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Abstract: Graphene and carbon nanotube (CNT)-based gas/vapor sensors have gained much traction
for numerous applications over the last decade due to their excellent sensing performance at ambient
conditions. Inkjet printing various forms of graphene (reduced graphene oxide or modified graphene)
and CNT (single-wall nanotubes (SWNTs) or multiwall nanotubes (MWNTs)) nanomaterials allows
fabrication onto flexible substrates which enable gas sensing applications in flexible electronics.
This review focuses on their recent developments and provides an overview of the state-of-the-art in
inkjet printing of graphene and CNT based sensors targeting gases, such as NO2, Cl2, CO2, NH3,
and organic vapors. Moreover, this review presents the current enhancements and challenges of
printing CNT and graphene-based gas/vapor sensors, the role of defects, and advanced printing
techniques using these nanomaterials, while highlighting challenges in reliability and reproducibility.
The future potential and outlook of this rapidly growing research are analyzed as well.

Keywords: graphene; carbon nanotubes; inkjet printing; additive manufacturing; gas sensors;
flexible electronics

1. Introduction

Early detection of gases and harmful vapors has become increasingly important in many
fields, such as environmental pollution monitoring [1–3], national defense [4,5], industrial emission
monitoring [1,6,7], and medical diagnosis [5,8]. The fundamental sensing mechanism focuses on how
well the gas sensors respond to the changes in the local environment. Furthermore, the need for
flexible and portable gas sensors that show high sensitivity and selectively to gas analytes in real-time
is growing significantly [9,10]. The emergence of materials such as carbon nanotubes (CNTs) and
two-dimensional (2D) materials (e.g., graphene and MoS2) have shown great potential in targeting
chemical and biological analytes, as well as in monitoring state variables, such as temperature, humidity,
and pressure [11–13]. The exemplary electrical and structural properties of these materials allow for
the design of highly sensitive and selective systems while also limiting the cost, weight, and energy
consumption of electronic devices.

Graphene is an attractive sensing material for printed and flexible gas sensing device development
due to its flexible nature, high surface to volume ratio, unique band structure, and high electrochemical
activity at defect sites [12,14–17]. Due to its high specific surface area, high carrier mobility, and tunable
crystal defect density, graphene has shown extraordinary properties and created tremendous
breakthroughs in related electronics applications, particularly when it comes to trace gas/vapor
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sensing [18–23]. Synthesis of graphene by chemical vapor deposition (CVD), segregation by heat
treatment of silicon carbide, and liquid/chemical solvent-based exfoliation are currently areas of intense
research [24–31]. Among these, solvent exfoliation is highly compatible with printable graphene ink
formulation. Moreover, the synthesis of graphene oxide (GO) is first achieved by liquid exfoliation,
following the Hummers method [32,33]. The introduction of carboxylic and carbonyl groups at the
edge of the graphene sheets allows graphene to readily disperse in water. However, the disadvantage
of introducing these groups is that the active layer becomes electrically insulating despite several
attempts by researchers to reduce GO (rGO) [34]. Inkjet printing of rGO based gas/vapor sensors has
been reported by several groups, which we will discuss further in this review [35–40].

Carbon nanotubes (CNTs) are another widely used material for gas sensing due to their unique
electrical and mechanical properties [41]. They possess a very high surface area to volume ratio and
very high sensitivity towards target analytes at room temperature [7,42]. Target analytes transfer
charge upon adsorption on the nanotube sidewalls or at the junctions, which leads to changes in
the conductance of the CNT network. Depending upon the density of the CNT mats used for
performing detection, the charge transfer leads to changes in the conductance of the CNT network.
This is the key sensing mechanism for CNT gas sensors [43,44]. CNTs are of two types: single-walled
(SWNTs) and multi-walled (MWNTs). SWNTs are analogous to a single sheet of graphene rolled
up with about a nanometer diameter while MWNTs are concentric graphene rolls with diameters
on the order of hundreds of nanometers [41]. CNTs are synthesized by arc discharge [45], pulsed
laser deposition [46], and chemical vapor deposition [47], which introduce different defect densities,
and hence varying electrical and mechanical properties [41,48]. CNT synthesis techniques typically
produce both metallic and semiconducting nanotubes which can be separated by density gradient
ultracentrifugation (DGU) [49,50], The separated CNTs can then be dispersed in a solution to be printed
by inkjet printing, allowing for rapid prototyping of printed gas sensors. Of the many challenges to
printing carbon nanotubes inks, the predominant ones relate to the dispersion of CNTs in solvents and
elimination of CNT bundles [51,52]. Functionalization of CNTs with various materials that change
the chemical structure and enhance the sensing performance has allowed researchers to solve some
of the dispersion-related limitations of pristine CNTs [53,54]. Inkjet printing of CNT-based inks for
gas sensing applications has been reported by several groups [53,55], which we will further discuss in
this paper.

