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Abstract: Amorphous solid dispersions (ASDs) are important formulation strategies for improving the
dissolution process and oral bioavailability of poorly soluble drugs. Physical stability of a candidate
drug must be clearly understood to design ASDs with superior properties. The crystallization
tendency of small organics is frequently estimated by applying rapid cooling or a cooling/reheating
cycle to their melt using differential scanning calorimetry. The crystallization tendency determined in
this way does not directly correlate with the physical stability during isothermal storage, which is of
great interest to pharmaceutical researchers. Nevertheless, it provides important insights into strategy
for the formulation design and the crystallization mechanism of the drug molecules. The initiation
time for isothermal crystallization can be explained using the ratio of the glass transition and storage
temperatures (Tg/T). Although some formulation processes such as milling and compaction can
enhance nucleation, the Tg/T ratio still works for roughly predicting the crystallization behavior.
Thus, design of accelerated physical stability test may be possible for ASDs. The crystallization
tendency during the formulation process and the supersaturation ability of ASDs may also be related
to the crystallization tendency determined by thermal analysis. In this review, the assessment of
the crystallization tendency of pharmaceutical glasses and its relevance to developmental studies of
ASDs are discussed.

Keywords: pharmaceutical glass; crystallization tendency; crystallization; nucleation; milling;
accelerated stability test

1. Introduction

Amorphous solid dispersions (ASDs) are among of the most effective enabling formulations for
improving the dissolution process and therefore the oral absorption of poorly soluble drugs [1–7].
Because of their high energy, amorphous solids can reach a supersaturated state during their dissolution
process. Although solubilization techniques that increase the equilibrium solubility, including the
use of micelles and organic solvents, can inhibit membrane permeation [8,9], it does not happen for
supersaturated systems originated from ASDs [10]. It is now widely recognized that the supersaturation
created by ASDs can cause phase separation into concentrated and diluted phases, based on the
spinodal decomposition mechanism, followed by the formation of a quasi-equilibrium colloidal
structure consisting of a concentrated dispersed phase suspended in a diluted continuum phase [11,12].
Although the role of the dispersed phase in the oral absorption is still under debate, this process
can maintain high levels of supersaturation for the continuum phase, which are beneficial for oral
absorption [13]. The stability of the colloidal phase is significantly influenced by the polymer
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species [13–15]. Since the supersaturation behavior of ASDs, including phase separation and its impact
on membrane transport and oral absorption, are outside the scope of this review, readers interested in
these aspects are referred to recent studies [11,13,16–18] for further details.

Drug molecules in ASDs must remain in the amorphous state to exert their beneficial effects during
the dissolution process. Even a trace amount of crystals would undermine these favorable effects,
because it induces crystallization after suspension of the ASD in aqueous media [19,20]. Polymeric
excipients in ASDs serve not only for improving the supersaturation behavior as mentioned above,
but also for inhibiting crystallization of the drug. Miscibility is an important factor for exploiting
the stabilization effect by the polymer [21–23]. Obviously, the crystallization tendency of the drug
molecule itself is another important factor affecting the storage stability.

Table 1 summarizes generally accepted ideas for good glass formers in the case of small organic
compounds. Good glass formers tend to have a large molecular weight [24]; other chemical-structural
properties of these compounds include a low number of benzene rings, a high degree of molecular
asymmetry, as well as large numbers of rotatable bonds, branched carbon skeletons, and electronegative
atoms [25–27]. Specific tendencies can be found for the physicochemical properties as well. Good glass
formers should have a high melting temperature and enthalpy/entropy, as well as a large free
energy difference between crystalline and amorphous states [26]. Fragility [28,29], which quantifies
the degree of non-Arrhenius behavior of a glass, is another parameter that can correlate with
the crystallization tendency [26,30,31]. However, it should be emphasized that the crystallization
tendency of a certain compound is frequently determined by observing its crystallization during rapid
cooling or cooling/reheating cycles using differential scanning calorimetry, which does not necessarily
reflect easiness of the isothermal crystallization, which is of interest for pharmaceutical researchers.
The difference between hot (non-isothermal) and isothermal crystallization is schematically illustrated
in Figure 1. Hot crystallization proceeds upon a decrease in free volume, and each molecule has a
relatively high conformational flexibility during the crystallization. On the other hand, isothermal
crystallization occurs under almost constant volume, and the molecular motion is more restricted.
Crystallization can only be achieved after overcoming the energetic barrier to structural transformation,
in which noncovalent “weak” interactions play an important role, unlike in inorganic glasses.

Table 1. Features of good glass formers based on small organic molecules.

