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Abstract: Hard-magnetic soft materials belong to a class of the highly deformable magneto-active
elastomer family of smart materials and provide a promising technology for flexible electronics, soft
robots, and functional metamaterials. When hard-magnetic soft actuators are driven by a multiple-
step input signal (Heaviside magnetic field signal), the residual oscillations exhibited by the actuator
about equilibrium positions may limit their performance and accuracy in practical applications.
This work aims at developing a command-shaping scheme for alleviating residual vibrations in a
magnetically driven planar hard-magnetic soft actuator. The control scheme is based on the balance
of magnetic and elastic forces at a critical point in an oscillation cycle. The equation governing the
dynamics of the actuator is devised using the Euler–Lagrange equation. The constitutive behaviour of
the hard-magnetic soft material is modeled using the Gent model of hyperelasticity, which accounts
for the strain-stiffening effects. The dynamic response of the actuator under a step input signal is
obtained by numerically solving the devised dynamic governing equation using MATLAB ODE
solver. To demonstrate the applicability of the developed command-shaping scheme, a thorough
investigation showing the effect of various parameters such as material damping, the sequence of
desired equilibrium positions, and polymer chain extensibility on the performance of the proposed
scheme is performed. The designed control scheme is found to be effective in controlling the motion
of the hard-magnetic soft actuator at any desired equilibrium position. The present study can find its
potential application in the design and development of an open-loop controller for hard-magnetic
soft actuators.

Keywords: magneto-active elastomers; hard-magnetic soft materials; hyperelasticity; nonlinear
vibrations; vibration control; open-loop control

1. Introduction

Soft active materials undergo various morphological changes and large deformations
under externally applied mechanical [1,2], heat [3], light [4], magnetic [5,6], electric [7–10],
humidity [11] and/or solvent [12] fields. Some soft active materials include dielectric
elastomers [13,14], hydrogels [15,16], liquid crystal elastomers [17,18], magneto-active elas-
tomers [19–23], etc. In the recent years, these active materials have become greatly attractive
due to their possible uses in the fields of soft robotics [24–26], flexible electronic devices [27],
biomedical devices [28,29], wearable devices [30,31], soft actuators and sensors [32–34],
among many others. In comparison to other soft active materials, magneto-active elas-
tomers are efficient when the actuation is needed in a closed space due to the ability of a
magnetic field to penetrate in a wide range of materials [35]. Hard-magnetic soft materials,
a new class of materials belonging to the family of magneto-active elastomers, fabricated by
embedding hard magnetic particles (like hard samarium-cobalt, ferrite, NdFeB, and many
more) into soft silicon elastomers with 3D printing technology, have attracted tremendous
research interest recently because of their remarkable properties, such as their fast reversible
response, remote external stimuli, flexibility, ability to show programmable and complex
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shape transformations in low magnetic fields, etc. [36–39]. The potential applications
include but are not limited to soft robotics [40], functional meta-materials/structures [41,42],
and actuators [43].

