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ABSTRACT

Objective: Methods to correct class imbalance (imbalance between the frequency of outcome events and none-

vents) are receiving increasing interest for developing prediction models. We examined the effect of imbalance

correction on the performance of logistic regression models.

Material and Methods: Prediction models were developed using standard and penalized (ridge) logistic regres-

sion under 4 methods to address class imbalance: no correction, random undersampling, random oversam-

pling, and SMOTE. Model performance was evaluated in terms of discrimination, calibration, and classification.

Using Monte Carlo simulations, we studied the impact of training set size, number of predictors, and the out-

come event fraction. A case study on prediction modeling for ovarian cancer diagnosis is presented.

Results: The use of random undersampling, random oversampling, or SMOTE yielded poorly calibrated mod-

els: the probability to belong to the minority class was strongly overestimated. These methods did not result in

higher areas under the ROC curve when compared with models developed without correction for class imbal-

ance. Although imbalance correction improved the balance between sensitivity and specificity, similar results

were obtained by shifting the probability threshold instead.

Discussion: Imbalance correction led to models with strong miscalibration without better ability to distinguish

between patients with and without the outcome event. The inaccurate probability estimates reduce the clinical

utility of the model, because decisions about treatment are ill-informed.

Conclusion: Outcome imbalance is not a problem in itself, imbalance correction may even worsen model per-

formance.
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INTRODUCTION

When developing clinical prediction models for a binary outcome, the

percentage of individuals with the event of interest (ie, the event frac-

tion) is often much lower than 50%. When the frequency of individu-

als with and without the event is unequal, the term “class imbalance”

is often used.1 Class imbalance has been identified as a problem for
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the development of prediction models, in particularly when the interest

is in the classification of individuals into a high risk versus low risk

group (“classifier”).1–3 Commonly suggested solutions to address class

imbalance include some form of resampling to create an artificially

balanced dataset for model training. Common approaches are random

undersampling (RUS), random oversampling (ROS), and SMOTE

(Synthetic Minority Oversampling Technique).2–5

The classification accuracy of a model that classifies individuals into

a high risk versus low risk group is defined as the percentage of individ-

uals that are either true positive (individuals that have the event and are

either correctly classified as high risk) or true negative (individuals that

do not have the event and are correctly classified as low risk). To illus-

trate the possible impact of class imbalance, consider a simple model

that classifies everyone as low risk. Such a classifier yields a classifica-

tion accuracy of 50% if the event fraction is 50% (balanced), but a clas-

sification accuracy of 99% if the event fraction is 1% (highly

imbalanced). That imbalanced datasets can easily lead to high classifica-

tion accuracy is often labeled as problematic. For instance, He and Gar-

cia write “we find that classifiers tend to provide a severely imbalanced

degree of accuracy, with the majority class having close to 100% accu-

racy and the minority class having accuracies of 0%–10%, for

instance.”2 Fernandez and colleagues write “the truth is that classifiers

. . . tend to have great accuracy for the majority class while obtaining

poor results (closer to 0%) for the minority class.”3

We argue that the class imbalance is not a pervasive problem for

prediction model development. First, the problem is specific to the clas-

sification accuracy measure. The limitations of focusing on classifica-

tion accuracy as a measure of predictive performance is well known.6,7

Second, if we consider models that produce estimated probabilities of

the event of interest, an adjustment of the classification threshold prob-

ability can be used to ensure adequate classification performance (ie,

probability threshold to classify individuals as high risk does not have

to be 0.5).8 A probability threshold to select individuals for a given

treatment implies certain misclassification costs and should be deter-

mined using clinical considerations.8 If we use a probability threshold

of 0.1 to classify individuals as high risk and suggest a specific treat-

ment, this means that we accept to treat up to 10 individuals in order

to treat 1 individual with the event: we accept up to 9 false positives, or

unnecessary treatments, per true positive.9–11 As Birch and colleagues

write, models should be able to accommodate differing attitudes re-

garding misclassification costs.12 The problem then shifts from class

imbalance to probability calibration: the model’s probability estimates

should be reliable in order to make optimal decisions. This raises the

question how class imbalance methods affect calibration.

OBJECTIVE

In this study, we investigate the performance of standard and penalized

logistic regression models developed in datasets with class imbalance.

We hypothesize (1) that imbalance correction methods distort model

calibration by leading to probability estimates that are too high, and

(2) that shifting the probability threshold has similar impact on sensi-

tivity and specificity as the use of imbalance correction methods.