Chemical-Structural Features Physicochemical Features

Large molecular weight Large melting enthalpy/entropy
Low number of benzene rings High melting temperature
Low symmetry Large crystal/amorphous energy difference
Large number of rotatable bonds Large fragility
High branching degree Large Tg/Tm
Large number of electronegative atoms Large viscosity above Tg

Tg, glass transition temperature; Tm, melting temperature.
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The following sections review the crystallization tendency of pharmaceutical glasses, with
emphasis on relationship with their chemical structure, remark on its evaluation process, relevance for
glass properties including the storage stability (i.e., isothermal crystallization), relevance to manufacture,
and possible correlation with the supersaturation ability. In addition to discussion on ideal glasses that
can be prepared by melt–quench procedure, the stability of real glasses, which are prepared through
formulation process such as milling, is also discussed.

2. Classification of Crystallization Tendencies

In the field of pharmaceutical sciences, many research groups have evaluated the crystallization
tendency of drug molecules by applying a cooling/reheating cycle to the melt in a differential scanning
calorimetry (DSC) [26,32]. The following classification, as proposed by Taylor et al. [26], is widely
recognized:

Class 1: Compounds that crystallize during cooling from the melt at 20 ◦C/min.
Class 2: Compounds that do not crystallize during cooling from the melt, but crystallize during
subsequent reheating at 10 ◦C/min.
Class 3: Compounds that do not crystallize during the cooling/reheating cycle mentioned above.

Examples are shown in Figure 2. Haloperidol, a Class 1 compound, always crystallizes at
100 ◦C during cooling from the melt, regardless of the cooling rate achievable by conventional DSC
(Figure 2a) [33], which means that crystallization is entirely governed by the temperature. It should be
noted that the crystallization temperature of some Class 1 compounds such as tolbutamide depends
on the cooling rate [33]. Class 1 compounds can be further divided into two groups according to their
crystallization behavior during cooling in liquid nitrogen, whereby compounds that crystallize and
remain amorphous are categorized as Class 1a and Class 1b, respectively [34]. This difference is likely
to be analogous to the dependence of the crystallization temperature on the cooling rate mentioned
above, that is, haloperidol and tolbutamide can be identified as Class 1a and Class 1b compounds,
respectively. In the case of haloperidol, crystallization is inhibited when the melt is cooled at a rate
faster than 100 ◦C/s to produce a mesophase [33]. Acetaminophen, a Class 2 compound, does not
crystallize during cooling, but crystallizes during the subsequent reheating (Figure 2b). Fenofibrate,
a Class 3 compound, does not crystallize during the cooling/reheating cycle (Figure 2c). Tables 2–4
summarizes examples of compounds belonging to each class.
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Table 2. Examples of Class 1 compounds.

Compounds Mw (Da) Tm (◦C) Tg (◦C) Tg/Tm ∆H (kJ/mol) m Reference

Antipyrin 188 111 −25 0.65 25.2 81 [31]
Anthranilic acid 137 147 5 0.66 22.8 - [26]
Atenolol 266 153 22 0.69 37.5 - [26]
Atovaquone 367 219 - - 33.5 - [35]
Benzamide 121 127 −10 0.66 21.7 - [26]
Benzocaine 165 89 −31 0.67 22.6 - [26]
Caffeine 194 237 72 0.68 20.8 - [26]
Carbamazepine 236 192 61 0.72 25.5 - [26]
Chlorpropamide 277 118 17 0.74 27.4 219 [31]
Chlorzoxazone 170 191 38 0.67 25.6 - [26]
Clofibric acid 215 121 - - 29.0 - [35]
Diflunisal 250 213 - - 35.6 - [35]
Felbinac 212 164 24 0.68 29.8 - [26]
Flufenamic acid 281 135 17 0.71 27.1 78 [26,36]
Griseofulvin 353 218 89 0.74 39.1 74 [26,37]
Haloperidol 376 152 33 0.72 54.3 - [26]
Indoprofen 281 212 50 0.67 36.0 - [26]
Lidocaine 234 68 −39 0.69 16.7 - [26]
Mefenamic acid 241 231 - - 39.4 - [35]
Naproxen 230 157 56 0.77 32.4 - [35,38]
Nepafenac 254 183 - - 42.8 - [35]
Phenacetin 179 136 2 0.67 31.5 - [26]
Piroxicam 331 201 - - 35.6 - [35]
Probenecid 285 199 - - 40.4 - [35]
Saccharin 183 228 - - 29.5 - [35]
Salicylic acid 138 159 - - 24.9 - [35]
Theophylline 180 272 94 0.67 29.6 - [26]
Tolbutamide 270 128 5 0.69 26.2 122 [31]
Tolfenamic acid 262 213 63 0.69 38.8 - [26]

Average 237 172 27 0.69 31.1 115 -

Mw, molecular weight; ∆H, melting enthalpy; m, fragility. Although the fragility can be determined by various
methods, the evaluation based on the temperature dependence of Tg is preferentially employed because it exhibits
the best correlation with the crystallization tendency [31].

