
Dimanganese decacarbonyl catalyzed visible light induced ambient temperature 
depolymerization of poly(methyl methacrylate)
Zeynep Arslan, Hüseyin Cem Kiliclar and Yusuf Yagci

Department of Chemistry, Istanbul Technical University, Maslak, Turkey

ABSTRACT
Recent years have witnessed an enormous development in photoinduced systems, opening up 
possibilities for advancements in industry and academia in terms of green chemistry providing 
environmentally friendly conditions and spatiotemporal control over the reaction medium. A vast 
number of research have been conducted on photoinduced systems focusing on the development 
of new polymerization methods, although scarcely investigated, depolymerization of the synthe-
sized polymers by photochemical means is also possible. Herein, we provide a comprehensive 
study of visible light induced dimanganese decacarbonyl (Mn2(CO)10) assisted depolymerization 
system for poly(methyl methacrylate) with chlorine chain end prepared by Atom Transfer Radical 
Polymerization. Contrary to the conventional procedures demanding high temperatures, the 
approach offers ambient temperature for the photodepolymerization process. This novel light- 
controlled concept is easily adaptable to macroscales and expected to promote further research in 
the fields matching with the environmental concerns.
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1. Introduction

Poly(methyl metacrylate) (PMMA) is a widely used com-
modity plastic that combines high optical clarity, impact 
strength and scratch resistance with lightweight nature [1– 
4]. Applications of PMMA including coatings [5,6], adhesives 
[7], ink [8] and lithography [9,10], directly benefit from 
mentioned physical characteristics. The consumption is 
expected to reach up to 4 M tons per year at 2027 [11] 
which bears the possibility of excessive waste production 
that highlights the necessity of recycling which has always 
been a problem, due to lack of eco-friendly approaches [12]. 
Today, approximately 6% of the produced polymer wastes 
are managed to be recycled [13]. Because of inefficient 
approaches, implementing sustainable recycling methods 
could be a struggle. PMMA cannot be easily depolymerized 
by hydrolysis or transesterification as they contain carbon– 
carbon bonds through the polymer chain. However, recent 
studies have examined the depolymerization of polymetha-
crylate derivatives demanding elevated temperatures 
about 300°C and toxic chemicals [14].

Recent advances on photochemical approaches pro-
vided environmentally friendly conditions for several 
polymerization reactions since the energy provided by 
light is used to induce polymerization reactions rather 
than thermal energy [15,16]. However, this potential was 
scarcely investigated in the field of depolymerization. 

Photochemical routes facilitate spatiotemporal control 
[17] [18], with lesser requirements of chemicals and 
energy [19] compared to conventional methods. Due 
to the advantages stated above, photoinduced pro-
cesses have received tremendous attention and many 
synthetic applications have been reported [20].

Dimanganese decacarbonyl (Mn2(CO)10) absorbs light in 
the visible region and upon irradiation in the presence of 
certain additives, many reactive species can be formed [21]. 
Mn2(CO)10 based photoactive systems are extensively used 
for the synthesis of wide range of macromolecular struc-
tures such as telechelic polymers [22], block [23] and graft 
[24] copolymers and hyperbranched polymers [25,26]. 
Successfully applied processes include free radical polymer-
ization [27], Atom Transfer Radical Polymerization (ATRP) 
[28,29], cationic polymerization [30,31], radical coupling 
reaction [32] and step-growth polymerization [33] [34]. 
Herein, we report a novel depolymerization method for 
PMMA with chlorine chain end. The main objective of this 
research is to decrease the depolymerization temperature 
to ambient conditions using the efficient nature of light for 
achieving a safer and more energy-efficient recycling 
process.

Depolymerization is a process to shorten polymer chains 
and essentially yield monomers. The offered photodepoly-
merization mechanism is initiated by homolytic halogen 
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abstraction at the chain end of the molecule and polymers 
with shorter chains are formed through depropagation 
enhanced by diluted reaction medium. (Scheme 1) The 
depropagation process is coined as the unzipping type as 
it starts from the chain end and continues through the 
polymer main chain [35].

2 Experimental

2.1 Materials

All reactions were performed under an inert atmosphere of 
nitrogen, using standard Schlenk techniques. Methyl 
methacrylate (Merck, 99%) was used after filtration through 
basic alumina. Toluene (Aldrich, 99.7%) and hexane 
(Aldrich, 98%) were dried and purified. PMDETA (Aldrich, 
99%), CuCl (Aldrich, 97%), CuBr (Aldrich, 98%), benzyl chlor-
ide (Aldrich, 99%), were used as purchased. Dimanganese 
decacarbonyl (Merck, 98%) was used after purification by 
sublimation.