MATERIALS AND METHODS

Imbalance correction methods and logistic regression

models
When using RUS, the size of the majority class (ie, the group of indi-

viduals with observed events or nonevents, whichever is larger) is re-

duced by discarding a random set of cases until the majority class

has the same size as the minority class. When using ROS, the size of

the minority class is increased by resampling cases from the minority

class, with replacement, until the minority class has the same size as

the majority class. This results in an artificially balanced dataset

containing duplicate cases for the minority class. SMOTE is a form

of oversampling that creates new, synthetic cases that are interpola-

tions of the original minority class cases.4,5 The procedure is as fol-

lows: for every minority class case, the k nearest minority class

neighbors in the predictor space are determined, based on the Eu-

clidean distance. Then, the differences between the feature vector of

the minority case and those of its k nearest neighbors are taken.

These differences are then multiplied by a random number between

0 and 1 and added to the feature vector of the minority case. By cre-

ating synthetic data in this manner, there is more variation in the mi-

nority cases and hence, the models trained on this dataset may be

less prone to overfitting than when trained on ROS data. We used

k¼5 when implementing SMOTE. SMOTE is designed to work

with continuous variables. For use with ordinal or categorical varia-

bles, one may either use rounding or use an adaptation of SMOTE

for mixed variable types.

Figure 1 illustrates these methods using 2 predictors. The origi-

nal dataset has 100 cases (red dots) with the event and 1900 without

the event (gray triangles) (upper left panel). The difference between

ROS (lower left panel) and SMOTE (lower right panel) is obvious.

ROS includes many duplicates of the original cases from the minor-

ity class. SMOTE creates synthetic cases that lie on the “line” be-

tween 2 original minority cases. As lower sample size is well known

to increase the risk of overfitting, we anticipated that RUS would re-

quire a larger sample size to perform well.13–15

Prediction models were developed using standard maximum like-

lihood logistic regression (SLR) and using penalized logistic regres-

sion with the ridge (or L2) penalty (Ridge).16 The lambda

hyperparameter was tuned using a grid search based on 10-fold

cross-validation.17 See Supplementary Material for details.

Case study: estimating the probability of ovarian cancer
For illustration, we developed prediction models to estimate the prob-

ability of ovarian malignancy in premenopausal women presenting

with at least 1 adnexal (ovarian, para-ovarian, or tubal) tumor. Predic-

tion models for ovarian cancer diagnosis could be used to decide

whether to operate and by whom (eg, whether referral to an experi-

enced gynecological oncologist is warranted or not). We use data from

consecutively recruited women across 3 waves (1999–2005, 2005–

2007, and 2009–2012) of the International Ovarian Tumor Analysis

(IOTA) study.18,19 We have ethics approval for secondary use of these

data for methodological/statistical research (Research Ethics Commit-

tee University Hospitals KU Leuven, S64709). The study only included

patients who were operated on, such that the reference standard (be-

nign or malignant) could be based on histology. Borderline malignant

tumors were considered malignant. Overall, 5914 patients were

recruited across the 3 waves, of which 3369 premenopausal patients

between 18 and 59 years. The prevalence of malignancy was 20%

(658/3369), reflecting moderate imbalance.

We used the following predictors: age of the patient (years),

maximum diameter of the lesion (mm), and number of papillary

structures (ordinal variable with values 0 to 4; 4 referring to 4 or

more papillary structures). To investigate performance of all models

in combination with the different imbalance solutions, the data was

first split randomly into a training set and a test set using a 4:1 ratio.
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This yielded a training dataset of size 2695 (518 events), and a test

set of size 674 (140 events). The training set was either uncorrected

or preprocessed using RUS, ROS, or SMOTE, resulting in 4 different

datasets on which models were fitted: Duncorrected; DRUS; DROS; and

DSMOTE. Subsequently, prediction models were developed using

SLR and Ridge, resulting in 4 (datasets) � 2 (algorithms) ¼ 8 differ-

ent models. To address potentially nonlinear associations with the

outcome, continuous predictor variables were modeled using spline

functions. In particular, we used restricted cubic splines with 3

knots.20 The resulting models were applied to the test set to obtain

the model performance in terms of discrimination (the area under

the ROC curve, AUROC), calibration (calibration intercept, calibra-

tion slope, flexible calibration curves), classification (accuracy, sen-

sitivity, specificity), and clinical utility (Net Benefit) (Box).10,11,21,22

For classification, the “default” probability threshold of 0.5 was

used as well as a probability threshold of 0.192 (518/2695, preva-

lence of malignancy in the training dataset) when class imbalance

was not corrected.