Table 3. Examples of Class 2 compounds.

Compounds Mw (Da) Tm (◦C) Tg (◦C) Tg/Tm ∆H (kJ/mol) m Reference

Acetaminophen 151 169 23 0.67 27.2 77 [31]
Bifonazole 310 149 16 0.68 39.2 76 [31]
Celecoxib 381 163 58 0.76 37.4 85 [26]
Cinnarizine 369 120 7 0.71 40.9 84 [31]
Clofoctol 365 88 −4 0.75 35.2 70 [26]
Dibucaine 343 65 −35 0.70 29.2 132 [26]
Droperidol 379 143 29 0.73 40.0 108 [26]
Flurbiprofen 244 115 −5 0.69 27.4 88 [31]
Nifedipine 346 172 46 0.72 38.2 112 [31]
Phenobarbital 233 174 42 0.70 28.7 96 [31]
Phenylbutazone 308 106 −6 0.70 27.6 79 [36]
Tolazamide 311 172 18 0.65 43.4 18 [26]

Average 312 136 16 0.71 34.5 85 -
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Table 4. Examples of Class 3 compounds.

Compounds Mw (Da) Tm (◦C) Tg (◦C) Tg/Tm ∆H (kJ/mol) m Reference

Aceclofenac 354 153 10 0.66 42.3 25 [26]
Clotrimazole 345 141 28 0.73 33.3 63 [31]
Curcumin 368 182 62 0.74 50.1 87 -
Felodipine 384 147 45 0.76 31.0 66 [26]
Fenofibrate 361 80 −19 0.72 33.0 82 [31]
Ibuprofen 206 76 −44 0.66 26.5 75 [31]
Indomethacin 358 161 45 0.73 37.6 85 [31]
Itraconazole 706 168 58 0.75 57.6 731 [26]
Ketoconazole 531 147 44 0.75 52.9 97 [31]
Ketoprofen 254 95 −3 0.73 28.3 67 [31]
Loratadine 383 134 35 0.76 27.3 72 [31]
Miconazole 417 86 1 0.76 32.8 61 [26]
Nilutamide 317 155 33 0.72 31.0 106 [26]
Nimesulide 308 150 21 0.70 33.4 103 [26]
Pimozide 462 219 54 0.66 42.7 170 [26]
Probucol 517 126 27 0.75 39.3 138 [39]
Procaine 236 61 −39 0.70 26.2 90 [31]
Ribavirin 244 168 56 0.75 45.7 70 [40]
Ritonavir 721 122 47 0.81 65.3 86 [31]

Average 393 135 24 0.73 38.8 120 -

Average parameters are also presented in the table for each class of compounds. The molecular
weight shows an increase with increasing classification number, which reflects the importance of
the complexity of the molecular structure. The melting enthalpy also increases with increasing
classification number, which can be explained in terms of the strength of the molecular interactions.
On the other hand, the effect of the melting temperature was opposite to the expectation, while the
effect of the fragility was not clear. However, the effect of the fragility is difficult to evaluate, because
this parameter could not be calculated for most Class 1 compounds. Moreover, the fragility obtained
for chlorpropamide exhibited an unusual value, 219, which significantly influenced the overall average.

Figure 3 visualizes individual data of molecular weight and melting enthalpy of compounds
in each class. Figure 3a clearly shows that all compounds with the molecular weight larger than
400 Da are involved in Class 3, whereas the molecules smaller than 200 Da are not included in Class
3 at all. However, molecular weight was found to be the only parameter that shows some extent
of correlation with the crystallization tendency, if all the data are plotted, as presented in Figure 3.
As an example, Figure 3b shows relationship between the melting enthalpy and crystallization tendency.
Although the averaged values indicated correlation with the crystallization tendency, it is not obviously
statistically meaningful. Other structural/thermodynamic parameters did not exhibit any correlations
with the crystallization tendency, either. Special attention to molecular weight was also made by
Mahlin et al. [24], who found the molecules larger than 300 Da to be good glass formers during
formulation processes. Note that the structural feature of compounds that may be correlated with
the crystallization tendency, as shown in Table 1, has been mainly concluded by observing series of
compounds that have similarity in their chemical structure. When variety of compounds is collected for
examination, focus on single parameter does not seem to be sufficient. The combination of molecular
volume and melting enthalpy was reported to be an excellent predictor of the crystallization tendency
by Wyttenbach et al., based on theoretical considerations centered on the so-called Prigogine–Defay
ratio [35]. In their study, the trend of the Tg/Tm ratio also agreed with the expected trend; interestingly,
the Tg/Tm parameter was also shown to be correlated with the Prigogine–Defay ratio [35,41].