2.2. Characterization
1H NMR spectra were recorded on an Agilent VNMRS 500 
NMR spectrometer system at room temperature in CDCl3 
with Si(CH3)4 as an internal standard. On a TOSOH EcoSEC 
GPC system equipped with an autosampler system, 
a temperature-controlled pump, a column oven, 
a refractive index (RI) detector, a purge and degasser unit, 
and a TSK gel superhZ2000 4.6 mm ID × 15 cm × 2 cm 
column, gel permeation chromatography analysis were 
carried out. 1.0 mL.min−1 of tetrahydrofuran was utilized 
as the eluent at a temperature of 40°C. Calibrations were 

done by polystyrene standards with a limited molecular- 
weight distribution. By Eco-SEC analysis software, the data 
were analyzed.

2.3. Methods

PMMA derivatives having different molecular weights 
were synthesized by using the atomic transfer radical 
polymerization (ATRP) technique.

To obtain PMMA derivatives, toluene (5.35 mL), MMA 
(5.25 mL), PMDETA (72.5 μL), CuCl (50 mg) or CuBr (70 mg) 
to define the end group and benzyl chloride (38.5 μL) or 
benzyl bromide (55 μL) depending on the halogen of the 
copper salt were placed in a Schlenk tube in this order at 
ambient temperature under nitrogen atmosphere. 
Standard Schlenk techniques were applied to remove oxy-
gen from reaction media. Polymerization was held at 90 
oC for 22 minutes to obtain PMMA-Cl1 16 minutes to obtain 
both PMMA-Cl2 and PMMA-Br. (PMMA-Cl1)

Synthesis of PMMA-co-PGMA-Cl: toluene (10,7 mL), 
MMA (10 mL), GMA (0,66 mL) PMDETA (145 μL), CuCl 
(100 mg) and α-chloroethylbutyrate (125 μL) were placed 
in a Schlenk tube in this order at ambient temperature 
under nitrogen atmosphere. Standard Schlenk techniques 
were applied to remove oxygen from reaction media. 
Polymerization was held at 90℃ for 9 minutes. (PMMA-co- 
PGMA)

Depolymerization of PMMA derivatives: PMMA deri-
vatives having different molecular weights were depoly-
merized under visible light. For this purpose, PMMA 
derivative (0,065 M), 12,4 mg Mn2(CO)10 and 6,7 mL 
toluene (p-dichlorobenzene for 170°C) were added to 
a Schlenk tube and standard Schlenk techniques were 
applied to remove oxygen from reaction media. 
Mixtures were irradiated in a photoreactor for up to 6 h 
in a variety of temperatures. GPC was chosen as the 
analysis tool as manganese impurities are interfering 
with 1H-NMR, MALDI ToF and gravimetric analyses.

3. Results and Discussion

Several PMMA derivatives with halogen chain end 
were synthesized by conventional ATRP for the sub-
sequent depolymerization process. Initially, the effects 
of different halogens at the chain end were taken 
into consideration. Two types of PMMA, namely 
PMMA-Cl1 and PMMA-Br were synthesized. To be 
able to control the decrease of the molecular weight, 
coined as depolymerization yield, through 1H-NMR 
spectroscopy, benzyl chloride and benzyl bromide 
were chosen as ATRP initiators. The main differences 
to affect the depolymerization processes are the 

Scheme 1. Visible light initiated unzipping type depropagation 
of PMMA-Cl with Mn2(CO)10 at ambient temperature.
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abstraction rate and nucleophilic characteristics of 
the halogen. Bromine at the chain end of PMMA is 
anticipated to be abstracted easily, yet increasing the 
radical concentration in the media to undergo unde-
sired coupling reactions between polymer chains 
forming polymers without halide functionality [36]. 

According to the mentioned considerations, diluted 
reaction media without stirring was preferred. No 
depolymerization has been observed in dark condi-
tions for any polymer samples.

Even though depolymerization of PMMA-Br to some 
extent is noted in the chromatogram, longer polymer 

Table 1. Molecular weight characteristics of PMMA-Cl1, PMMA-Br and PMMA- 
co-PGMA-Cl before and after visible light irradiationa.

Polymer

Mn
b 

(g.mol−1) Đb

Before After Before After

PMMA-Cl1 67,000 53,000 1,4 1,4
PMMA-Br 5400 5400 1,2 1,3
PMMA-co-PGMA-Cl 5100 4600 1,2 1,3

a- [Mn2(CO)10]:[Polymer]:[Tol.] = 1:2:2300 irradiated at 400 nm for 6 h. 
b-Determined by GPC using polystyrene standards.