Monte Carlo simulation study
We used the ADEMP (aim, data, estimands, methods, performance)

guideline to design and report the simulation study.24

Aim

The aim of this study was to investigate the impact of class imbal-

ance corrections on model performance in terms of discrimination,

calibration, and classification.

Data generating mechanism

Twenty-four scenarios were investigated by varying the following

simulation factors: original training set size (N) (2500 or 5000),

number of predictors (p) (3, 6, 12, or 24), and outcome event frac-

tion (0.3, 0.1, 0.01). The values for p and the event fraction reflect

common situations for clinical prediction models.25 A sample size of

2500 will include 25 events on average when the event fraction is

1%. Smaller values for N may hence lead to computational issues.

Candidate predictor variables were drawn from a multivariate stan-

dard normal distribution with zero correlation between predictors.

Then, the outcome probability of each case was computed by apply-

ing a logistic function to the generated predictors. The coefficients

of this function were approximated numerically for each scenario

(see Supplementary Material), such that the predictors were of equal

strength, the c-statistic of the data generating model was approxi-

mately 0.75, and the outcome prevalence expected in accordance

with the simulation condition. The outcome variable was sampled

from a binomial distribution.

Estimands/targets of analysis

The focus is on discrimination, calibration, and classification perfor-

mance of the fitted models on a large out-of-sample dataset.

Methods

For each generated training dataset, 4 prediction model training

datasets were created: Duncorrected, DRUS, DROS, and DSMOTE. On

each of these datasets, SLR and Ridge models were fit. This resulted

Figure 1. Visualization of how the imbalance correction methods work for a hypothetical dataset with 2 predictors. Black dots represent observations from the mi-

nority class, gray triangles represent observations from the majority class.
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in 8 different prediction models per simulation scenario. Because we

anticipated imbalance correction would lead to overestimation of

probabilities (ie, that the model intercept would be too high), we

also implemented a logistic recalibration approach for the models

developed on DRUS, DROS, and DSMOTE, resulting in another 6 mod-

els.26 This recalibration was done by fitting a logistic regression

model on the training dataset with the logit of the estimated proba-

bilities from the initial model as an offset variable and the intercept

as the only free parameter:

log
pi;recalibrated

1� pi; recalibrated

� �
¼ aþ log

bp i

1� bpi

� �
;

For each scenario, 2,000 simulation runs were performed. In

each run, a newly simulated training dataset was used. To evaluate

the performance of the resulting models for a given scenario, a single

test set per scenario was simulated with size N¼100,000 using the

same data generating mechanism.

Performance metrics

We applied each model on its respective test set, and calculated the

AUROC, accuracy, sensitivity, specificity, calibration intercept, and slope.

To convert the estimated probabilities into a dichotomous prediction, a

default risk threshold of 0.5 was used. For models trained on uncorrected

training datasets, we also used a threshold that is equal to the true event

fraction. The primary metric was the calibration intercept.21,22

Software and error handling

All analyses were performed using R version 3.6.2 (www.R-project.

org). The simulation study was performed on a high-performance

Box. Test set performance domains and metrics.

1. DISCRIMINATION between cases with and without an event.

The AUROC (area under the receiver operating characteristic curve) corresponds to the concordance statistic, and estimates the proba-

bility that a model gives a higher prediction for a random individual with the event than for a random individual without the event.

The AUROC is 1 when a model gives higher predictions for all patients with an event than for all patients without an event, and 0.5

when the model cannot differentiate at all between patients with and without the event.

2. CALIBRATION or reliability of the predictions itself.

The calibration intercept quantifies whether probability estimates are on average too high (overestimation, calibration intercept < 0)

or too low (underestimation, calibration intercept > 0).21,22 It is calculated as the intercept a of the following logistic regression analy-

sis on the test set: logit PðY ¼ 1Þð Þ ¼ aþ LP, where LP is the logit of the estimated probability from the model. The LP is added as an

offset, meaning that its coefficient is fixed at 1. When a is negative, the analysis indicates that we need to lower the predictions and

hence that these predictions tended to be too high.

The calibration slope quantifies whether probability estimates are too extreme (too close to 0 or 1, calibration slope < 1) or too mod-

est (too close to the event fraction, calibration slope > 1).21,22 It is calculated as the coefficient b of the following logistic regression

analysis on the test set: logit PðY ¼ 1Þð Þ ¼ a’þ b�LP. When the slope (b) is <1, the analysis indicates that the predictions needed to be

shrunk towards the average and hence were too extreme. Because we perform internal validation of performance, calibration slopes

below 1 only reflect overfitting in this study.