Pharmaceutics 2019, 11, 202 6 of 17

Pharmaceutics 2018, 10, x FOR PEER REVIEW  6 of 17 

 

based on the information described in Table 1 to increase applicability of ASD. As noted below, 
suppression of crystallization tendency may also be related to increase in supersaturation ability 
after dissolution. Further understanding on relationship between chemical structure and 
crystallization tendency should increase options of chemical modification strategy of candidate 
compounds. 

 
Figure 3. Visualization of: (a) molecular weight; and (b) melting enthalpy of compounds belonging 
to each class. 

Alternatively, the critical cooling rate for achieving vitrification has also been employed for the 
classification; for example, compounds that crystallize even at 750 °C/min were classified as Class 1, 
those with moderate crystallization ability and that can be vitrified at ca. 10–20 °C/min were 
designated as Class 2, while Class 3 compounds only require a very slow cooling rate, below 2 
°C/min, for vitrification [38,42]. Despite the different criteria employed, the classifications based on 
this methodology agreed well with those in Tables 2–4 Table 2 Table 3 Table 4, except that tolbutamide and 
cinnarizine were placed in Classes 2 and 3, respectively [38]. 

The different behavior of Classes 1 and 2 compounds likely reflects differences in nucleation 
and crystal growth temperatures (Figure 4). For Class 1 compounds, the optimum nucleation and 
crystal growth temperatures should be close to each other; hence, after reaching an optimum 
temperature where both nucleation and crystal growth proceed, the melt can crystallize. This 
process is expected to be based on homogeneous nucleation. In contrast, the optimum nucleation 
temperature for Class 2 compounds should be located far below the optimum crystal growth 
temperature. Thus, the melt must be first cooled to the nucleation temperature range and then 
heated to the crystal growth temperature for crystallization to proceed. However, if the cooling rate 
is sufficiently slow, there is a finite chance for nucleation to occur at the optimum crystal growth 
temperature even though the nucleation rate is very low, which could explain the similar 
classifications produced by the two methods. 

 

Figure 4. Schematic representation of the temperature dependence of the nucleation and crystal 
growth temperatures for Classes 1 and 2 compounds. 

Figure 3. Visualization of: (a) molecular weight; and (b) melting enthalpy of compounds belonging to
each class.

A common strategy to improve biopharmaceutical performance of poorly soluble candidates
includes increase in hydrophilicity, which frequently has trade-off relationship with affinity to
therapeutic targets. However, another approach may be suppression of crystallization tendency based
on the information described in Table 1 to increase applicability of ASD. As noted below, suppression
of crystallization tendency may also be related to increase in supersaturation ability after dissolution.
Further understanding on relationship between chemical structure and crystallization tendency should
increase options of chemical modification strategy of candidate compounds.

Alternatively, the critical cooling rate for achieving vitrification has also been employed for
the classification; for example, compounds that crystallize even at 750 ◦C/min were classified as
Class 1, those with moderate crystallization ability and that can be vitrified at ca. 10–20 ◦C/min
were designated as Class 2, while Class 3 compounds only require a very slow cooling rate, below
2 ◦C/min, for vitrification [38,42]. Despite the different criteria employed, the classifications based on
this methodology agreed well with those in Tables 2–4, except that tolbutamide and cinnarizine were
placed in Classes 2 and 3, respectively [38].