An ideal gas sensor needs to provide the following features: (i) high sensitivity to detect low
concentrations of gas, (ii) rapid response, (iii) reversible operation, (iv) good selectivity to different
gases of interest, (v) low-manufacturing cost, (vi) stable operation over multiple cycles of usage,
and (vii) low power consumption during the operation. Inkjet printing (IJP) is a promising route
towards achieving the above desired gas sensor characteristics. IJP provides several advantages over
other deposition techniques, such as dip-coating, spray coating, and electrophoretic deposition [56–58].
With inkjet printing, the process is rapid as no prefabricated masks or templates are required, and the
cost of printing is low. Inkjet printing is a drop-on-demand process with five stages: drop ejection,
drop flight, drop spreading, and drop solidification [59,60]. The feature resolution depends on drop
volume, placement accuracy, and substrate-ink interaction. Droplet resolution is characterized by
the size, shape, and volume of the drops affected by the nozzle size, fluid viscosity, and surface
tension [56]. Viscosity, particle size, and solvent system of the ink are critical parameters for inkjet
printing. Inkjet printing provides the advantages of rapid prototyping and on-demand digital printing
in areas only where the material needs to be deposited. Constraints arise when dealing with the
viscosity of the inks and particle size/concentration. Higher boiling point temperature solvents are also
preferred when using an inkjet printer to avoid droplet jetting inconsistencies and coffee staining effects.
When using water-based inks, tuning the viscosity and modifying the substrate surface energy (adding
water-soluble sacrificial layer or oxygen plasma) can aid in obtaining higher resolution features [61,62].
Moreover, multiple layers can be printed with ease and the deposition of the material can be controlled
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with great precision. There is a great deal of research reported on inkjet printing using CNT and
graphene for gas/vapor sensor applications, which we will further discuss.

In this paper, we discuss the recent developments in the area of inkjet-printed gas sensors using
graphene and carbon nanotubes. The outline of the paper is as follows. First, in Section 1, we provide
a brief overview of graphene and CNT nanomaterials along with the introduction to inkjet printing
technique. In Section 2, we provide an overview of the recent experimental demonstrations in the
area of inkjet-printed graphene-based gas sensors. In Section 3, we discuss important developments
in the field of inkjet -printed carbon nanotube-based sensors for gas detection with emphasis on the
impact of device geometry, the role of substrate engineering as well as the importance of chemical
functionalization for printed CNT-based sensors. Section 4 describes some of the newer developments
such as plasma jet printing and aerosol jet printing for the fabrication of graphene- and CNT-based gas
detectors. Section 5 discusses in detail the role of defects on the performance of graphene and CNT
devices, and finally in Section 6, we summarize important conclusions and scope for future research.

2. Graphene-Based Gas Sensors

Graphene has gained much interest from researchers since 2004 due to its remarkable electrical,
mechanical, and thermal properties [63–65]. A high mobility, near-ballistic transport and stability at
room temperature make graphene an ideal material for sensing applications, particularly gas/vapor
detection [66]. Thus, graphene-based gas sensing device development has increased exponentially,
and the number of published papers has sharply increased since 2007 [9,10,14,17,19,39,40,67–79]. In this
section (Graphene-Based Gas Sensors), we will focus on inkjet printing of graphene-based gas/vapor
sensor and their performance. The performance of a sensor is measured by its sensitivity, limit of
detection, response time, recovery time and selectivity. Table 1 summarizes the sensing performance of
recent reports on inkjet-printed graphene-based sensors for gas/vapor detection at room temperature.

Table 1. Printed graphene gas sensors.

Sensing Material Printed
Method Target Gases Detection Range/Sensitivity

(Room-Temp) Reference

Reduce Graphene Oxide Inkjet NO2 and several
vapors 100 ppm to 500 ppb [38]

Graphene/PEDOT-PSS Inkjet CO2 100 ppm/45 µOhm/ppm @ 30 °C [80]

Reduce Graphene Oxide Inkjet NH3 500 ppm [81]

Reduce Graphene Oxide Inkjet NH3 10 ppm/2.80% [77]

Reduce Graphene Oxide Inkjet NH3 500 ppm/6% [82]

Graphene Oxide Inkjet NH3 and NO2 200–30 ppm, 150–2800 ppb [83]

Graphene/PEDOT-PSS Inkjet NH3 5–1000 ppm [84]

Graphene Inkjet NO2 and NH3 100 ppm/6.9% @ 250 °C [79]

Graphene Oxide Inkjet C2H6O, C7H8 and RH 30, 24, 2.4 Hz/ppm [85]

Graphene Oxide Inkjet DMMP 2.5 ppm/27% [86]

Reduced Graphene Oxide/Ag Inkjet DEEP 2.0 ppm/1% [87]