A flexible calibration curve visualizes the reliability of predictions conditional on the estimated probability.22 It is based on the follow-

ing flexible logistic regression model on the test set: logit PðY ¼ 1Þð Þ ¼ a’’þ f ðLPÞ. The flexible function f ð:Þ was based on loess (lo-

cally estimated scatter plot smoothing).

3. CLASSIFICATION of patients into high-risk and low-risk groups after specifying a risk threshold.

The accuracy is the proportion of patients that are classified correctly, that is, the proportion of patients that are either true positives

or true negatives: ðTP þ TNÞ=N, with TP the number of true positives, TN the number of true negatives, and N the sample size. The

sensitivity (also known as recall) is the proportion of patients with the event that are classified as high risk: TP=ðTP þ FNÞ, with FN

the number of false negatives. The specificity is the proportion of patients without the event that are classified as low risk:

TN=ðTN þ FPÞ, with FP the number of false positives.

4. CLINICAL UTILITY of treatment decisions while taking misclassification costs into account.

We assume that we use a model to identify high risk patients (estimated probability � t), for which a given clinical intervention is war-

ranted. Net Benefit quantifies the utility of the model to make such treatment decisions.10,11 It exploits the link between the risk thresh-

old t and misclassification costs. For example, using t¼0.1 means that we accept to treat at most 10 patients per true positive.9 In

other words, we tolerate 9 false positives (unnecessary treatments) per true positive (necessary treatment). So as long as you have <9

false positives per true positive, the benefits outweigh the harms. Net Benefit is therefore calculated as TP� t
1�t FP

� �
=N. Net Benefit

can be calculated for several potential values for t. A plot of Net Benefit for a range of thresholds is a decision curve. Net Benefit can

also be calculated for 2 default strategies: treating everyone or treating no one. Treating no one has a Net Benefit of 0 by definition.

Treating everyone has a positive Net Benefit when misclassification costs clearly favor true positives (t is low). If, for a given t, the Net

Benefit of a model is not higher than the Net Benefit of the 2 default strategies, the model has no clinical utility for the misclassification

costs associated with t. Net Benefit is recommended by the TRIPOD reporting guideline for clinical prediction modeling studies.23
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computing facility running on a Linux-based Operating System

(CentOS7). To fit the regression models, the R packages stat and

glmnet version 4.0-2 were used.27,28 To implement SMOTE and

simulate data from a multivariate normal distribution, we respec-

tively used the smotefamily (Siriseriwan W. smotefamily: A Col-

lection of Oversampling Techniques for Class Imbalance Problem

Based on SMOTE. 2019. R package version 1.3.1) and the MASS

version 7.3-51.5 R packages.27 The code is available via https://

github.com/benvancalster/classimb_calibration.

Errors in the generation of the training datasets and estimation

of the models were closely monitored (details in Supplementary Ma-

terial).29 A summary of the datasets in which data separation oc-

curred is given in in Supplementary Table S1.

RESULTS

Case study
There was little variation in discrimination across algorithms and

imbalance correction methods, with average AUROC of 0.79 to

0.80 (Supplementary Table S2). The calibration curves indicate that

all imbalance correction methods had strong impact on calibration,

yielding strongly overestimated probability estimates after imbal-

ance correction but not without correction (Figure 2). This is con-

firmed by the calibration intercepts: these were 0.06 (95% CI �0.16

to 0.26) for SLR and 0.05 (�0.16 to 0.26) for Ridge on training

data without imbalance correction, but varied between �1.32

(�1.54 to �1.11; SMOTE followed by SLR) and �1.50 (�1.72 to

�1.28; RUS followed by SLR) when using imbalance corrections.

The calibration slope was closest to the target value of 1 for models

based on uncorrected data (0.99 for SLR, 1.03 for Ridge) and lowest

(ie, worst) for models after RUS (0.85 for SLR, 0.93 for Ridge).

When using the 0.5 probability threshold on models trained on

uncorrected data, specificity (96% for SLR and Ridge) was clearly

higher than sensitivity (31% for SLR, 29% for Ridge). As expected,

sensitivity increased and specificity decreased by changing the classi-

fication threshold for models based on uncorrected data or using the

0.5 threshold for models after imbalance correction (sensitivities be-

tween 69% and 75%, specificities between 74% and 78%).