The different behavior of Classes 1 and 2 compounds likely reflects differences in nucleation and
crystal growth temperatures (Figure 4). For Class 1 compounds, the optimum nucleation and crystal
growth temperatures should be close to each other; hence, after reaching an optimum temperature
where both nucleation and crystal growth proceed, the melt can crystallize. This process is expected to
be based on homogeneous nucleation. In contrast, the optimum nucleation temperature for Class 2
compounds should be located far below the optimum crystal growth temperature. Thus, the melt must
be first cooled to the nucleation temperature range and then heated to the crystal growth temperature
for crystallization to proceed. However, if the cooling rate is sufficiently slow, there is a finite chance
for nucleation to occur at the optimum crystal growth temperature even though the nucleation rate is
very low, which could explain the similar classifications produced by the two methods.
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Figure 5 shows reheating DSC curves of celecoxib melt, illustrating the dependence of the cold
crystallization on the target temperature of the cooling process [43]. When the melt was cooled down
to −20 ◦C, a crystallization exotherm was observed during the subsequent heating process. However,
no crystallization was observed when the melt was cooled down to 30 ◦C, although celecoxib is known
as a Class 2 compound. Our investigation revealed that the optimum nucleation temperature of
celecoxib was ca. −50 ◦C; thus, cooling to 30 ◦C was obviously not enough for inducing nucleation.
In the classification criteria discussed above, the minimum temperature of the cooling process is not
specified. However, a poor understanding of the nucleation process may result in the misclassification
of a particular compound.
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The different behavior of Classes 2 and 3 compounds is likely due to the different strength of their
molecular interactions. Thus, the presence of neighboring molecules during the crystallization cannot
be ignored, and the crystallization is based on heterogeneous nucleation.

3. Relationship between Crystallization Tendency and Isothermal Crystallization

The crystallization tendency discussed above does not directly correlate with the physical stability
under isothermal conditions. However, these two processes do have some indirect relationships.
Figure 6 shows the time to reach 10% crystallinity (t10, expressed in minutes) for pharmaceutical
glasses as a function of Tg/T, where T is the storage temperature [44]. These data were acquired for
quenched glass pellets under dry conditions. Crystallization has frequently been observed to start at the
surface [45,46]. Since the pellets have a very small surface area, the surface effects on the crystallization
were almost eliminated in this experiment. Clearly, the data corresponding to most compounds fell on
a universal line; in particular, the compounds located on the line belonged to Classes 1 and 2. The other
compounds, which exhibited better stability especially above Tg, belonged to Class 3.

The above data were obtained by fitting the crystallinity value at each time point to the
Avrami–Erofeev equation. The obtained Avrami exponents are shown in Table 5 Smaller Avrami
exponents were obtained for higher classification numbers, which indicates that the nucleation
mechanism becomes more homogeneous with decreasing classification number. This hypothesis is
also supported by a previous in-situ analysis of the isothermal crystallization process of tolbutamide
and acetaminophen using synchrotron X-ray diffraction [44].
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Table 5. Ranges of Avrami exponents for isothermal crystallization.

Classification Compound Avrami Exponent

Class 1
Tolbutamide 3.7–4.6

Chlorpropamide 3.0–4.2

Class 2
Acetaminophen 2.1–3.0

Nifedipine 2.0

Class 3

Ritonavir 2.2–3.1
Indomethacin 1.0–2.6

Loratadine 1.1–1.5
Probucol 1.2–1.3

The crystallization of some glasses was observed to start at the surface. In the case of indomethacin,
crystallization is enhanced with decreasing particle size, which is most likely due to the increasing
surface area [45]. Moreover, the crystallization of indomethacin glass particles is retarded by a polymer
coating of the surface [46]. Quenched ritonavir glass exhibited higher stability relative to that of the
compounds located on the universal line in Figure 6. However, the stability of freeze-dried ritonavir
glass could be explained by the universal line, which is likely due to the increase in surface area [47].
The lower packing of the glass structure might also partially contribute to eliminate the effect of
molecular interactions. The surface effects are usually explained in terms of the higher mobility of
surface molecules [48], due to a decreased number of nearest neighbor molecules [49].

The results in Figure 6 suggest that the physical stability of Classes 1 and 2 compounds was
strongly affected by the temperature. In these cases, physical stabilization of the glasses appears
difficult to achieve without adding excipients. However, as the crystallization of Class 3 compounds
is influenced by molecular interactions, physical stabilization of these systems may be achieved by
manipulating these interactions. In fact, quenched ritonavir glass had higher stability compared to
that of the freeze-dried glass, as discussed above.

Sub-Tg annealing based on this strategy was found to be an effective strategy for stabilizing
ritonavir glass [50]. For example, ritonavir glass annealed at 40 ◦C for two days was much more
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stable compared to fresh glass. The fresh glass reached a crystallinity of 58% after annealing at 60 ◦C
for six days, whereas the glass pre-annealed at 40 ◦C reached a crystallinity of only 8% after the
same annealing procedure at 60 ◦C. Structural analysis revealed a change in the packing volume and
hydrogen-bonding pattern during the pre-annealing at 40 ◦C, which was the most likely source of the
stabilization. Such pre-annealing strategy did not work for Classes 1 and 2 compounds [50].

