoolchildren and adolescents. Similar 
observations were made in another large international study of 
SRNS patients (11); in 1,783 unrelated families with SRNS, a single-
gene mutation was identified in 29.5% of families with SRNS that 
manifested before 25 years of age. The fraction of families in whom 
a single-gene cause was identified inversely correlated with age of 
onset. To date, more than 50 genes have been identified and as 
genetic testing becomes more affordable and accessible in clinical 
settings, monogenic causes of nephrotic syndrome is expected to 
increase significantly in the future (12).

PATHOPHYSiOLOGY AND GeNeTiCS  
OF NePHROTiC SYNDROMe

Glomerular ultrafiltrate lacks cellular and macromolecular com-
ponents of plasma due to selective permeability of the glomerular 

filtration barrier that separates blood and urinary space (13). 
Glomerular filtration barrier is composed of three layers: fenes-
trated endothelium, glomerular basement membrane (GBM), 
and podocyte foot processes. GBM is a protein network formed 
by type IV collagen, laminin, nidogen, and negatively charged 
proteoglycans that are thought to repel serum proteins electro-
statically (13, 14). Podocytes are epithelial cells outside the GBM 
and have an actin-based contractile apparatus which is critical to 
the formation of the complex architecture of foot processes (15). 
Foot processes are linked together by the slit diaphragm which 
is a vital component of the glomerular filtration barrier. Several 
proteins expressed in podocytes play important roles in signal 
transduction from slit diaphragm to podocytes (16).

Glomerular filtration barrier functions as a size and charge 
selective molecular sieve and under physiological conditions only 
allow water and some plasma solutes to pass from blood stream 
to the urinary space. The transport of albumin and other large 
plasma proteins to urinary space is largely prevented by GBM and 
slit diaphragm. The small amounts of albumin and plasma pro-
teins that pass through the barrier are reabsorbed in the proximal 
tubule through the megalin–cubilin pathway. Disturbances in any 
component of the filtration barrier can cause severe proteinuria 
due to glomerular protein losses leading to nephrotic syndrome.

Mechanisms by which the filtration barrier is perturbed in 
nephrotic syndrome have been investigated for several decades. 
In patients with SSNS and SRNS who respond to immunosup-
pressive therapy, proteinuria is thought to be caused by an under-
lying immunological defect (17). In earlier studies, production of 
a circulating proteinuric factor due to T-cell dysfunction was put 
forth as the leading hypothesis (18). Increased albumin perme-
ability was demonstrated in rat glomeruli incubated with serum 
from FSGS patients lending support to this hypothesis (19, 20). 
However, discovery of novel gene mutations identified in adults 
and children with nephrotic syndrome provide evidence for an 
inherent defect in the structural integrity and function of the 
glomerular filtration barrier as the pathogenic mechanism for 
proteinuria (21). Interestingly, a majority of patients with genetic 
mutations respond to immunosuppressive therapy suggesting 
that these medications regulate the structure and function of 
the filtration barrier rather than immune modulation. Whether 
these genetic factors play a role in the pathogenesis of nephrotic 
syndrome in patients without an identified genetic mutation is 
yet to be investigated.

Over the past two decades, more than 50 monogenic causes 
of proteinuria have been identified which affect glomerular 
filtration barrier (slit diaphragm, podocyte actin cytoskeleton, 
adhesion, and GBM proteins), podocytes biology (mitochondria, 
nuclear transcription factors), and proximal tubule protein reab-
sorption pathways (Figure 1). Monogenic forms of proteinuria 
are summarized in Table 1. These genetic discoveries paved the 
way to a better understanding of the physiology and functions 
of the glomerular filtration barrier which can have therapeutic 
implications in the future.