For the design and development of devices and structures that are based on the
promising hard-magnetic soft materials, it is crucial to understand the underlying me-
chanics and fundamentals of hard-magnetic soft materials. In this regard, recently, Zhao
et al. [44] developed a finite deformation and nonlinear finite element framework for un-
derstanding the mechanics of ideal hard-magnetic soft materials. The developed finite
element framework (implemented into the commercial software ABAQUS using UEL) was
exploited to simulate the magneto-mechanical behaviour of hard-magnetic soft planar actu-
ators, hard-magnetic soft beams, and complex shape-morphing structures. Subsequently,
Garcia-Gonzalez [45] developed a continuum framework for modeling the effect of vis-
coelasticity on the magneto-mechanical response of hard-magnetic soft materials under
dynamic and static loading conditions. Further, Ye et al. [46] developed a computationally
efficient numerical model for hard-magnetic soft materials by decomposing the elastic
deformation energy into lattice volumetric changes and stretching. Chen et al. [47] reported
a theoretical model for characterizing the complex transformations of planar hard-magnetic
soft beams. Chen et al. [48] developed a three dimensional theoretical model for analysing
the extremely large deformations of hard-magnetic soft beams and provided the guidelines
for the design and optimization of hard-magnetic soft structures. Considering the exact
geometric nonlinearity, Chen et al. [49] developed a theoretical framework for predict-
ing the magneto-mechanical response of functionally graded hard-magnetic soft beams.
Zhang et al. [50] reported a micromechanics-based theoretical model for investigating the
effect of interactions between the hard magnetic particles and the soft elastomer on the
actuation performance of hard-magnetic soft materials. Considering visco-elastic effects,
Dadgar-Rad and Hossain [51] reported a theoretical framework for the finite deformation
analysis of hard-magnetic soft beam-type actuators subjected to magnetic loading. Kadapa
and Hossain [52] developed a unified finite element model for the analysis of soft and
hard magneto-active elastomers considering the time-dependent visco-elastic effects and
simulated a magnetically driven four-finger robotic gripper. Dadgar-Rad and Hossain [53]
developed a micropolar continuum theory and a finite element-based numerical model
for the analysis of hard-magnetic soft materials. Further, a detailed review on fabrication,
characterization, modeling, and applications of hard-magnetic soft materials can be found
in Ref. [54].

The aforementioned theoretical studies expound on the analysis of hard-magnetic
soft material-based actuators under quasi-statically applied magnetic fields. However,
in many applications, specifically in soft robotics, hard-magnetic soft actuators undergo
dynamic motions during their operation, and further, the actuators are also expected to
attain accurate and fast positioning. The dynamic modeling and analysis of hard-magnetic
soft actuators under dynamic modes of actuation are rarely explored [43]. In this context,
very recently, Xing and Yong [43] developed an analytical model for analysing the non-
linear dynamic response of a planar hard-magnetic soft actuator under DC dynamic and
AC dynamic modes of actuation. The developed model did not account for the material
damping and strain-stiffening effects. Further, in many applications of hard-magnetic soft
actuators, it is also demanded that the actuator achieve the desired position quickly and
accurately. Hence, it is important to design and develop a control strategy that can align
the the actual response of the hard-magnetic soft actuator close to the desired response.
To this end, the aim of the present work is to develop a dynamic model and an efficient
control strategy considering the material damping and strain stiffening effects for the fast
and accurate alignment of the transient response of the actuator to the desired position
without residual vibrations.

The outline of the remainder of this article is as follows. In Section 2, we intro-
duce the statement of the problem along with the development of a dynamic model for
hard-magnetic soft actuators using the principle of the least action-based Euler–Lagrange
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equation of motion. For a hard-magnetic soft actuator driven by multi-step magnetic
signals, an input-shaping technique for alleviating the residual vibrations is developed in
Section 3. In Section 4, a thorough parametric investigation is performed for demonstrating
the capability of the proposed technique to alleviate the residual vibrations. Finally, in
Section 5, the salient concluding inferences drawn from the current study are summarized.

2. Problem Description and Dynamic Modeling

As shown in Figure 1, we consider a typical model of a planar actuator made up
of an incompressible hard magnetic soft material. The coordinates [x1, x2, x3] denote the
spatial points in the current configuration corresponding to the material points denoted
by [X1, X2, X3] in the reference configuration. The actuator has size 2L× 2L× 2H in the
reference/undeformed configuration [Figure 1a]. The direction of the residual magnetic
flux density vector B̃r is considered to be along the positive X3 direction in the undeformed
configuration. When the direction of the applied magnetic flux density vector Bapplied is
along the positive x3 axis, actuator expands as depicted in Figure 1b. The actuator contracts
when the direction of the applied magnetic flux density vector Bapplied is along the negative
x3 axis, as shown in Figure 1c. In the current/deformed configuration (Figure 1b,c),
the actuator has dimensions 2l × 2l × 2h. Assuming the principal stretch along the x3

direction to be λ(t) =
2h
2H

, and implementing incomprehensibility and symmetric geometry
conditions [43], the following relationship is established between the current and reference
coordinates of a hard-magnetic soft actuator:

x1 =
X1√
λ(t)