Our results also show that the overestimation of the probability

of a malignancy for models that were trained on imbalance cor-

rected datasets could lead to overtreatment: too many individuals

would exceed a given probability threshold and would be selected

for treatment (for instance, referral to specialized gynecologic oncol-

Figure 2. Flexible calibration curves on the test set for the Ridge models to diagnose ovarian cancer.
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ogy centers for surgery). This is reflected in the Net Benefit measure-

ment of clinical utility (Figure 3). The decision curves show that

models trained on imbalance corrected datasets had strongly re-

duced clinical utility, even to the extent that the Net Benefit was

negative when using a probability threshold of 0.3 or higher to select

individuals for treatment.

Simulation study
We show results for Ridge models in scenarios with a 1% event frac-

tion in the main text, and show other results in Supplementary Ma-

terial. The simulation results did not provide evidence that

imbalance correction methods systematically improved the AUROC

compared to developing models on the original (imbalanced) train-

ing data (Figure 4; Supplementary Figures S1–S5 and Table S3). The

median AUROC of models trained on uncorrected data was never

lower than the median AUROC of models after RUS, ROS, or

SMOTE. For RUS, the median AUROC was often lower, with larger

differences when event fraction was lower, training set size was

lower, and number of predictors was higher.

Training models on imbalance corrected datasets resulted in se-

vere overestimation of the estimated probabilities as evidenced by

the negative calibration intercepts (Figure 5; Supplementary Fig-

ures S6–S10 and Table S4). Models trained on uncorrected data

had median calibration intercepts between �0.05 and 0.03. Imbal-

ance correction methods had median calibration intercepts of �4.5

or lower for scenarios with a 1% event fraction, �2.1 or lower for

scenarios with a 10% event fraction, and �0.7 or lower for scenar-

ios with a 30% event fraction. This was corrected by applying the

recalibration procedure. Using the original (imbalanced) data:

recalibration improved median calibration intercepts to values be-

tween �0.07 and 0.03 (Supplementary Figures S11–S16 and Table

S5). One exception involved the training of SLR models after RUS

in the scenario with 1% event fraction, a training set size of 2500,

and 24 predictors. Using RUS implied that the model with 24 pre-

dictors was trained on a dataset including only 25 events and 25

nonevents on average, leading to lack of convergence of the SLR

model (separation, see Supplementary Table S1), but not for the

Ridge model.

The use of SMOTE, and to a lesser extent ROS, resulted proba-

bility estimates that were too extreme as evidenced by median cali-

bration slopes below 1 both for Ridge and SLR models (Figure 6;

Supplementary Figures S17–S21 and Table S6). The use of RUS

resulted in good median calibration slopes yet with high variability

for Ridge models, and in slopes that were often well below 1 for

SLR models. These findings for the calibration slope were more ev-

ident for lower event fraction, lower training set size, and a larger

number of predictors. Median calibration slopes below 1 were also

observed for SLR models developed on uncorrected training data,

however these median slopes where still higher than those for mod-

els developed after RUS, ROS, or SMOTE were still lower.

Regarding classification, using a probability threshold of 0.5

for models trained on uncorrected data resulted in median sensi-

tivities of 0% and median specificities of 100% when the true

event fraction was 1% (Supplementary Figures S22–S39 and

Tables S7 and S8). More balanced results for sensitivity and spe-

cificity were obtained by either using imbalance correction meth-

ods or shifting the probability threshold (Supplementary Figures

S29–S40).

DISCUSSION

The key finding of our work is that training logistic regression mod-

els on imbalance corrected data did not lead to better AUROC com-

pared to models trained on uncorrected data, but did result in strong

and systematic overestimation of the probability for the minority

class. In addition, all imbalance corrections had negative consequen-

ces for the calibration slope. The lower the event fraction, the more

outspoken the results.