Slit Diaphragm Proteins
Nephrin, encoded by NPHS1, is an essential component of the slit 
diaphragm (22). NPHS1 mutations were originally identified in 
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FiGURe 1 | Localization of affected proteins in monogenic causes of 
proteinuria. Please see text and Table 1 for details. Diagram does not depict 
all genes listed in Table 1 known to cause proteinuria and nephrotic 
syndrome.
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congenital Finnish type nephrotic syndrome which is character-
ized by proteinuria that begins in utero, premature birth, enlarged 
placenta, and elevated maternal serum α-fetoprotein levels (23). 
NPHS1 mutations are the most common cause of congenital 
nephrotic syndrome worldwide (21, 24). These patients progress 
to end-stage renal disease (ESRD) between age 3 and 8 but require 
unilateral or bilateral nephrectomies and frequent intravenous 
albumin infusions due to the severity of proteinuria and edema 
(25). NPHS1 mutations were also shown to cause SRNS in 7–14% 
of children and adults (26, 27).

Podocin, encoded by NPHS2, is a transmembrane protein that 
interacts with nephrin and plays an important role in recruit-
ment of nephrin to the slit diaphragm (89). Nephrotic syndrome 
caused by NPHS2 mutations has a variable disease course and 
can cause congenital/infantile nephrotic syndrome or manifest 
later in childhood or as adult-onset SRNS. NPHS2 mutations are 
responsible for ~40% of familial SRNS worldwide (28, 29).

Phospholipase C epsilon 1 (PLCε1) is a signaling protein for 
various G protein-coupled receptors and generates secondary 
messengers that influence cell growth and differentiation and 
is thought to be essential for normal glomerular development 
(30, 90). PLCε1 mutations are the major cause of isolated diffuse 
mesangial sclerosis occurring in 28–33% of affected families (31).

The other rare forms of slit diaphragm-related proteins 
associated nephrotic syndrome include CD2-associated pro-
tein (CD2AP) (32), an adapter molecule that acts as a bridge 
between the slit diaphragm and the actin cytoskeleton, and 
transient receptor potential cation channel type 6 (TRPC6) (33), 
a non-selective calcium channel in foot processes that interacts 
with nephrin and podocin. Mutations in TRPC6 are associated 
with autosomal dominant (AD) SRNS with onset typically in 
the third or fourth decade of life; however, early childhood 
onset has also been described (34). FAT atypical cadherin 1 
(FAT1) protein colocalizes with nephrin in slit diaphragms and 
is thought to be a regulator of slit diaphragm–actin cytoskeleton 
interaction (38, 39). Recently, mutations in FAT1 were reported 
to cause SRNS with tubular ectasia, hematuria, and neurological 
involvement (40).

Actin Cytoskeleton-Related Proteins
Alpha-actinin 4 (ACTN4) is an actin-binding protein expressed 
in podocyte foot processes. Mutations in ACTN4 lead to abnor-
mal adhesion of podocytes to the GBM and are associated with 
adult-onset SRNS (41, 42). Inverted formin 2 (INF2) regulates 
actin polymerization and mutations in INF2 were reported to 
cause SRNS in adolescence and early adulthood, as well as in 
patients with Charcot–Marie–Tooth disease (characterized by 
peripheral neuropathy and FSGS on renal biopsy) (43, 44). Non-
muscle myosin 1E (Myo1E) is an actin-binding molecular motor 
in foot processes and mutations in MYO1E cause SRNS in the first 
decade of life. Electron microscopy (EM) in patients shows char-
acteristic focal thickening, disorganization, and multilamination 
of the GBM, similar to findings in Alport syndrome (45, 46). Rho 
GTPases control organization of F-actin in podocytes and their 
activity is strictly regulated by modifier proteins (91). Mutations 
in ARHGAP24 encoding Rho GTPase-activating protein 24 cause 
familial AD SRNS in the second and third decades of life (48), 
whereas mutations in ARHGDIA encoding RhoGDP dissociation 
inhibitor α cause congenital nephrotic syndrome or SRNS within 
the first 2 years of life with associated neurological abnormalities 
(49). ANLN encodes anillin, an actin-binding protein, and was 
identified as a cause of SRNS due to reduced binding to the slit 
diaphragm-related protein CD2AP (47). Kidney ankyrin repeat-
containing protein (KANK) 1, 2, and 4 were reported to interact 
with ARHGDIA and regulate RhoGTPase signaling. Mutations in 
KANK1, KANK2, and KANK4 were reported to cause congenital 
and early childhood onset nephrotic syndrome (6).