, x2 =
X2√
λ(t)

, x3 = λ(t)X3, (1)

and the corresponding deformation gradient tensor F is expressed as

F =


1√
λ(t)

0 0

0 1√
λ(t)

0

0 0 λ(t)

. (2)

For modeling the magneto-mechanical behaviour of the hard-magnetic soft actuator,
the constitutive model of an ideal hard-magnetic soft material given by Zhao et al. [44] is
adopted. The constitutive model assumes that the residual magnetic flux density of an
ideal hard-magnetic soft material will be constant as long as the hard magnetic particles
remain magnetically saturated. Thus, the thermodynamics of an ideal hard-magnetic soft
material are characterized by the Helmholtz free-energy density function, written as

ψ = ψelastic(F)− FB̃r · Bapplied

µ0
(3)

in which µ0 is the vacuum permeability, and ψelastic is the elastic energy density of the hard-
magnetic soft material in the deformed state. In the current investigation, for accounting
the effect of strain stiffening or polymer chain extensibility in hard-magnetic soft materials,
the phenomenological Gent model of hyperelasticity [52,55] is considered to specify the
elastic strain energy density function as

ψelastic = −GJlim
2

ln
[

1− (I1 − 3)
Jlim

]
, (4)

where I1 = tr(FTF), G is the shear modulus, and Jlim is a dimensionless material parameter
accounting for the extensibility of polymer chains. Substituting the expressions for elastic
strain energy density from Equation (4) and deformation gradient from Equation (2) into
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Equation (3), the free energy density function for the hard-magnetic soft material is written
in terms of stretch parameter as [43,44]

ψ = −GJlim
2

ln

[
1−

(
2λ−1 + λ2 − 3

)
Jlim

]
− λB̃rBapplied

µ0
. (5)

Next, we devise the governing dynamic equation of motion for a hard-magnetic soft
actuator using the Euler–Lagrange equation [56]

d
dt

(
∂L
∂λ̇

)
− ∂L

∂λ
+

∂D
∂λ̇

= 0, (6)

in which L is the Lagrangian and is defined as the difference of the kinetic energy T
and potential energy U of the actuator, D represents the energy dissipation function, and
λ̇ denotes the time derivative of the principal stretch λ. The kinetic energy (T) of the
hard-magnetic soft actuator is obtained as [43,57]

T =
∫
Ω

1
2

ρ
(

ẋ2
1 + ẋ2

2 + ẋ2
3

)
dΩ =

2
3

ρHL4λ̇2λ−3 +
4
3

ρL2H3λ̇2, (7)

where ρ is the density of the hard-magnetic soft material and is constant throughout the
deformation due to the incomprehensibility constraint, and Ω is the domain occupied by
the deformed configuration. The total potential energy (U) of the actuator is obtained by
multiplying the free energy density function (Equation (5)) with the actuator volume in the
deformed configuration as

U = −8HL2

[
GJlim

2
ln

{
1−

(
2λ−1 + λ2 − 3

)
Jlim

}
+

λB̃rBapplied

µ0

]
. (8)

Hard-magnetic soft materials show damping effects during their operation due to
material viscoelasticity [51,52]. Making an assumption that the damping forces are linear
with respect to the velocity of deformation in the x3 direction, the energy dissipation
function D is written as [58,59]

D =
1
2

cλ̇2H2, (9)

where c is the damping coefficient. Substituting the expressions of total potential energy
(U), kinetic energy (T), and energy dissipation function (D) from Equations (7)–(9) into the
Euler–Lagrange Equation (6), the governing dynamic equation of the actuator is derived as

λ̈− 1.5λ̇2

λ(1 + c1λ3)
+

6cλ̇Hλ3

8ρL4(1 + c1λ3)
+

6G
ρL2(1 + c1λ3)

 λ4 − λ{
1−

(
2λ−1+λ2−3

Jlim

)} − B̃rBappliedλ3

Gµ0

 = 0, (10)

where c1 =
2H2

L2 is a non-dimensional constant, and λ̈ is the second derivative of principal

stretch λ with respect to time t. Further, defining the nondimensional time as τ = t