Inkjet printing of an all-organic rGO-based chemiresistor to detect chemical vapors in the parts per
million (ppm) to parts per billion (ppb) range at room temperature was first reported by Dua et al. [38].
The rGO ink was obtained by liquid phase exfoliation of graphite and dispersing the resulting flakes
in aqueous surfactant solution. Furthermore, the exfoliated graphite oxide was reduced by a green
chemistry alternative, ascorbic acid (vitamin C), than using aggressive reducing agents such as
hydrazine. The lower number of covalently linked C-N species observed in X-ray photoelectron (XPS)
spectra of rGO films makes it evident that ascorbic acid is an effective reducing agent compared to
hydrazine. The rGO dispersion was inkjet printed with controlled uniformity of the sensing layers
over a 3M overhead transparency PET film, seen in Figure 1a. A plot for resistance versus time when
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the sensor was exposed to Cl2 vapor is seen in Figure 1b with the signal response consistent with the
photodesorption of the absorbed gases upon UV irradiation. The sensor shows a notable response
to various aggressive vapors in a 100 ppm to 500 ppb concentration range and gas in a 10 ppm to
12 ppm concentration range, all at room temperature (Figure 1c). This work demonstrated that the
use of very thin films shows a fast signal response and recovery compared to large films with a slow
response/recovery time (minutes) for the inkjet-printed rGO-based gas/vapor sensors.
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Figure 1. Flexisense, inkjet-printed graphene oxide and reduced graphene oxide for gas and vapor
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Building on Dua et al.’s work, Nikolaou et al. reported inkjet printing GO layers on Shear Horizontal
Surface Acoustic Wave (SH-SAW), also known as a Love wave sensor, wherein the performance of this
platform enhances the trace-gas detection [85]. The sensing mechanism for this high performing sensor
is dependent on the changes in electronic gain and the phase of the surface-confined acoustic wave
propagation. Figure 2a displays the inkjet-printed GO coating on Love wave devices with different
numbers of inkjet-printed passes (from 1 to 4 printed passes, corresponding to 5–8 devices seen in
Figure 2a). Figure 2b–d compare the responses of different sensing materials with respect to GO
material. Ethanol, toluene and H2O all show higher response to GO than the other sensing materials
studied, such as silica mesoporous, TiO2 and molecular imprinted polymer. The layer-by-layer study
of GO sensing material with the Love wave sensing platform offers a stable and reproducible solution
for various gas sensing applications.

Moreover, Seekaew et al. reported a low cost and flexible inkjet-printed graphene/ PEDOT:PSS
composite based gas sensor targeting ammonia [84]. Much like with Dua et al.′s work, the inkjet
printing technique was used to achieve uniform layers over a large area. PEDOT:PSS, a conductive
polymer was used with graphene to enhance sensor response and selectivity. Figure 3 captures
the essence of the research in its entirety. The figure shows inkjet-printed graphene/ PEDOT:PSS
sensing layer on top of the interdigitated screen-printed silver electrode on a flexible and transparent
substrate. The figure also shows the excellent selectivity and sensing response time (S (%) = percentage
change of the gas response) of ammonia gas to be in a range of 0.9–3.7% with a low concentration
range of 25 to 1000 ppm at room temperature. With the addition of graphene to the PEDOT:PSS,
the charge carrier concentration increased, and conduction channels of graphene enhanced the charge
transport. The composite of graphene/ PEDOT:PSS based gas/vapor sensor showed much better
performance than just PEDOT:PSS as the sensing material. The report suggests that a smooth surface
of PEDOT:PSS film could lower the diffusion, and the short penetration depth of gas molecules may be
the cause of a decrease in the sensor’s performance. Innovative composite materials and the low-cost
fabrication technique of this gas sensor would provide a valuable solution to large-scale manufacturing
of gas detectors.

With further fabrication enhancement, Fang et al. and their group reported on a flexible, bio-enabled,
all inkjet-printed, rGO-based vapor sensor on modified Kapton substrate [86]. Figure 4a displays
an optical image of the fully inkjet-printed rGO-based gas sensor. This work reported a sensing
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response of 2.5 ppm of dimethyl-methylphosphonate (DMMP) vapor in N2 carrier stream (Figure 4b).
Over 1000 bend cycles, with varying radii of curvature, there were no detectable changes in the
conductivity. Furthermore, this group demonstrated that modifying Kapton with polyelectrolyte
multilayers (PEMs) significantly reduces the water contact angle and allows for good adhesion for the
inkjet printing of the water-based rGO inks [87]. As a proof of concept, an inkjet-printed water-based
rGO sensor on PEMs modified Kapton was fabricated to test the sensitivity of diethyl ethylphosphonate
(DEEP) seen in Figure 4c. This novel approach offers a fully inkjet-printed, flexible, robust and
lightweight solution for biosensing applications at room temperature. Herein, we summarized recent
developments about inkjet-printed graphene-based gas sensors/vapor detection sensors.
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3. Carbon Nanotubes-Based Gas Sensors