Mitochondrial Proteins
Coenzyme Q10 is a component of mitochondrial inner membrane 
and plays important roles in electron transport, protection from 
reactive oxygen species and activating mitochondrial enzymes 
required in various metabolic pathways (92). Mutations in 
several genes associated with biosynthesis of coenzyme Q10 have 
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TAbLe 1 | Monogenic forms of nephrotic syndrome and proteinuria.

Gene Gene product inheritance Associated syndrome/extrarenal findings Reference

Slit diaphragm related
NPHS1 Nephrin AR (21–27)
NPHS2 Podocin AR (28, 29)
PLCE1 Phospholipase Cε1 AR (30, 31)
CD2AP CD2-associated protein AD/AR (32)
TRPC6 Transient receptor potential cation channel type 6 AD (33, 34)
CRB2 Crumbs homolog 2 AR (35–37)
FAT1 FAT atypical cadherin 1 AR Neurological involvement (38–40)

Actin cytoskeleton-related proteins
ACTN4 α-Actinin 4 AD (41, 42)
INF2 Inverted formin 2 AD Charcot–Marie–Tooth disease (43, 44)
MYO1E Non-muscle myosin 1E AR (45, 46)
ANLN Anillin AD (47)
ARHGAP24 Rho GTPase-activating protein 24 AD (48)
ARHGDIA RhoGDP dissociation inhibitor α AR Seizures, intellectual disability (49)
KANK1 Kidney ankyrin repeat-containing protein 1 AR (6)
KANK2 Kidney ankyrin repeat-containing protein 2 AR (6)
KANK4 Kidney ankyrin repeat-containing protein 4 AR (6)

Mitochondrial
ADCK4 aarF domain containing kinase 4 AR (50–52)
COQ2 Coenzyme Q2 4-hydroxybenzoate polyprenyl transferase AR Seizures (53)
COQ6 Coenzyme Q6 monooxygenase AR Sensorineural deafness (54)
MTTL1 tRNA-LEU Unknown Mental retardation, diabetes mellitus, MELAS 

syndrome
(55, 56)

PDSS2 Prenyl diphosphate synthase subunit 2 AR Encephalomyopathy, Leigh syndrome (57)

Glomerular basement membrane related
LAMB2 Laminin β2 AR Pierson syndrome (58–60)
ITGA3 Integrin α3 AR Interstitial lung disease, epidermolysis bullosa (61)
ITGB4 Integrin β4 AR Epidermolysis bullosa (62)
COL4A3 Type IV collagen α3 subunit AD/AR Alport syndrome (63)
COL4A4 Type IV collagen α4 subunit AD/AR Alport syndrome (63)
COL4A5 Type IV collagen α5 subunit X-linked Alport syndrome (63)

Nuclear transcription factors and proteins
WT1 Wilms’ tumor 1 AD Denys–Drash syndrome, Frasier syndrome (64, 65)
LMX1B LIM homeobox transcription factor 1β AD Nail-patella syndrome (66, 67)
SMARCAL1 SMARCA-like protein AR Schimke immune-osseous dysplasia (68)
WDR73 WD repeat domain 73 AR Galloway–Mowat syndrome (69)
LAGE3 Members of kinase endopeptidase and other proteins of  

small size (KEOPS) complex
X-linked Galloway–Mowat syndrome (70)

OSGEP Members of kinase endopeptidase and other proteins of  
small size (KEOPS) complex

AR Galloway–Mowat syndrome (70)

TP53RK Members of kinase endopeptidase and other proteins of  
small size (KEOPS) complex

AR Galloway–Mowat syndrome (70)

TPRKB Members of kinase endopeptidase and other proteins of  
small size (KEOPS) complex

AR Galloway–Mowat syndrome (70)

NXF5 Nuclear RNA export factor 5 X-linked Cardiac conduction defect (71)
NUP93 Nuclear pore protein 93 AR (72)
NUP107 Nuclear pore protein 107 AR Galloway–Mowat syndrome like (73)
NUP205 Nuclear pore protein 205 AR (72)
XPO5 Exportin 5 AR (72)