√
G

ρL2 ,

the nondimensional damping coefficient as ξ =
c
8

√
1

L2H2ρG
, and the nondimensional
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magnetic flux density as b =

√
B̃rBapplied

µ0G
, the governing dynamic equation (Equation (10))

is reduced to its nondimensional form as

λ̈− 1.5λ̇2

λ(1 + c1λ3)
+

3ξc1λ3λ̇

(1 + c1λ3)
+

6
(1 + c1λ3)

 λ4 − λ{
1−

(
2λ−1+λ2−3

Jlim

)} − b2λ3

 = 0, (11)

in which λ̇ and λ̈ are the first and the second derivatives of principal stretch λ with respect
to nondimensional time τ. In this study, we assume that the actuator starts from rest and
the corresponding initial conditions are given as

λ = 1, λ̇ = 0. (12)

(a) (b) (c)

Figure 1. The schematic of a planar hard-magnetic soft actuator, (a) in the reference configuration
with the dimensions 2L× 2L× 2H in the X1, X2, and X3 directions, respectively; (b) in the current
configuration with the dimensions 2l × 2l × 2h in the x1, x2, and x3 directions, respectively, when the
direction of the applied magnetic flux density is along the positive x3 direction; and (c) in the current
configuration with the dimensions 2l × 2l × 2h in the x1, x2, and x3 directions, respectively, when the
direction of the applied magnetic flux density is along the negative x3 direction.

The transient response of the actuator [stretch (λ) vs. nondimensional time (τ)] for
any given magnetic loading function expressed in terms of a time-varying nondimensional
magnetic flux density b can be obtained by numerically integrating the nondimensional gov-
erning dynamic equation (Equation (11)) along with the initial conditions (Equation (12)).
In the context of defining the problem under consideration, Figure 2b shows illustrative
response of the hard-magnetic soft actuator when actuated by the time varying multi-
step nondimensional magnetic loading signal shown in Figure 2b. The polymer chain
extensibility Jlim and nondimensional damping coefficient ξ are considered to be 5 and
0.2, respectively, for illustration. As evident from Figure 2b, the transient response of
the actuator exhibits a significant oscillatory response about the respective steady state
positions corresponding to the applied nondimensional magnetic flux density input signal,
i.e., b1, b2, and b3 [43]. In several application of hard-magnetic soft materials in the field of
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soft robotics, it is expected to achieve the desired equilibrium position or shift between the
desired successive equilibrium positions with minimal residual oscillations, which creates
the main motivation for the current investigation.

(a) (b)

Figure 2. (a) A generic multi-step magnetic flux density input signal, and (b) the transient response
of the hard-magnetic soft actuator.

In the next section, we present the systematic design of a command shaping technique
for alleviating the undesired oscillations associated with any desired equilibrium position.

3. Development of A Command-Shaping Technique for Alleviating the Residual
Vibrations in Hard-Magnetic Soft Actuator

In this section, we propose an input/command-shaping technique for alleviating the
residual oscillations in a planar hard-magnetic soft actuator subjected to the single-step
and multi-step magnetic flux signals. The proposed control technique depends on setting
the balance of different forces at the point of maximum stretch in a periodic vibration cycle.

Assume that the hard-magnetic soft actuator is expected to attain an equilibrium
position defined by the stretch parameter equal to λd. In order to design an input magnetic
flux density signal that satisfies the aforementioned requirement, firstly, by assigning
zero value to the temporal terms in Equation (11), we obtain the magnitude of the quasi-
statically applied nondimensional magnetic flux density b1, which equilibrates the actuator
at λ = λd. If the magnetic flux density b1 is applied in the form of step input signal as
represented in Figure 3a (labeled as an unshaped input signal), the planar actuator system
vibrates about the chosen equilibrium position (λd) as depicted in Figure 3b (labeled as a
response to b1 alone). To stabilize the actuator’s dynamic response, a two-step input signal
is designed, wherein a lower magnetic flux density denoted as bp is applied in the form
of a step signal for a dimensionless time period of τp. These estimates of the applied step
magnetic flux density bp and dimensionless time period τp are obtained by numerically
integrating the governing equation (Equation (11)) in such a way that the maximum value of
stretch parameter in the first cycle of vibration reaches the desired position λd in time τp. At
this point with the maximum value of stretch parameter, the nondimensional stretch rate λ̇
is zero, and the hard-magnetic soft actuator is acted upon by the nondimensional magnetic