Carbon nanotubes (CNTs) and CNT composites are ideal candidates for gas sensing because of
their extremely large surface area to volume ratio, making them intrinsically sensitive to any surface
perturbations. Consequently, CNTs have been identified as being electrically sensitive to extremely
small quantities of gases, electron acceptor and donor molecules such as humidity, oxygen, ammonia,
nitrogen oxide and DMMP [2,7,43,88–92]. The sensitivity and selectivity can be further improved easily
by suitable chemical functionalization of CNTs, e.g., oxygen-containing functional groups (-COOH
and -OH) at the surface of CNTs lead to a much higher response than pristine CNTs [93,94]. In order
to improve upon the sensitivity to specific gases, A Starr et al. fabricated an array of CNTFETs with
different metal contacts and observed the specific transistor response for each FET as a function of
metal contacts and target gas [95,96]. P. Bondavalli et al. demonstrated the use of SWCNT mats as
channels for transistors in place of individual SWNTS fabricated with a dynamic spray gun technique
to obtain highly controlled SWCNT densities [43]. Transistors were fabricated with different metals as
S/D electrodes to demonstrate the difference in interaction of gases with the metal/SWCNTs junction on
the Schottky barrier. However, unlike the classical Schottky barrier between metal and semiconductor,
these contacts were unconventional because the SWCNTs were directly deposited on the metal without
annealing. This model was originally presented by Yamada et al. for Au/SWCNT contacts [97,98].
Cui et al. studied the effects of adsorbed gases on the behavior of CNTFETs and showed that the gas
molecule adsorption strongly influences the metal/SWCNT junction, changing the metal electrode
work function and thus the Fermi level alignment [99]. These works were all important contributions
in understanding the effects of gas adsorption on CNTFETs based gas sensors.

Kong et al. reported one of the earliest works on metal-decorated SWCNTs for H2 sensing [100].
In their work, Pd was deposited on individual SWCNTs by electron beam lithography, resulting
in a measurable reduction in conductance upon exposure to ppm levels of H2 [100]. In order to
obtain high performance from a SWCNT sensor, it is imperative to have a percolative network
of semiconducting tubes, which are mainly responsible for changes in conductance due to the
presence of adsorbed molecules [101]. Hybridization of CNTs with metal nanoparticles, metal oxides,
and conducting polymers have shown significant performance improvements [102,103]. Several groups
have successfully demonstrated integration of CNTs into inkjet-printed antenna systems for developing
wireless gas sensing modules for detecting gases, such as ammonia and nitrogen dioxide [104,105].
A considerable amount of scientific reports and several excellent reviews on gas sensing properties of
CNTs, multiwalled carbon nanotubes (MWNTs), and modified CNTs have been published [2,7,42,87].
The motivation for this section (Carbon Nanotube-Based Gas Sensors) is to provide the status of
inkjet-printed carbon nanotube sensors in delivering ideally desired characteristics for gas sensing.
In particular, the impacts of device geometry, substrate engineering and surface functionalization are
discussed. Along with the existing state of the art, the goal is also to identify key future directions to
deepen the fundamental understanding of chemical sensitivity of inkjet-printed CNTs and accelerate
innovation towards devices/sensors utilizing these materials. For a broader, more general review on
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CNT gas sensors covering other fabrication methods, we direct the reader to the review paper by
Meyyapan et al. [7]. Table 2 sums up the sensing performance of recent reports on inkjet-printed
CNT-based sensors for gas/vapor detection at room temperature.

Table 2. Printed carbon nanotube (CNT) gas sensors.

Sensing Material Printing
Method Target Gas

Detection
Range/Sensitivity

(Room-Temp)
Reference

MWNT on paper Plasma Jet NH3 10–60 ppm/4% [106]

SWNT on acid free paper Inkjet NO2, Cl2 NO2 250 ppb, Cl2 500 ppb [107]

SWNT-PABS on paper Inkjet NH3 250 ppm [54]

COOH/PEDOT:PSS-MWCNT
on PET Inkjet C2H5OH 13 ppm [53]

CNT Inkjet DMMP 10 ppm/20% [77]

SWNT on Kapton Inkjet CO2 20,000 ppm [105]

CNT on glass Inkjet NH4OH, Ethanol, Acetone 50–1000 ppm [108,109]

SWNT-COOH on Si Inkjet H2S 100 ppm [109]

Polymer(PVC/Cumene-PSMA
/PSE/PVP)—CNTs on PEN Inkjet NH3 100 ppm/17% [110,111]

PABS-SWCNT on paper Inkjet NH3 50 ppm [112]

SWCNT on paper Inkjet NH3 - [104]

Functionalized CNT on paper Inkjet NO2 30% at 10 ppm [113]

SWCNT on Si/SiO2 Aerosol jet NO2 96% at 60 ppm [114]

SWCNT on Si/SiO2 Inkjet NO2 5.7% at 10 ppb [115]

MWCNTs/PEDOT: PSS Inkjet HCHO 30% at 10 ppm [55]

Pt-SWCNTs Aerosol jet H2 1.5% at 40 ppm [116]