Proximal tubule protein reabsorption
CUBN Cubilin AR Imerslund–Grasbeck syndrome (74, 75)
AMN Amnionless AR Imerslund–Grasbeck syndrome (74)
LRP2 Megalin AR Donnai–Barrow/facio-oculo-acoustico-renal 

syndrome
(76, 77)

Others
DGKE Diacylglycerol kinase ε AR Atypical hemolytic uremic syndrome (78)
PTPRO Glomerular epithelial protein 1 AR (79)
PMM2 Phosphomannomutase 2 AR Congenital defect of glycosylation (80)
ALG1 B-1,4-mannosyltransferase AR Congenital defect of glycosylation (81)
EXT1 Exostosin-1 AD Multiple exostoses (5)
EMP2 Epithelial membrane protein 2 AR (7)
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Gene Gene product inheritance Associated syndrome/extrarenal findings Reference

TTC21B IFT139 AR (82)
NEIL1 Nei endonuclease VIII-like 1 AR (83)
SCARB2 Lysosomal integral membrane protein type 2 AR Myoclonus renal failure syndrome (84)
ZMPSTE24 Zinc metalloproteinase STE24 AR Mandibuloacral dysplasia (85)
SGPL1 Sphingosine-1-phosphate lyase AR Ichthyosis, adrenal insufficiency, immunodeficiency, 

neurological defects
(86)

FOXP3 Forkhead box p3 X-linked Immunodysregulation, polyendocrinopathy, 
enteropathy, X-linked (IPEX)

(87, 88)

AR, autosomal recessive; AD, autosomal dominant.
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been associated with SRNS including COQ2 (53), COQ6 (54), 
PDSS2 (57), and ADCK4 (50, 51). The importance of diagnosing 
mutations in mitochondrial proteins arises from the potential 
therapeutic benefit with early coenzyme Q10 supplementation in 
these patients (52, 92).

GbM-Related Proteins
LAMB2 encodes laminin β2 and its mutations cause Pierson syn-
drome (congenital nephrotic syndrome-microcoria syndrome) 
(58). LAMB2 mutations were also reported to cause isolated 
congenital nephrotic syndrome without ocular abnormalities 
and nephrotic syndrome within the first decade of life (59, 60). 
Mutations in ITGA3 and ITGB4, encoding integrin α3 and β4, 
respectively, were reported to cause congenital nephrotic syn-
drome associated with epidermolysis bullosa (61, 62). Although 
genes encoding collagen proteins are known to cause Alport 
syndrome, mutations in COL4A3, COL4A4, and COL4A5 have 
also been identified in few familial FSGS patients (childhood and 
adult onset). However, sensorineural deafness and characteristic 
electron microscopic abnormalities of the GBM that are seen in 
Alport syndrome are notably absent in these patients (63).

Nuclear Transcription Factors and 
Proteins
Wilms’ tumor 1 (WT1) is a tumor suppressor gene that plays 
an important role in embryonic development of the kidney and 
genitalia and also regulates nephrin expression in podocytes  
(13, 64). Mutations in WT1 were originally described as the cause 
of Wilms’ tumor, Denys–Drash, and Frasier syndromes. Denys–
Drash syndrome is characterized by the presence of Wilms’ 
tumor, progressive glomerulopathy, and pseudohermaphrodit-
ism in patients with 46,XY karyotype (64). Frasier syndrome 
is characterized by gonadal dysgenesis, gonadoblastoma, and 
nephrotic syndrome or isolated nephropathy in patients with 
46,XY karyotype (64). WT1 mutations were also shown to be 
associated with isolated SRNS without tumors or gonadal abnor-
malities (65). Mutations in SMARCAL1, encoding a helicase, 
cause Schimke immuno-osseous dysplasia which is characterized 
by growth failure, immune deficiency, and SRNS (68). LMX1B, 
encoding LIM homeobox transcription factor 1β, is required 
for podocyte differentiation and its mutations typically cause 
nail-patella syndrome characterized by dystrophic nails, patellar 
hypoplasia/aplasia with other skeletal abnormalities and SRNS 
(66), but LMX1B mutations were also reported in patients with 