force

[
6b2

pλ3
d(

1 + c1λ3
d
)], mechanical restoring force

 6(λ4
d − λd)(

1 + c1λ3
d
)(

1−
2λ−1

d + λ2
d − 3

Jlim

)
, and
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the inertial force (λ̈d). The balance between these forces acted upon the actuator at the point
with maximum stretch parameter is shown in Figure 3a. Under the action of these forces,
the soft actuator will continue to vibrate until the mechanism of material damping brings
the actuator to the static equilibrium position corresponding to the magnetic flux density bp
(represented by the green line in Figure 3b). This occurs because of the lower value of the
nondimensional magnetic force in comparison to the nondimensional mechanical restoring

force at the point with the stretch value maximum, i.e., b2
pλ3

d <
(λ4

d − λd)(
1−

2λ−1
d + λ2

d − 3
Jlim

) . If

the excess of the nondimensional mechanical restoring force is nullified by applying an
additional nondimensional flux density step input signal of magnitude ba, the actuator
response gets stabilized at the desired equilibrium position. For keeping the actuator in
static equilibrium at the desired equilibrium position λ = λd without the inertial force, the
addition step input magnetic flux density must satisfy the relation bp + ba = b1. Thus, as
shown in Figure 3a, an additional magnetic flux density ba is applied at nondimensional
time τ = τp. The designed two-step input signal (command sequence) for achieving the
desired equilibrium position is expressed mathematically as

b(τ) =
{

bp for 0 <τ ≤ τp
b1 for τp<τ ≤ τ1

. (13)

It is necessary to mention that, the governing dynamic Equation (11) being non-
linear, the values of intermediate nondimensional magnetic flux density bp and time τp
are calculated numerically. The time-history response of the hard-magnetic soft actuator
when subjected to the aforementioned two-step input signal (Equation (13)) is depicted in
Figure 3b and designated as the response to shaped input. As evident from the Figure 3b,
the shaped input response completely alleviates the existence of the residual vibrations.

Next, on the parallel lines of the input scheme developed for hard-magnetic soft
actuators for achieving the desired equilibrium position without oscillation when sub-
jected to a single-input signal, we designed a multi-step command shaping scheme (shown
in Figure 4a) for achieving the equilibrium positions with stretch parameters λd1, λd2,
λd3, . . . . . . λdn, each lasting for τ1, τ2, τ3, . . . . . . τn time spells, respectively. The associated
equilibrium nondimensional magnetic flux density b1, b2, b3 . . . . . . , bn is evaluated us-
ing Equation (11) by dropping all the time dependent terms. The intermediate values
of the nondimensional magnetic flux density and corresponding nondimensional time
(bp1, bp2, bp3, . . . . . . bpn and τp1, τp2, τp3, . . . . . . τpn) are extracted numerically by solving
the dynamic governing Equation (11). The resulting designed input signal is expressed
mathematically as

b(τ) =



bp1 for 0 <τ ≤ τp1
b1 for τp1<τ ≤ τ1
bp2 for τ1<τ ≤ τ1 + τp2
b2 for τ1 + τp2<τ ≤ τ1 + τ2
•
•
•

bpn for
n−1
∑

k=1
τk<τ ≤

n−1
∑

k=1
τk + τpn

bn for
n−1
∑

k=1
τk + τpn<τ ≤

n
∑

k=1
τk

. (14)

From the response of the actuator shown in Figure 4b, it can be observed that the
designed multi-step input signal [Figure 4a] significantly alleviates the residual vibrations
about the desired position. In the upcoming section, we demonstrate the utility of the
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developed vibration control command/input shaping strategy by achieving different
desired positions of the actuator and also investigate the effect of various parameters on
the performance of the control scheme.