One of the earliest works on CNT-based chemical sensors was reported by Kong et al. for the
detection of NH3 and NO2 [91]. The individual semiconducting SWNTs (S-SWNTs) were grown by CVD
on SiO2/Si substrates and demonstrated molecular gating effects leading to the shifting of Fermi level
of S-SWNTs, thereby modulating the resistance of the channel by orders of magnitude [91]. The chosen
target gases resulted in two opposite electronic behaviors because of their chemical affinity: NO2 being
an electron-acceptor gas (induced p-type doping of the SWNT) and NH3 being an electron-donor gas
(induced n-type doping). The earliest inkjet-printed CNT gas sensor was reported by Jani Mäklin et al.
for detecting H2S gas [109]. The active channel material was a carboxyl-functionalized nanotube film
inkjet deposited between Ti/Pt based S/D electrodes with a PECVD-grown SiO2 layer as a gate dielectric.
The sensor platform had an embedded heating circuit used to reset the sensor for rapid measurements.
In this work, both a two-terminal resistive and three-terminal (p-type) Chem-FET device configuration
were fabricated and tested. The Chem-FET sensor operated as p-channel transistor both for air and
the H2S gas with increased/decreased channel conductivity at negative/positive gate bias. It was
shown that H2S vapor induced an increased channel conductivity compared to the reference gas,
demonstrating sensing capability of 100 ppm for these sensors. However, an order of magnitude
higher change was observed for Chem-FET at low S/D bias and high positive gate bias compared
to resistive sensors. The key mechanism was reported to be the modulation of junctions between
semiconducting and metallic tubes in the network and Schottky barriers between CNTs and metal
electrodes. This work highlights the importance of optimum device geometry for the improvement of
inkjet-printed CNT gas sensors. The sensors in this work, however, did not recover reversibly after
exposure to vapors was stopped and needed recovery achieved by heating the sensor up to 130 ◦C
with the integrated Pt heating circuit for ~10 min.

The key advance in self-reversible sensors was made by Ammu et al. in demonstrating a
reversible sensor for Cl2 and NO2 using inkjet-printed CNT films on cellulosic substrates (and plastics)
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that did not require thermal or photoirradiation for signal recovery [107]. In this work, NO2 was
detected at concentrations as low as 125 ppb in ambient air for both PET and paper-based devices
and the signal self-recovered upon removal of NO2. The physical mechanism behind this reversible
response was attributed to the formation of a weak charge-transfer complex between NO2 and the
CNTs that stops short of irreversible covalent bond formation. The behavior, however, was different
for Cl2 vapors. Both PET and paper-based sensors demonstrated the detection capability of Cl2
vapor with concentrations as low as 500 ppb. For the PET substrate, the signal response did not
recover spontaneously when Cl2 was removed, and it required additional photoirradiation for ~3 min.
Even after this photoirradiation, the signal did not fully recover. However, a key finding was that for
Cl2 detection, paper-based sensors showed reversible operation and self-recovered in ~7 min. This was
further validated by an irreversible Raman shift for PET-based sensors, which only partially recovered
with photoirradiation (Figure 10b) compared to paper-based sensors (Figure 10a) that show reversible
Raman shift. The authors hypothesized that in the case of Cl2, with increased residence time, the vapors
penetrate the interior of the CNT bundles and/or to the inter-bundle crossover points. This required
additional external energy to recover signal or reset the sensor. Since the vapor residence time is
significantly reduced on porous cellulosic substrates (as the vapor can desorb from all sides, as opposed
to plastic substrates, where desorption is possible only from the top of the film), the paper-based
sensors show reversible operation while PET-based sensors were irreversible. This work highlights
the importance of substrate engineering for improved inkjet-printed CNT gas sensors. This work
produced fully inkjet-printed and self-reversible sensors which were highly selective to target gases,
as shown in Figure 10c.

One promising direction to improve the sensitivity and selectivity of CNT-based sensors is
in the functionalization of CNTs with different chemical groups, metal nanoparticles and organic
molecules [94,102,103]. A recent experiment by Alshammari et al. showed the strong influence
of functionalization on device performance [53]. In this work, three different CNT channels were
investigated: (a) pristine CNTs with no functionalization; (b) CNTs functionalized with carboxylic
acid (O-CNTs) and CNTs functionalized with conductive polymer PEDOT: PSS(P-CNTs). The method
of fabrication and final inkjet-printed sensors are shown in Figure 5a–f. The sensitivity and the
response time of the sensor for different functionalizations are shown in Figure 5g. Functionalization
with carboxylic acid results in 1.7× enhancement in sensitivity compared to pristine CNTs while that
with PEDOT:PSS results in 2.53× improvement in sensitivity. Similarly, Huang et al. demonstrated
inkjet-printed NH3 gas sensors based on CNTs functionalized with poly (m-aminobenzene sulfonic acid)
(PABS). Figure 6 shows the measurement setup and sensor response with a sensitivity of 10 ppm with
these functionalized CNT based NH3 sensors on paper [54]. The sensor followed a step response, with a
fast response time (~3 s), and was reversible and stable in outdoor environments for up to 3 months.
Similarly, Timsorn et al. [55] demonstrated the impact of functionalization by fabricating a highly
sensitive and extremely selective MWNTS-PEDOT:PSS-based sensor for formaldehyde in concentration
range of 10–200 ppm at room temperature for food monitoring applications. The enhanced response
in the nano-composite network-based sensors are the result of combining the sensing properties of
both the constituent materials. The conducting polymers such as PEDOT PSS offer additional vapor
attachment sites to the CNT network and also help in obtaining rapid response rates. This is because
of the weak interaction between polymers and vapor molecules which can be easily desorbed upon
exposure to air flow. Similarly, the performance enhancement in carboxyl-functionalized nanotubes is
because oxygen is more electronegative than carbon, and attracts more electrons from electron donating
vapors like ethanol, contributing to an increased change in the resistance of the sensor networks and
improved sensitivity.
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4. Role of Defects