non-syndromic SRNS (67). Mutations in WDR73 encoding WD 
repeat domain 73 was described as the cause for Galloway–Mowat 
syndrome that is characterized with SRNS and microcephaly with 
brain anomalies (69). Mutations in genes encoding members of 
kinase endopeptidase and other proteins of small size (KEOPS) 
complex (LAGE3, OSGEP, TP53RK, and TPRKB) were recently 
described as the cause of Galloway–Mowat syndrome in some 
families (70). Mutations in NXF5, NUP93, NUP107, NUP205, 
and XPO5 which are components of nuclear pore complexes and 
export pathways have been reported to be associated with FSGS 
(71–73). Recently, mutations in NUP107 were also reported to 
cause phenotype similar to Galloway–Mowat syndrome (93).

Proximal Tubule Protein Absorption 
Pathway
Cubilin and amnionless, encoded by CUBN and AMN, respec-
tively, are subunits of intestinal receptor for vitamin B12/intrinsic 
factor complex absorption and they are coexpressed with megalin 
in the proximal tubule of the kidney. Cubilin/amnionless complex 
and megalin mediate protein reabsorption via receptor-mediated 
endocytosis (94). Albumin and various low-molecular weight 
proteins are ligands of cubilin/amnionless complex and megalin. 
CUBN and AMN mutations were originally described in patients 
with Imerslund–Gräsbeck syndrome which is characterized by 
megaloblastic anemia and proteinuria (74). CUBN mutations 
were also described in patients with intermittent nephrotic-range 
proteinuria without megaloblastic anemia (75). LRP2 encodes 
for megalin and its mutations cause Donnai–Barrow/facio-
oculo-acoustico-renal syndrome in which proteinuria is among 
the disease manifestations (76, 77). These discoveries highlight 
the importance of proximal tubule cubilin/amnionless/megalin 
reabsorption pathway in reabsorbing proteins that escape the 
glomerular filtration barrier to produce urine that has little to no 
albumin or serum proteins.

GeNeTiC RiSK FACTORS FOR 
iDiOPATHiC SSNS AND MONOGeNiC 
CAUSeS OF SSNS

The genetic causes and risk loci for SSNS remains elusive, but 
several HLA variants and PLCG2 variants (a signaling protein 
that is important for regulation of the immune system) were 
reported to be associated with increased risk for SSNS in various 

TAbLe 1 | Continued
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populations (95). These observations highlight the importance of 
the immune system in pathogenesis of idiopathic SSNS, although 
exact genes or risk loci remain to be identified.

Rare monogenic forms of SSNS have been described, although 
most of these genes were also associated with SRNS in different 
families. Two children with PLCE1 mutations were reported 
to respond to corticosteroid and cyclosporine therapy (30). 
Epithelial membrane protein 2 (EMP2) mutations were identified 
in patients with childhood onset autosomal recessive SSNS and 
two Turkish siblings with mutations were reported to have ster-
oid-responsive but frequently relapsing nephrotic syndrome (7). 
These patients had a sustained remission with cyclophosphamide 
therapy. However, in the same study, an African-American patient 
with EMP2 mutations and MCD on kidney biopsy was reported 
to be steroid resistant. EMP2 is thought to regulate caveolin-1 
expression which is involved in endocytosis in podocytes. NPHS1 
mutations were identified in patients with SSNS and SRNS who 
had biopsy-proven MCD (96). A congenital nephrotic syndrome 
patient with NPHS1 mutation was also reported to respond 
partially to steroids and cyclosporine A therapy (24). Mutations 
in KANK1 and KANK2 have been identified in both SSNS and 
SRNS families (6). Mutations in EXT1 that encodes exostosin-1 
is a cause for AD familial nephropathy and multiple exostoses has 
been associated with SSNS in an adult patient, but the reported 
patient also received cyclosporine A and cyclophosphamide in 
addition to steroids to induce full remission (5). Patients with 
immune dysregulation, polyendocrinophaty, enteropathy, 
X-linked (IPEX) syndrome have mutations in the FOXP3 gene 
and can develop nephrotic syndrome with MCD or membranous 
nephropathy (87). There are case reports of patients with IPEX 
syndrome that demonstrate response to a combination of steroids 
with cyclosporine A treatment (88).