(a) (b)

Figure 3. (a) Shaped and Unshaped magnetic flux density input signals showing the equations
governing the actuator motion at two critical points, and (b) the transient response of the hard-
magnetic soft actuator subjected to shaped and unshaped input signals.

(a) (b)

Figure 4. (a) Shaped multi-step magnetic flux density input signal for achieving three desired
equilibrium positions, and (b) the transient response of the hard-magnetic soft actuator subjected to
shaped and unshaped multi-step input signals.

4. Results and Discussion

Based on the command shaping scheme explained in the previous section, this section
explores the influence of various parameters such as the damping of the material, the
extensibility of the polymer chains, and the sequence of desired equilibrium states on the
alleviation of residual vibrations in a multi-step magnetically actuated hard-magnetic soft
actuator.

Firstly, the validity of the proposed scheme of controlling vibrations is demonstrated
through aligning the dynamic response of the hard-magnetic soft actuator (in both the
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modes: expansion (Figure 1b) and contraction (Figure 1c)) for two different sequences of
desired equilibrium positions. For the expansion case of the hard-magnetic soft actuator,
the two equilibrium sequences ((1.10, 10), (1.20, 10), (1.40, 10)) and ((1.15, 10), (1.25, 10),
(1.35, 10)) are considered. Here, in each component of the equilibrium sequence, the first
number shows the stretch parameter (λd) corresponding to the chosen equilibrium position
of the actuator, and the second number represents the span of the nondimensional time for
which that equilibrium position should end. If the actuator is subjected to the magnetic
loading applied through a series of three step signals, with each of them having the
steady state solution as the desired actuator position, the resulting dynamic response will
inherently vibrate about the desired equilibrium stretch level. Such uncontrolled dynamic
responses (when subjected to unshaped input signal) of the actuator (corresponding to the
aforementioned equilibrium sequences) are shown in Figure 5a and labeled as an unshaped
input response. If the time span of any equilibrium sequence is large enough, the material
damping will gradually bring the uncontrolled dynamic response of the actuator to the
chosen equilibrium position of the actuator. However, the developed input shaping control
scheme gives quick shifting between the chosen equilibrium positions of the hard-magnetic
soft actuator without any residual vibrations. But, as depicted in Figure 4a, the shaped
input signal (corresponding to a controlled response) has six steps in comparison with the
unshaped input signal (corresponding to a controlled response), which has only three steps.
Further, the controlled dynamic response of the hard-magnetic soft actuator, when subjected
to the designed six step input signal, is plotted in Figure 5a for the aforementioned two
equilibrium sequences and labeled as a shaped input response. For the first equilibrium
sequence ((1.10, 10), (1.20, 10), (1.40, 10)), the phase-plane plots corresponding to the applied
shaped and unshaped input signals are shown in Figure 5b. From the phase-plane plots, it is
observed that when the hard-magnetic soft actuator is subjected to the unshaped three-step
input signal, the actuator exhibits residual vibrations (periodic orbits) about each chosen
equilibrium position (designated by • symbol). However, as expected, when the actuator is
subjected to the shaped six-step input magnetic loading, the actuator moves to the required
position without vibrations. In parallel lines, we assessed the performance of the developed
control scheme in suppressing the residual oscillation exhibited by the hard-magnetic
soft actuator in the contraction mode of actuation (Figure 1c) by considering ((0.90, 10),
(0.80, 10), (0.70, 10)) and ((0.85, 10), (0.70, 10), (0.85, 10)) equilibrium sequences. For these
sequences, the uncontrolled and controlled dynamic responses and the phase-plane plots
are depicted in Figure 6a and Figure 6b, respectively. From Figures 5 and 6, it is inferred
that the proposed input-shaping scheme can be used for controlling the vibrations in a
hard-magnetic soft actuator for any user-chosen steady-state position, and this ascertains
the efficacy of the developed technique.