4.1. Graphene-Based Sensors

Graphene has proven to be an excellent nanomaterial for application in chemical sensing, and the
fundamental sensing performance is greatly affected by the role of defects that are induced by various
fabrication processes. There have been several groups that have extensively studied the role of defects
on the sensing mechanism of the graphene-based devices [18–20,27,31,36,117–122]. Defects such as
film thickness, crystalline structure, porosity, wrinkles, grain boundaries, and external substrate defects
all greatly affect the sensing performance of the sensor [19,20,22,75,76,123,124].

To explore these point and linear defects, Salehi-Khojin et al. demonstrated sensing performance of
polycrystalline graphene ribbons compared to nearly pristine graphene [22]. CVD-fabricated graphene
ribbons displayed higher sensitivity than of the pristine graphene due to the linear defects that are
present, allowing for easy conduction pathways. Engineering linear defects and edges allows for
improved sensitivity for graphene-based sensor. Moreover, Banerjee et al. and his team studied the
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electrochemical performance at the edge of the graphene nanopores fabricated by a TEM electron
beam, isolated from the electrochemical contributions of the basal plane [23]. They observed that the
electrochemical current densities were 3 times higher than those reported for CNTs and for pristine
graphene. Manufacturing arrays of these nanopores could allow for superior sensing performance
of gas sensors. Kumar et al.’s research showed that the defective CVD graphene-based gas sensors
control the sensing characteristic of the device [19]. Moreover, their study showed that the defects
on the SiO2 substrate were needed to modulate the electrical properties and are responsible for the
sensing characteristics of the pristine graphene chemFETs. Another paper by Salehi-Khojin et al.
analyzed the sensing performance of surfactant-assisted exfoliated graphene chemiresistor [18].
The sensing performance of the randomly stacked graphene flakes was characterized by controlling
the filtration volume seen in Figure 7. The low filtration volume of the randomly stacked graphene
flake sensor showed excellent sensitivity response, while the increase in filtration volume decreased
in sensitivity as the electric transport regime switched from 2D electron hopping to phonon-limited
(metallic) conduction. This sensor performed superiorly compared to other sensing materials such as
polycrystalline graphene, graphene microribbon, and CNT-based chemical sensors. The review paper
by Carbone et al. discussed that for graphene inks for inkjet printing, defects of different types are
induced from the dispersing and stabilizing agents [125]. The dispersant and the stabilizing agents
reduce the conductivity in the oxygenated species. Improvement regarding non-graphene components,
such as using a proper conductivity polymer or even starch in the ink solution, tends to promote the
performance of the overall sensor [75].
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While the focus is to create defect-free nanomaterials, the next goal is to control/make defects in
the materials (e.g., pores, edges, or replacing atoms) to self-repair, or engineer materials for catalytic
or selectivity applications [117,126–128]. Zang et al. and their group demonstrated how defective
graphene showed much stronger adsorption of different gas vapors than in pristine graphene [128].
Hajati et al. improved sensing in graphene material by gently inducing defects (reconstructed vacancies)
in the lattice. This defect-controlled technique by Ga+ ion irradiation (~1012 ions cm−2) allows for
improvements in transport properties in the graphene layer, in turn improving sensing and response
time [129]. These studies showed that the defects induced by morphology, fabrication and different
substrates play a significant role in sensing performance.

4.2. CNT-Based Sensors

The pristine intrinsic properties of CNTs can be perturbed at various stages of the ink synthesis
and printing process, for example during colloid formation, chemical functionalization, and oxidation.
As such, a fundamental understanding of the impact of the defects on changes in CNT properties and
corresponding change in sensing properties is imperative to designing CNT gas sensors. The sensing
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mechanism in CNTs can be explained according to interactions over three sections—along the length of
tubes, at the junction between the tubes, or at the junction between the nanotubes and metal contacts,
as shown in Figure 8a [42]. Fuhrer et al. proved that the contact resistance at the metal semiconducting
junctions was two orders of magnitude larger than the resistance between two semiconducting or
metallic SWCNTs, resulting in the current flowing preferably through either semiconducting or metallic
tubes [130]. Khojin et al. did numerical computations and experiments to determine the change in the
sensing mechanism of the chemiresistor upon addition of defects in the nanotubes [44]. They showed
that in the case of perfect nanotubes, since the resistance of tubes is very small, the overall response of
the chemiresistor mainly depends on the resistance changes at the junctions between the nanotubes
as well as at the metal contacts to nanotubes junctions. Meanwhile, in the case of highly defective
nanotubes, the resistance of the tubes is very high. Therefore, the overall sensor response is dominated
by the resistance changes at the tubes themselves as compared to the other junctions. The key conclusion
was that the main sensing mechanism is dependent on and changes according to the level of defects on
the nanotubes, as shown in Figure 8b,c.
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various analytes and the SWNT network as a function of oxidation. Reproduced with permission from
American Chemical Society [132].