The hallmark of childhood idiopathic SSNS is a rapid response 
to steroid therapy which induces complete remission within 
6–8  weeks with a single immunosuppressive agent. However, 
most patients who had a monogenic form of SSNS as described 
above did not respond to steroids alone and required calcineurin 
inhibitors to induce remission. This suggests that genetic testing 
may help to tailor individual therapy in SSNS to start a second 
immunosuppressive agent sooner than later to minimize steroid 
exposure. Calcineurin inhibitors were reported to have anti-
proteinuric effects due to stabilization of the actin cytoskeleton 
in podocytes (97), and this may be the main mechanism to induce 
remission in monogenic SSNS rather than suppression of the 
immune system.

HiSTOPATHOLOGiCAL FiNDiNGS

Histopathological diagnosis is often obtained when patients do 
not respond to immunosuppressive therapy, present with renal 
dysfunction, or have a complicated clinical course. Most com-
mon pathological finding in children presenting with nephrotic 
syndrome is MCD, characterized by little to no changes on light 
microscopy (LM). Mesangial proliferation, mesangial matrix 
expansion, increased protein and lipid resorption droplets in 
tubular epithelial cells, and glomerular hypertrophy are observed 
on LM. Immunofluorescence (IF) is negative except for occasional 

IgM and C3 positivity in the mesangium. EM findings include 
effacement and/or fusion of epithelial foot processes.

Second most common histological finding in children with 
nephrotic syndrome is FSGS characterized by segmental sclerosis 
of the glomeruli with glomerular hypertrophy, interstitial fibrosis 
or tubular atrophy, and endothelial tubuloreticular inclusion 
bodies on LM. Sclerotic changes occur first in juxtamedullary 
glomeruli. IF is negative except for occasional IgM and C3 
positivity in the mesangium and effacement and/or fusion of 
foot processes are visible on EM. Morphological characteristics 
seen on kidney biopsy cannot usually distinguish genetic and 
non-genetic forms of FSGS with some exceptions such as Alport’s 
syndrome where splitting of the GBM is a unique pathognomonic 
finding (2). There are five morphological variants of the lesions 
of FSGS based on LM but EM findings are similar in all subtypes 
(98). The histological variants of FSGS include FSGS not other-
wise specified, collapsing variant, tip variant, perihilar variant, 
and cellular variant. The impact of histological variants of FSGS 
on renal prognosis and response to therapy is yet to be fully 
investigated. Other less common histopathological findings in 
patients with nephrotic syndrome include membranoprolifera-
tive and mesangioproliferative glomerulonephritis, membranous 
nephropathy, focal and global glomerulosclerosis, and IgA and 
IgM nephropathy.

TReATMeNT AND PROGNOSiS

Most children who present with nephrotic syndrome respond to 
high dose steroid therapy, but ~20% of children are diagnosed 
with SRNS after a trial of steroid therapy for 6–8 weeks. Children 
may achieve partial or complete remission within a few days of 
initiating therapy but steroid treatment is continued for several 
weeks to prevent frequent relapses (2). Approximately 50–70% 
of patients will have relapsing and remitting disease that is 
usually responsive to reinstating steroid therapy. Maintenance 
immunosuppression with alternate immunosuppressive agents 
is required in children with frequent relapses to minimize 
steroid exposure and its adverse effects. Children diagnosed 
with SRNS often respond to angiotensin-converting enzyme 
(ACE) inhibitor therapy (99), calcineurin inhibitors (100–103), 
or other immunosuppressive agents (104). In a recent analysis 
of the PodoNet registry cohort, more than two-third of patients 
with SRNS responded to immunosuppressive therapy includ-
ing those with known genetic mutations. Confirmation of a 
genetic diagnosis but not the histopathological disease type was 
strongly predictive of response to immunosuppressive therapy 
(8). However, treatment of monogenic nephrotic syndrome with 
immunosuppression has not been carefully examined by large 
clinical studies and little is known about genotype-to-phenotype 
correlation for most genetic mutations. With current state of 
evidence, histopathological diagnosis and genetic testing are 
not required to initiate treatment of either SSNS or SRNS and 
no specific recommendations for treatment can be made based 
on genetic diagnosis (3). Prognosis is excellent for SSNS with 
<3% developing ESRD as opposed to patients with SRNS who 
have increased risk of ESRD needing dialysis and/or kidney 
transplantation (8).
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CHALLeNGeS TO GeNeTiC TeSTiNG