Next, we investigate how the material damping affects the control of the residual
vibrations. For this investigation, We consider cases with different values of the nondimen-
sional material damping coefficient ξ = 0.02, 0.40, and1.10. Figure 7a,b shows the effect of
material damping on the controlled dynamic response of the hard-magnetic soft actuator in
expansion mode of actuation with the equilibrium sequence ((1.10, 10)], (1.20, 10), (1.40, 10))
and in the contraction mode of actuation with the equilibrium sequence ((0.90, 10), (0.80,
10), (0.60, 10)), respectively. In both the modes of operation, it is observed from Figure 7
that the uncontrolled response of the actuator with a high value of the damping coefficient
reaches the equilibrium position very quickly, and vice versa. Further, it is also evident
from Figure 7 that the material damping has very little impact on the controlled dynamic
response of the actuator, showing that the developed input-shaping control technique can
take in a wide span of viscous coefficients of damping specific to many potential uses
of hard-magnetic soft materials. The change in the nondimensional intermediate time
(τp) taken by the hard-magnetic soft actuator in reaching the desired equilibrium position
(λd = 1.1) as a function of the nondimensional damping coefficient is shown in Figure 8.
From Figure 8, it is observed that the intermediate time is strongly dependent on the nondi-
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mensional damping coefficient in the neighbourhood of a limiting case, as the damping
coefficient reaches 2.14. This represents the situation of a critically damped system.

(a) (b)

Figure 5. (a) Controlled and uncontrolled transient response for the two desired equilibrium se-
quences ((1.10, 10), (1.20, 10), (1.40, 10)) and ((1.15, 10), (1.25, 10), (1.35, 10)) of the hard-magnetic
soft actuator, and (b) controlled and uncontrolled phase-plane portraits for the desired equilibrium
sequence ((1.10, 10), (1.20, 10), (1.40, 10)).

(a) (b)

Figure 6. (a) The controlled transient response (corresponding to shaped input signal) and uncon-
trolled transient response (corresponding to unshaped input signal) for the two chosen equilibrium
sequences ((0.90, 10), (0.80, 10), (0.70, 10)) and ((0.85, 10), (0.70, 10), (0.85, 10)) of the hard-magnetic
soft actuator, and (b) the uncontrolled (corresponding to unshaped input signal) and controlled
(corresponding to shaped input signal) phase−plane plots for the chosen ((0.90, 10), (0.80, 10), (0.70,
10)) equilibrium sequence.

The polymer chains of soft elastomers or polymeric materials have limiting length,
which limits the deformation of the elastomer during extension [8,21,52]. Next, we in-
vestigated the effect of polymer chain extensibility on the control of dynamic response of
hard-magnetic soft actuator. Here, in the adopted material model (Equation (5), the limiting
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stretch effect is governed by the parameter Jlim. We considered three different levels of
polymer chain extensibility Jlim = 1, 3, and 5. For these different values of Jlim and and
non-dimensional damping coefficient ξ = 0.2, Figure 9 shows the effect of polymer chain
extensibility on the uncontrolled and controlled dynamic responses of the hard-magnetic
soft actuator for achieving the equilibrium positions represented by the sequence ((1.2, 10),
(1.4, 10), (λ̃m, 10)), in which λ̃m represents the stretch near the limiting stretch λm, obtained

from equation
2

λm
+ λ2

m − 3 = Jlim. For the considered three different levels of Jlim = 1, 3,

and 5, the limiting stretch is equal to 1.675, 2.262, and 2.694, respectively. It is evident from
Figure 9 that the number of oscillation cycles exhibited by the actuator before stabilizing to
the equilibrium state near the limiting stretch are very large in comparison with the other
two states. From Figure 9 it can also be observed that the developed command-shaping
strategy efficiently controls the large actuation/deformation response (λ = λm) of the
system. Figure 10a,b shows the change in the nondimensional intermediate time (τp) and
the nondimensional magnetic flux density (bp) required by the actuator to achieve the first
equilibrium position in aforementioned sequence as a function of polymer chain entangle-
ment parameter Jlim. Figure 10 suggests that the time taken by the actuator in switching
between any two equilibrium states increases with increasing polymer chain extensibility.
In contrast, the magnetic flux density required for achieving a desired equilibrium position
decreases with increasing polymer chain extensibility, demonstrating a favorable influence
on the actuator response. In the following section, we provide the summary of the salient
conclusions drawn from the current study.