Strong miscalibration reduces the clinical utility of a prediction

model.30 Models yielding probability estimates that are clearly too

high may lead to overtreatment. For example, if a model overesti-

mates the risk of malignancy of a detected ovarian tumor, the deci-

sion to refer patients to specialized surgery may be taken too

quickly. Class imbalance is often framed as problematic in the con-

text of prediction models that classify patients into low-risk versus

high-risk groups.1–3,31 Nevertheless, for clinical prediction models

the accurate estimation of probabilities is essential to help in defin-

ing such low-risk and high-risk groups. For instance, clinical staff

using the model to support treatment decisions may choose proba-

bility thresholds to match the assumed misclassification costs that

best fit the context. The context is defined by issues such as the

healthcare system, other relevant patient information, and patient

values.12 Hence, when probability estimation is important, calibra-

tion becomes a central performance criterion.32,33 Although we real-

ize that prediction models cannot replace clinicians, and that

clinicians should not blindly follow a prediction model, research

suggests that incorrect model predictions lead to inferior clinical

decisions.34

The relation between correction for class imbalance and calibra-

tion of estimated probabilities is rarely made. For instance, it is not

discussed in some key publications on class imbalance for prediction

models.1–3,31 A study from 2011 hinted at this link by stating that

“the predicted probability using a logistic regression model is closest

to the true probability when the sample has the same class distribu-

Figure 3. Decision curves on the test for the Ridge models to diagnose ovar-

ian cancer. “All” refers to classifying all individuals as high risk (and hence

treat all), “None” refers to classifying all individuals as low risk (and hence

treat none).
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tion as the original population,” and that differences in class distri-

bution between study sample and population should be avoided.35

However, the authors did not systematically study typical imbalance

correction methods, and the simulations were based on an unrealis-

tic setting with only 1 predictor and a true AUROC around 0.99.

Another study into imbalance corrections quantified calibration in-

correctly by using Brier score and class-specific Brier scores.36 Brier

score is a statistically proper measure of overall measure of perfor-

mance, that captures both discrimination and calibration. This study

incorrectly claimed that using RUS improved probability estimates

compared to using uncorrected data in the minority class based on

observed lower values of the Brier score in the minority class. This,

however, does not mean that the probability estimates are well cali-

brated, but simply means that the probabilities in the minority class

are closer to 1. This is consistent with our findings: probability esti-

mates under RUS are indeed miscalibrated toward too extreme val-

ues.

Another study did indicate that undersampling distorts probabil-

ity estimates and increases the variance of the prediction model

(which relates to the higher tendency of overfitting due to artificially

reducing sample size).37 However, the study focused on classifica-

tion accuracy, by claiming that the effect of undersampling on accu-

Figure 4. Test set AUROC for the Ridge models in the simulation scenarios with an event fraction of 1%.

Journal of the American Medical Informatics Association, 2022, Vol. 29, No. 9 1531



racy depends on many factors such that it is difficult to know when

it will lead to better accuracy. In contrast, our study suggests that, at

least for logistic regression models, RUS (or ROS or SMOTE) is un-

likely to lead to better discrimination or separability between the mi-

nority and majority classes.

It is well known that for developing robust clinical prediction mod-

els, the sample size should be large enough to reduce overfitting.13–

15,17,38 Recent studies indicate that the most important factors to de-

termine overall sample size are the event fraction, the number of con-

sidered parameters, and the expected performance of the model. From

that perspective, undersampling is a very counterintuitive approach,

because it deliberately decreases sample size available for model train-

ing, which may lead to an artificially increased risk of overfitting. The

stronger the imbalance, the more undersampling may induce overfit-

ting. Our results are consistent with this expectation: RUS resulted in

lower AUROC values on the test data.

Based on the results presented in this study, it is warranted to

conduct follow-up studies that systematically study the impact of

imbalance corrections on discrimination and calibration perfor-

mance, in particular in the context of other algorithms and more se-

Figure 5. Test set calibration intercept for the Ridge models in the simulation scenarios with an event fraction of 1%.
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vere imbalance levels than what was studied here. For instance, the

calibration performance of increasingly popular approaches for pre-

diction model development such as Random Forest, Support Vector

Machines and Neural Networks remains to be investigated. Also,

other imbalance correction methods exist, such as weighting, cost-

sensitive learning, or variants of RUS, ROS, and SMOTE.3,31,39 We

did not include scenarios with event fraction <1%, so more detailed

assessments of situations with more severe imbalance may be in-

sightful. However, the observed problems are unlikely to suddenly

disappear with even lower event fractions. We anticipate that risk

miscalibration will remain present regardless of type of model or im-

balance correction technique, unless the models are recalibrated.

However, class imbalance correction followed by recalibration is

only worth the effort if imbalance correction leads to better discrim-

ination of the resulting models.

CONCLUSION

Our study shows that correcting class imbalance did not result in

better prediction models based on standard or ridge logistic regres-

sion. The imbalance corrections resulted in inaccurate probability

estimates without improving discrimination in terms of AUROC.

Figure 6. Test set calibration slope for the Ridge models in the simulation scenarios with an event fraction of 1%.
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We therefore warn researchers for the limitations of imbalance cor-

rections when developing a prediction model.
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