In clinical practice, gene sequencing is not routinely performed 
for all patients who carry the diagnosis of nephrotic syndrome. 
Factors that are taken into consideration by the ordering physi-
cian include cost, access, and availability of gene sequencing, 
patient/family interest, and whether test results will aid in diag-
nosis, management, and determining prognosis for the patient. 
Currently, there are no clear guidelines for performing genetic 
tests in patients with nephrotic syndrome. Clinicians face several 
challenges to performing mutation analysis including lack of 
genotype-to-phenotype correlations for several of the known 
gene mutations and in many instances, clinical management is 
unlikely to change given positive genetic test results. Second, a 
negative result does not exclude monogenic cause of nephrotic 
syndrome as many of the gene test panels do not include the 
complete set of identified genes and many more novel genes are 
being identified annually. Whole exome sequencing is not read-
ily available to most clinicians and has its own drawbacks (105). 
Despite these challenges, genetic testing is particularly useful 
in certain clinical situations. Early onset of disease and family 
history of nephrotic syndrome were the most important risk fac-
tors for finding pathogenic mutations in large clinical studies of 
adult and pediatric patients with nephrotic syndrome (8, 11, 106).  
A positive test result for certain gene mutations has been shown 
to be associated with SRNS and knowledge of this information 
will help clinicians to avoid a trial of steroid therapy in such 
patients, determine renal prognosis and for genetic counseling 
of families (65, 107). Anecdotal reports have also shown certain 
genetic mutations causing nephrotic syndrome are responsive to 
non-steroidal agents such as cyclosporine, ACE inhibitors, and 
coenzyme Q10 supplementation (30, 52, 87, 88, 92, 108, 109). 
However, large studies are lacking to comprehensively evaluate 
all gene mutations identified in monogenic nephrotic syndrome 
to accurately predict response to treatment. Gene testing has 
also been useful for pre-transplant evaluation of patients with 
nephrotic syndrome to predict risk of recurrence and to guide 
post-transplant management. Specific examples include patients 
with NPHS2 mutations do not respond to steroid therapy and 

are less likely to have post-transplant recurrence of FSGS (110) 
but such predictions are not available for all gene mutations. 
Gene sequencing poses significant challenges in evaluating 
potential living related donors for patients with familial nephrotic 
syndrome and its utility is controversial. AD, AR and X-linked 
gene mutations confer different risk profiles for donors and are 
influenced by factors such as gene penetrance, modifier genes, 
epigenetic factor, and environmental factor. Therefore, large 
scale prospective clinical studies are urgently needed and must 
include genetic testing for better patient stratification to establish 
diagnosis, determine choice of immunosuppression, predict 
post-transplant diseases course and treatment, selection of living 
donors in familial cases, and to determine prognosis.

CONCLUSiON

Nephrotic syndrome in children is easy to diagnose but challeng-
ing to treat due to its complex etiology and mechanisms by which 
the glomerular filtration barrier is disrupted to induce proteinuria. 
A renal biopsy is not indicated to diagnose or initiate treatment 
as recent studies demonstrate that a majority of patients respond 
to immunosuppressive therapy regardless of histopathological 
diagnosis. A traditional approach was to perform genetic testing 
in those patients who are likely to not respond to immunosup-
pression (e.g., familial cases and congenital nephrotic syndrome) 
to spare them from futile therapies that can cause serious adverse 
effects. However, as genetic testing becomes more prevalent it 
is increasingly evident that a subset of patients with monogenic 
causes of SSNS and SRNS will respond to immunosuppression 
and other anti-proteinuric therapies to achieve partial or com-
plete remission. As genetic testing becomes more prevalent and 
affordable, we expect rapid advances in our understanding of 
mechanisms of proteinuria creating an opportunity to personal-
ize treatment in the future with a “precision medicine” approach 
for both adults and children with nephrotic syndrome.
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