(a) (b)

Figure 7. The controlled transient response (corresponding to shaped input signal) and uncontrolled
transient response (corresponding to unshaped input signal) of the hard-magnetic soft actuator for
different values of nondimensional damping coefficient ξ, in the (a) expansion mode of operation,
and in the (b) contraction mode of operation.
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Figure 8. Effect of material damping on the nondimensional intermediate time (τp) required for
attaining the desired equilibrium position.

Figure 9. The controlled transient response (corresponding to shaped input signal) and uncontrolled
transient response (corresponding to unshaped input signal) of the hard-magnetic soft actuator for
different values of Jlim (polymer chain extensibility parameter).
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(a) (b)

Figure 10. Variation of (a) nondimensional intermediate time (τp) and (b) nondimensional interme-
diate magnetic flux density (bp) required by the hard-magnetic soft actuator to attain the desired
equilibrium position as a function of extensibility of polymer chains (Jlim).

5. Conclusions

Magnetically driven hard-magnetic soft actuators operating in the dynamic mode
(driven by a multi-step input signal) exhibit inherent residual oscillations before attaining
the desired equilibrium positions. It is crucial to mitigate such inherent residual oscillations
about the desired steady state to enhance the positional accuracy and the transit time
between two successive equilibrium positions. To mitigate such residual vibrations, this
paper reported an input-shaping technique that relies on establishing a balance between
the mechanical and magnetic forces at the point of maximum stretch in an oscillation cycle.
Using the Euler–Lagrange equation of motion and considering the strain stiffening effects,
the equation governing the dynamics of the hard-magnetic soft actuator is derived for
simulating the controlled and uncontrolled dynamic responses. A parametric study is
carried out for demonstrating how the extensibility of polymer chains, sequence of desired
equilibrium positions, and material damping affect the performance of the developed input-
shaping scheme. In case of attaining any desired equilibrium state, the designed shaped
input magnetic flux density signal is not affected significantly by variations in the material
damping in the hard-magnetic soft material. A higher level of polymer chain extensibility
in hard-magnetic soft material results in increasing the time taken by the actuator to attain
the desired steady state/equilibrium position. However, there is a concomitant reduction
in the required magnetic flux density, showing a favorable influence of the extensibility of
polymer chains on the performance of the actuator. The devised control scheme and the
conclusions can be potentially useful in designing an open-loop controller for magnetically
driven hard-magnetic soft material-based systems.

In the present work, we considered an idealized model of the hard-magnetic soft
actuator and placed more emphasis on the underlying mechanics to design the input
shaping scheme for alleviating system vibrations. The developed dynamic model and input
shaping scheme can be further extended to account for the effect of visco-elasticity, polymer
chain entanglements and cross-links, temperature, compressibility of hard-magnetic soft
materials, etc. Further experimental work would be necessary to corroborate the input-
shaping control scheme developed in the present work.
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Nomenclature
[x1, x2, x3] Spatial coordinates
[X1, X2, X3] Material coordinates
2H Thickness of the actuator in the reference configuration
2L Length and breadth of the actuator in the reference configuration
2h Thickness of the actuator in the current configuration
2l Length and breadth of the actuator in the current configuration
B̃r Residual magnetic flux density vector
Bapplied Applied magnetic flux density vector
λ(t) Principal stretch along the x3 direction
F Deformation gradient tensor
ψ Helmholtz free-energy density function
µ0, G, Jlim, ρ Material parameters
c Damping coefficient
L Lagrangian
t Time
T Kinetic energy
U Total potential energy
D Energy dissipation function
λ̇ Time derivative of the principal stretch
τ Nondimensional time
ξ Nondimensional damping coefficient
b Nondimensional magnetic flux density
c1 Nondimensional constant
Ω Deformed configuration of the actuator
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