In another work, Khojin et al. showed that the conduction mechanism in the nanotubes is
also related to the amount of defects [131]. They did measurements to show that at high electric
fields, the Poole Frenkel mode of conduction dominates, wherein the electrons tunnel through the
defects leading to an injection of trapped charge carries in the conduction band resulting in a higher
response [131]. In other words, the Poole Frenkel regime effectively samples the defects, leading to
higher sensitivity, as shown in Figure 8d. To understand and quantify the impact of defects on the
overall sensitivity, Robinson et al. controllably introduced carboxylic acid sites through oxidation on
the SWNTs (<2% of the total sites) and studied the impact on sensor response over a wide variety of
gas vapors [132]. The samples that received more oxidation (0.4 G0) showed an enhanced response
compared to samples with less oxidation (0.8 G0). An increase in both the capacitance and conductance
response for a broad spectrum of analytes on SWNT was observed. The physical mechanism was
attributed to defect sites serving as both low energy adsorption sites and nucleation sites for additional
condensation of the gas species on CNT surface, as shown in Figure 8e–f. Once the analyte adsorbs
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at a defect site, charge transfer takes place between the analyte and CNTs, resulting in the resistance
change. These works highlight a more general role of defects in sensing a wide variety of analytes and
their implication on the design of printed gas sensors using carbon nanotubes.

5. Advanced Printing Techniques

In this section (Advanced Printing Techniques), we review the other state-of-the-art print modalities
that are also being actively employed for printing gas sensors.

5.1. Aerosol Jet Printing

Aerosol jet printing (AJP) is another relatively new method of printing where the droplet
size is much smaller than that of inkjet printing, resulting in finer features and higher resolution.
AJP introduces new direct write capabilities with consistent deposition, allows a wider range of ink
viscosities (1 to 1000 cP) and finer feature resolution (~10 µm). A typical AJP system consists of
two modes of aerosolization: pneumatic and ultrasonic. The ultrasonic atomizer and the multi-axis
positioning stage enables conformal printing on non-planar surfaces, such as on a golf ball. AJP allows
for rapid integration when compared to other additive technologies [133]. However, AJP requires the
tuning of several parameters, such as gas flow (or sheath gas N2), nozzle diameter, stage speed and
substrate temperature, to achieve optimal print resolution. Therefore, it has been a challenge to print
CNTs with AJP successfully. In an earlier work, Liu et al. successfully demonstrated Pt-functionalized
SWNTs printed with AJP towards 40 ppm H2 detection without a coffee ring effect in the printed
structures with N2 for carrier gas [116]. A recent work by Liang et al. further optimized the process
and demonstrated high print resolution for the alignment of CNTs for flexible electronics applications
using AJP [134].

In a novel technique, Zhou et al. demonstrated a highly efficient method of sorting semiconducting
nanotubes by a new isoindigo-based copolymer to act as a channel material to construct aerosol
jet-printed (with N2 carrier gas) thin film transistors (TFTs) on Si/SiO2 substrates [114]. TFTs based
on these sorted semiconducting SWNTs showed superior device performance with high on/off ratios
(106:1) and mobility (up to 29.8 cm2

·V−1
·s−1) and small hysteresis. Gas sensors based on the above TFTs

exhibited one of the best performances reported for NO2 sensors at room temperature with respect to
sensitivity, stability and response rate.

In our research, we investigated power dissipation and electrical breakdown in aerosol jet-printed
graphene (with N2 carrier gas) interconnects on Kapton, SiO2/Si, and Al2O3 substrates [135]. Our study
indicated that the power dissipation in AJP graphene is dominated by the graphene interconnect
morphology for high thermal conductivity substrates but can be limited by the substrate properties.
Furthermore, our study showed that the porosity of the AJP-printed graphene induces a high thermal
resistance of the graphene interconnects. An AJP printed (N2 carrier gas) metal oxide gas sensor
reported by Cho et al. exhibits good sensitivity and fast response time (1.2 s) [136]. However, to our
knowledge, there have not been any reports on AJP-printed graphene- or CNT-based gas sensors
thus far.