Figure 1. GPC chromatograms of a) PMMA-Cl and depolymerized PMMA-Cl b) PMMA-Br and depolymerized PMMA-Br c) PMMA-co- 
PGMA-Cl and depolymerized PMMA-co-PGMA-Cl. Depolymerizations were conducted by irradiation under 400 nm visible light at 
ambient temperature.

Table 2. Molecular weight characteristics of PMMA-Cl before and after visible light 
irradiationa.

Polymer Temp.(

o

C)

Mn
c(g.mol−1) Đc

Before After Before After

PMMA-Cl1 a 23 67,000 53,000 1.4 1.4
PMMA-Cl2 a 90 56,000 41,000 1.3 1.7
PMMA-Cl2 b 170 56,000 33,000 1.3 2.0

a- [Mn2(CO)10]:[Polymer]:[Tol.] = 1:2:2300 irradiated at 400 nm for 6 h. 
b- [Mn2(CO)10]:[Polymer]:[p-DCB] = 1:2:2300 irradiated at 400 nm for 6 h. 
c-Determined by GPC using polystyrene standards.

Figure 2. GPC chromatograms of PMMA-Cl and depolymerized PMMA-Cl under 400 nm visible light and a) 23°C b) 90°C c) 170°C.
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chains are formed as a consequence of coupling after 
bromine abstraction. Thus, the peaks are broadened and 
dispersity (Đ) is increased (Table 1 and Figure 1). On the 
other hand, PMMA-Cl1 undergoes a more regulated gen-
eration of radicals that catalyzes depolymerization rather 

than coupling reactions resulting 20% depolymerization 
yield.

To investigate the possibility of the application of the 
method to structurally different PMMA derivatives, chlorine 
end functional poly(methyl methacrylate-co-glycidyl 

Figure 3. The effect of temperature on the Mn and Đ values obtained by GPC analysis.

Figure 4. 1H-NMR spectra of Bz-PMMA-Cl before and after depolymerized.
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methacrylate) (PMMA-co-PGMA-Cl) were synthesized. This 
polymer possesses epoxide rings in the side chain which 
remain unaffected during the radical depolymerization pro-
cess. Comparable results were obtained at the same time 
interval.

Furthermore, it is a well-known fact that tempera-
ture has a major role in depolymerization [37,38]. 
Thus, the aim of the research is to decrease the 
requirement for elevated temperatures by imple-
menting visible light. Therefore, the depolymeriza-
tion process at 23℃, 90℃ and 170°C was 
investigated. To reach high temperatures, p-dichlor-
obenzene (p-DCB) was used as solvent (Table 2 and 
Figure 2).

Similar Mn values were obtained after depolymeriza-
tion at 23°C and 90°C as indicated in Table 2. However, 
a drastic dispersity differences up to 34% was observed. 
Increase of the temperature to 170°C results in signifi-
cant decrease in the Mn and increase in the dispersity 
indicating a more favorable depolymerization condi-
tions by heat. The effect of heat on the depolymerization 
is demonstrated in Figure 3. It should be pointed out 
that even though catalyzing effect of the temperature is 
observed, ambient temperature results are still 
competitive.

As mentioned above, benzyl chloride and benzyl bro-
mide were chosen as ATRP initiators to control the depoly-
merization yield through 1H-NMR spectroscopy. The 
spectra of the initial polymer and the polymer after irradia-
tion presented in Figure 4 further confirms the depolymer-
ization, as the integration ratio of aromatic peaks of the 
benzylic chain end and peaks of the methoxy groups of 
PMMA increases through the process. Even though 
approximately 40% depolymerization can be estimated 
from 1H-NMR spectral analysis, the integration values are 
not extremely reliable due to the paramagnetic broadening 
effect of Mn2(CO)10. Detailed calculation is presented on 
Supporting Information.

4. Conclusion

This study reports on the detailed investigation on the 
visible light induced depolymerization of PMMA by using 
Mn2(CO)10 under ambient conditions. Depolymerization 
characteristics of PMMA polymers containing different 
halogens at the chain end were examined. While up to 
20% depolymerization is achieved with PMMA-Cl, unde-
sired chain extension by radical coupling reactions was 
observed in the depolymerization of PMMA-Br as 
a consequence of rapid production of radicals. Reaction 
kinetics of the process under identical irradiation conditions 
at 400 nm were examined by increasing the temperature. 
Obtained polymers characteristics were defined by 1H-NMR 

and GPC analyses. The reported light-induced ‘photodepo-
lymerization’ approach provides significant advantages 
compare to the conventional techniques because of less 
energy requirement, low toxicity, spatiotemporal control 
over the reaction medium and eco-friendly conditions. 
This approach is easily adaptable to macroscales and can 
be conveyed to the structurally different polymers. Further 
studies in this line are in progress and will be reported 
elsewhere.
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