4. Non-Ideal Crystallization of Practical Glasses

The discussion presented above is based on observation under well-defined conditions, where
effect of mechanical stress, moisture sorption, and surface area were minimized. Crystallization
behavior of practical glasses, especially in the case of powder samples, may not be explained in such
an ideal manner. Glasses prepared by grinding typically exhibit lower stability than the intact ones
most likely because of remaining nuclei and/or small crystals that cannot be detected by X-ray powder
diffraction. In the observation of Crowley et al. [51], crystallization behavior of indomethacin glasses
prepared by cryogenic grinding of various crystal forms depended on the initial crystal form used,
suggesting that the ground glasses remembered their original forms even after the grinding. In their
study, they also observed significant differences in the crystallization rates of ground and quenched
glasses. Thus, although grinding is a simple process to prepare amorphous form in a laboratory
scale, it is not recommended because of difficulty in transformation into the amorphous state in a
molecular level.

Even for melt–quenched glasses, application of subsequent grinding process can accelerate
crystallization [52]. Moreover, very weak stresses such as crack formation [53] and transfer to different
vessels [52] are also suspected as causes of nucleation. Figure 7 shows comparison of crystallization
behavior of melt–quenched indomethacin glasses at 30 ◦C with or without grinding process before
the storage. In the absence of the grinding process, the quenched glass remained completely in
an amorphous state for more than one month. However, if the grinding process is applied for the
melt–quenched glass, crystallization is initiated within one day. This comparison clearly indicates
significant effect of the grinding process on the crystallization behavior, which appeared to be due to
increase in the surface area and mechanical stress. It is also interesting to note that the crystal form
obtained was not identical in these examples. Since no relevance between the preparation process and
crystal form could be found, it might be because of difference in impurity profiles.
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Figure 7. Isothermal crystallization of indomethacin glasses at 30 ◦C under dried condition.
(�) Quenched and ground for 6 min. Crystallized to form γ [51]. (3) Quenched and ground.
Crystallized to form α except that symbols with asterisk involves small amount of form γ [54].
(�) Quenched and cryoground. Crystallized to mixture of form α and γ (our data). (N) Quenched.
Crystallized to form γ [55]. (#) Quenched and stored in DSC pan (our data). Crystallized to form α

which contains small amount of form γ.
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Crystallization of nifedipine is very sensitive to various factors including moisture sorption and
mechanical stress. Thus, extensive care is required to investigate the ideal crystallization behavior as
presented in Figure 6. In our experiments, crystalline powder was dried in a vacuum oven at 50 ◦C and
stored in a desiccator with silica gel before use. Then, the dried powder was loaded in a hermetically
sealed pan under flow of dried nitrogen air, and subjected to the melt–quench procedure to initiate the
stability study. Only after such careful treatment, the data which could be explained by the universal
line were obtained.

Therefore, the data for nifedipine crystallization found in literature are usually faster than the
expectation from the universal line. Figure 8 shows onset crystallization time of nifedipine glasses
extracted from various literature sources. As already presented in Figure 6, the nifedipine data
obtained after the careful treatment mentioned above were explainable by the universal line. However,
the crystallization was much faster for the glasses loaded in normal sealed pans without pretreatment.
Observation using polarized light microscopy by Bhugra et al. was done in a very careful manner [56],
where cracked glasses were eliminated from the analysis, because it can enhance the crystallization.
However, the crystallization was much faster, presumably because the glasses could not be shielded
from outer atmosphere completely.
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DSC pan without pretreatment (our data). (�) Quenched in DSC pan [57]. (N) Quenched on glass slides
and crystallization was observed by polarized light microscopy [56]. Cracked glasses were excluded
from the analysis. ( �) Quenched in DSC pan [58]. All the literature data were recalculated using the Tg

value of 45.5 ◦C. Definition of onset crystallization time, which is analogous to t10, is slightly different
depending on literature, but its impact is ignorable in the analysis here.

Compression process is also recognized to affect the crystallization kinetics. Figure 9 shows
effect of compression pressure on crystallization of sucrose glass investigated by isothermal
microcalorimetry [59]. Initiation time for crystallization was rarely influenced below 0.5 MPa; however,
crystal growth was enhanced with increasing pressure. It was shortened at 2.5 MPa, suggesting
that condensation of glass structure can enhance nucleation after application of such relatively weak
compression force. Similarly, Ayenew et al. reported that cold crystallization of indomethacin glass was
enhanced by compression at ca. 43.7 MPa [60]. In their study, uncompressed glass, which was prepared
by cooling the melt at 0.2 ◦C/min, was observed to crystallize at 121.4 ◦C during subsequent reheating
at 5 ◦C/min. However, it decreased to 114.1, 113.1, and 112.7 ◦C, if the compression was applied for
1 s, 2.5 min, or 5 min, respectively. Rams-Baron et al. observed that isothermal crystallization of
etoricoxib was significantly enhanced after compression at 300 MPa; however, it could be prevented
by mixing with polyvinylpyrroridone (PVP), where investigations were done under the identical
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relaxation time conditions [61]. This result indicated that physical barrier by excipients were very
effective for inhibiting pressure-induced nucleation.