5.2. Plasma Jet Printing

Although inkjet printing is a promising route towards printed CNT and graphene gas sensors,
there are a few shortcomings including rigorous ink synthesis, nozzle clogging and the need for
post-printing thermal treatment to remove dispersants (solvents, surfactants). Plasma jet printing (PJP)
has shown promise in overcoming these challenges by enabling deposition of an aerosol at atmospheric
pressure and at under 40 °C with no postprocessing required [106]. The setup for plasma jet printing is
shown in Figure 9a. The printer consists of a quartz nozzle (diameter 5 mm) containing two copper
electrodes (~2 cm apart) and connected to a high-voltage (1 to 15 kV AC) power supply [106]. A helium
plasma is generated upon applying a potential between the electrodes. An ultrasonic nebulizer is used
to atomize the colloidal material to create aerosol to be deposited. This aerosol is then carried to the
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print nozzle by a helium carrier gas into a quartz tube which contains the plasma. While the primary
gas flow is at 2000 ccm, the secondary flow into the nebulization is at 50 ccm to aid in the transportation
of the aerosol to the print head. The operation of the system with a fixed aerosol flow is shown in
Figure 9b (plasma off) and Figure 9c (plasma on). This work used commercial MWCNTs and carboxyl
functionalization to form the colloidal ink for plasma jet printing. The printed carbon nanotubes on
paper showed a detection limit of 10 ppm towards NH3 (Figure 9d) and this work shows a promising
direction for plasma jet printing for room temperature gas sensing. Moreover, PJP has shown potential
to enhance conductivity in GO films by using a low-temperature He and H2 gas mixture to reduce
a highly acidic GO suspension (pH < 2) in situ during deposition confirmed by XPS and NEXAFS
(near-edge X-ray absorption fine structure spectroscopy). The reduction of carboxylic acid functional
groups with the extended exposure to the plasma jet aids in yielding conductive GO patterns useful in
gas sensing applications [137].
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6. Outlook 

The market for gas sensors is predicted to exceed USD 3 billion by 2027 [138]. There are 
innumerable applications for gas sensors ranging from environmental monitoring, wearable 
products, smart packaging of perishable food products, RFID tags and healthcare monitoring 
[110,139–144]. The motivation for making them flexible is to potentially increase the application areas 
of these sensors. Additive manufacturing techniques, such as inkjet printing, allow for large-scale, 
low-cost, portable sensor fabrication, without generating a lot of hazardous chemical waste as 
compared to traditional fabrication methods. Moreover, additive manufacturing allows for 
enhancing sustainability by using the resources efficiently and enable closed-loop material flows 
[145]. The inkjet printing method is less complex and provides higher throughput of devices than 
other traditional methods of fabricating sensors. The recent number of publications in the area of 
inkjet-printed graphene and carbon nanotube-based gas sensors shows an exponential rise, and thus 
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resolution and gas sensitivities can be compared to the conventional vacuum-based fabrication 
process. Many efforts to improve the inkjet printing process of CNTs and graphene for gas sensing 
applications are made by decorating CNTs or graphene with conductive oxides, polymers, or metals, 
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Figure 9. (a) Schematic of the atmospheric plasma jet. Photographs of aerosol flow with (b) no plasma
and (c) plasma on. (d) MWCNTs on paper as a gas sensor exposed to ammonia in the range of
10–60 ppm. Reproduced with permission from AIP Publishing [106].
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Figure 10. Raman shifts before (“a”, black) and after (“b”, red) exposure to 100 ppm Cl2 vapor for
(a) inkjet-printed CNT/PET, where the shift is partially reversible upon photoirradiation (to “c”,green);
(b) inkjet-printed CNT/paper, where the shift is reversible. (c) Selectivity plot for an inkjet-printed
CNT/PET film, sensor exposed to saturated organic vapors, NH3 (100 ppm), NO2 (100 ppm), and Cl2
(100 ppm). Reproduced with permission from American Chemical Society [107].

6. Outlook

The market for gas sensors is predicted to exceed USD 3 billion by 2027 [138]. There are
innumerable applications for gas sensors ranging from environmental monitoring, wearable products,
smart packaging of perishable food products, RFID tags and healthcare monitoring [110,139–144].
The motivation for making them flexible is to potentially increase the application areas of these
sensors. Additive manufacturing techniques, such as inkjet printing, allow for large-scale, low-cost,
portable sensor fabrication, without generating a lot of hazardous chemical waste as compared to
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traditional fabrication methods. Moreover, additive manufacturing allows for enhancing sustainability
by using the resources efficiently and enable closed-loop material flows [145]. The inkjet printing
method is less complex and provides higher throughput of devices than other traditional methods
of fabricating sensors. The recent number of publications in the area of inkjet-printed graphene and
carbon nanotube-based gas sensors shows an exponential rise, and thus needs further research.

7. Conclusions

Although CNT- and graphene-based gas sensors demonstrate great potential for next-generation
printable and flexible sensing materials, several challenges remain before feature resolution and gas
sensitivities can be compared to the conventional vacuum-based fabrication process. Many efforts to
improve the inkjet printing process of CNTs and graphene for gas sensing applications are made by
decorating CNTs or graphene with conductive oxides, polymers, or metals, improving the rheology
of the ink, and substrate surface modification. With ongoing research in the area of ink synthesis,
tuning printing process, and development of new printing methods, printed CNT- and graphene-based
sensors will soon offer better control and resolution.
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