Based on the universal line, the only requirement for assuring three-year stability of pharmaceutical
glasses at 25 ◦C is the Tg higher than 48 ◦C [44]. Its applicability to practical glasses which are produced
under various mechanical stresses without protection from outer atmosphere is discussed next.Pharmaceutics 2018, 10, x FOR PEER REVIEW  11 of 17 
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5. Relevance to Formulation Research

Practical ASDs cannot be manufactured by the melt–quenching procedure. The crystallization
tendency during practical formulation processes is also of great interest to formulators. This is similar
but different phenomena from the crystallization from the melt; therefore, some attempts have been
made to find relevance between them. The tendency to crystallize from solution after drying is of
great importance for evaluating applicability of spray-drying. Eerdenbrugh et al. investigated the
crystallization of 51 compounds after removal of the solvent by spin coating, in order to identify
possible correlations between the crystallization tendencies evaluated by thermal analysis upon
cooling/reheating and during drying from solutions [62]. In their analysis, the compounds that
exhibited a tendency to crystallize immediately after spin coating were denoted as Class 1, those
that crystallized within one week were categorized as Class 2, and the remaining compounds were
regarded as Class 3. Approximately 76% of the compounds classified as Class 1 by DSC were also
assigned to Class 1 by the spin coating method, whereas 76% of the compounds classified as Class 3 by
DSC were again classified in the same group by the spin coating approach. The Tg values seemed to
break the correlation between the two classification methods.

The relevance to vitrification during milling has also been studied. Blaabjerg et al. reported
minimum milling times to achieve vitrification as 90 and 270 min for Classes 3 and 2 compounds,
respectively, whereas no vitrification was achieved for any of the Class 1 compounds [42]. It should be
noted that some Classes 2 and 3 compounds failed to form amorphous systems, most likely due to
their low Tg. This observation suggests that the crystallization tendency from the melt can be used to
guide the design of hot-melt extrusion processes, along with additional information on the Tg values.

Thus, applicability of ASD technology to poorly soluble candidates may be judged from the
crystallization tendency determined by DSC with the information on Tg. In the formulations,
polymeric excipients are used for two purposes: physical stabilization and improvement of
dissolution/supersaturation behaviors [12]. Class 3 compounds can be expected to be transformed
into the amorphous state using typical formulation processes for ASDs even without excipients. Main
purposes of addition of polymeric excipients in the ASD design are to raise Tg for ensuring storage
stability and to improve dissolution behavior. Amount of excipient may be kept small for these
compounds. Even if amount of the drug exceeds solid solubility limit, the drug is expected to remain in
the amorphous state [63]. In contrast, Class 1 compounds must be completely mixed with excipients in



Pharmaceutics 2019, 11, 202 12 of 17

a molecular level for the successful transformation to the amorphous state. The amounts of excipients
are expected to be larger compared to that for Class 3 compounds. Typically, solid solubility of drug
in polymeric matrix under ambient temperature is below 30%, sometimes below 10%, depending on
combination of drug and excipient [21–23]. Moreover, it is frequently observed that the effective polymer
for physical stabilization and dissolution improvement is different. Hydroxypropyl methylcellulose
acetate succinate frequently offers great effect for maintaining high level of supersaturation; however, its
miscibility with drug is typically low. In contrast, PVP and its derivatives have relatively high miscibility
with drug, but its supersaturation effect cannot be maintained for long duration in many cases. It must
be recognized as well that prepared ASDs are not necessarily in the equilibrium state. If ASDs are
prepared under an elevated temperature condition, as in case of hot-melt extrusion, the mixing state at
this temperature may be kinetically frozen even after cooling to ambient temperature. In spray-drying,
the drug and excipient molecules may be separated based on the difference in their molecular weights,
because diffusion rate during evaporation process is different [64,65]. This kinetically-separated
structure may also be frozen after the drying [65,66]. If solvents are used during the preparation, as in
the cases of spray-drying and coprecipitation, the mixing state of the ASDs is affected by the solvent
species [67]. In such cases, the mixing state may change with time [23].

How the universal line in Figure 6 is applicable to multi-component ASDs is of great interest.
Figure 10 shows comparison of the onset crystallization time of single phase ASDs appearing in the
literature. As an overall trend, the universal line seems to work even for the multicomponent systems.
Comparison of nifedipine/PVP ASDs from three different stuides implies that milling enhances the
nucleation. However, presence of polymeric excipients appears to stabilize the ASDs more than
expected from change in Tg (i.e., molecular mobility), most likely because of dilution effect and
interaction with drug. The result for Sanofi–Aventis compounds is the most informative from a
practical point of view, because the ASD was prepared by spray-drying. Stability of this ASD is a little
lower but roughly agrees with the universal line regardless of absence/presence of the moisture. When
each dataset is fitted with a regression line, their slopes are almost the same, suggesting that activation
energy for nucleation does not significantly depend on the type of ASDs. Design of accelerated physical
stability test may be possible for ASDs based on this information.
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Figure 10. Onset crystallization time (to, min) of various ASDs as a function of Tg/T.
( �, �,3) Nifedipine/PVP ASDs prepared by melt–quench [68,69] followed by milling [58],
respectively. (�, �) Phenobarbital/PVP ASDs prepared by melt–quench [68,69]. (N,4) Sanofi–Aventis
compound/HPMCP ASDs prepared by spray-drying stored under dried and humid conditions,
respectively [70]. Definition of onset crystallization time, which is analogous to t10, is slightly different
depending on the study, but its impact is ignorable in the analysis here. HPMCP, Hydroxypropyl
methylcellulose phthalate.
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6. Relevance to the Dissolution Benefits of ASDs

The greatest advantage of ASDs is that they can achieve supersaturation of poorly soluble drugs.
Supersaturation can be maintained unless crystallization occurs in aqueous environments [71]. Thus,
it is important to understand the controlling factors that cause crystallization of pharmaceutical glasses
in aqueous media. Our preliminary investigation revealed that crystallization proceeds immediately
above Tg of the solid [33]. Blaabjerg et al. reported that the degree of supersaturation tended to
be high for good glass formers, but no correlation was found between crystallization tendency and
supersaturation lifetime [72]. We have shown that amount of orally absorbed fenofibrate was correlated
with liquid–liquid phase separation concentration, which is analogous to degree of supersaturation, if
the oral absorption was limited by solubility [13]. Thus, suppression of the crystallization tendency can
be an option of chemical modification of the poorly soluble candidates instead of increasing aqueous
solubility. Alhalaweh analyzed the relationship between the crystallization tendencies from the melt
and those in solution, highlighting the need to consider structural factors to improve the correlation
between these tendencies [73]. From the viewpoints of physical stability and supersaturation ability,
Class 3 compounds seem to be suitable candidates for ASDs. In fact, most of the marketed ASDs
consist of Class 3 compounds [74].

7. Summary

This review provides the classification of the crystallization tendencies of pharmaceutical
compounds, focusing on its relevance for the glass properties. Possible relationships discussed in this
review are summarized in Table 6. In addition to its effectiveness for describing the physical stabilities
of ASDs, this classification provides important insights into the glass properties. The investigation of
the crystallization mechanism of small organic compounds is an attractive subject because of their
structural diversity and complicated molecular interactions, in contrast to the inorganic compounds
that have dominated the field of glass science so far. Further progress in this field can make a significant
contribution to both basic glass science and practical developmental studies of pharmaceutical products.

Table 6. Relevance of crystallization tendency classification for glass properties.

With increasing classification number:
• Nucleation becomes more heterogeneous
• The nucleation barrier becomes larger
• Surface effects become more important
• Vitrification during the formulation processes may become easier
• The supersaturation ability may increase
• The universal line in Figure 6 is applicable for Class 1 and 2 compounds, whereas the stability of Class 3
compounds may be better
• Stabilization may be achieved via thermal treatment

Preparation of practical formulations involves some procedure to enhance nucleation. Ideality of
the nucleation/crystallization behavior is destroyed by application of some activation processes such
as milling. However, presence of polymeric excipients can contribute to stabilization, presumably due
to dilution effect and its interaction with drug molecules. As a result, deviation from the ideal behavior
due to formulation processes is suppressed for enabling rough prediction of the crystallization time.
Design of accelerated physical stability test may be possible for ASDs based on this observation.

Although compounds in any classes can be formulated as ASDs, Class 3 compounds obviously
have the highest applicability. In addition to their high physical stability, they may have an advantage
in supersaturation ability that has great contribution to enhanced absorption. Therefore, chemical
modification to decrease crystallization tendency may be considered as an option for drug design
instead of increasing solubility.
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