organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-{N-[(2,3,4,9-Tetrahydro-1H-carbazol-3-yl)methyl]methylsulfonamido}ethyl methanesulfonate

Mustafa Göcmentürk,^a Yavuz Ergün,^a Berline Mougang-Soume,^b Nagihan Çaylak Delibaş^c and Tuncer Hökelek^d*

^aDokuz Eylül University, Faculty of Arts and Sciences, Department of Chemistry, Tinaztepe, 35160 Buca, İzmir, Turkey, ^bUniversité de Montréal, Département de Chimie, H3C 3J7, Montréal, Québec, Canada, ^cDepartment of Physics, Sakarya University, 54187 Esentepe, Sakarya, Turkey, and ^dHacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey Correspondence e-mail: merzifon@hacettepe.edu.tr

Received 9 December 2013; accepted 17 December 2013

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.002 Å; R factor = 0.031; wR factor = 0.090; data-to-parameter ratio = 14.4.

In the title compound, $C_{17}H_{24}N_2O_5S_2$, the indole ring system is nearly planar [maximum deviation = 0.032(1) Å] and the cyclohexene ring has a half-chair conformation. In the crystal, N-H···O hydrogen bonds link the molecules into a chain running along the *b*-axis direction. Weak $C-H \cdots O$ hydrogen bonds and weak $C-H\cdots\pi$ interactions are observed between the chains.

Related literature

For tetrahydrocarbazole systems present in the framework of a number of indole-type alkaloids of biological interest, see: Saxton (1983). For the antitumor activity of tetrahydrocarbazoles containing an amine unit, see: Chen et al. (2009). For the most potent drugs, such as ellipcitine and olivacine, for the treatment of a variety of cancers, see: Pelletier (1970). For the use of tetrahydrocarbazoles in the synthesis of pyridocarbazoles, see: Knölker & Reddy (2002). For related structures, see: Patır et al. (1997); Gündoğdu et al. (2011); Göçmentürk et al. (2013).

47392 measured reflections

 $R_{\rm int} = 0.054$

3472 independent reflections

3357 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

$C_{17}H_{24}N_2O_5S_2$	$V = 1841.96 (11) \text{ Å}^3$
$M_r = 400.50$	Z = 4
Monoclinic, $P2_1/c$	Cu $K\alpha$ radiation
a = 5.4399 (2) Å	$\mu = 2.90 \text{ mm}^{-1}$
b = 18.0322 (6) Å	T = 150 K
c = 19.0103 (6) Å	$0.18 \times 0.16 \times 0.13 \text{ mm}$
$\beta = 98.973 \ (2)^{\circ}$	

Data collection

Bruker Kappa APEXII CCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
T 0.00 T 0.000

 $T_{\min} = 0.623, \ T_{\max} = 0.686$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	H atoms treated by a mixture of
$wR(F^2) = 0.090$	independent and constrained
S = 1.05	refinement
3472 reflections	$\Delta \rho_{\rm max} = 0.41 \ {\rm e} \ {\rm \AA}^{-3}$
241 parameters	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C4a/C5a/C8a/N9/C9a ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N9-H9\cdots O2^{i}$	0.83 (2)	2.17 (2)	2.9804 (16)	166 (2)
$C11-H11C\cdots O4^{ii}$	0.98	2.45	3.171 (2)	130
$C13-H13A\cdots O5^{iii}$	0.99	2.46	3.4148 (19)	161
$C14-H14B\cdots O5^{iv}$	0.98	2.42	3.317 (2)	152
$C11-H11A\cdots Cg2^{ii}$	0.98	2.95	3.6705 (19)	131

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) -x + 1, -y, -z; (iv) -x, -y, -z.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5758).

References

- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, J., Lou, J., Liu, T., Wu, R., Dong, X., He, Q., Yang, B. & Hu, Y. (2009). Arch. Pharm. Chem. 342, 165-167.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Göçmentürk, M., Ergün, Y., Mougang-Soume, B., Çaylak Delibaş, N. & Hökelek, T. (2013). Acta Cryst. E69, 01797-01798.
- Gündoğdu, C., Göçmentürk, M., Ergün, Y., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, 01470-01471.
- Knölker, H. J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303-4427.
- Patır, S., Okay, G., Gülce, A., Salih, B. & Hökelek, T. (1997). J. Heterocycl. Chem., 34, 1239-1242.

- Pelletier, S. W. (1970). Chemistry of Alkaloids, pp. 1-9. New York: Nostrand
- Reinhold Company.
 Saxton, J. E. (1983). Editor. *Heterocyclic Compounds*, Vol. 25, *The Monoterpenoid Indole Alkaloids*, ch. 8 and 11. New York: Wiley.
- Sheldrick, G. M. (2008). Acta Cryst. A**64**, 112–122. Spek, A. L. (2009). Acta Cryst. D**65**, 148–155.

supplementary materials

Acta Cryst. (2014). E70, o78-o79 [doi:10.1107/S1600536813034016]

2-{*N*-[(2,3,4,9-Tetrahydro-1*H*-carbazol-3-yl)methyl]methylsulfonamido}ethyl methanesulfonate

Mustafa Göçmentürk, Yavuz Ergün, Berline Mougang-Soume, Nagihan Çaylak Delibaş and Tuncer Hökelek

1. Comment

Tetrahydrocarbazole systems are present in the framework of a number of indole-type alkaloids of biological interest (Saxton, 1983). The structures of tricyclic, tetracyclic and pentacyclic ring systems with dithiolane and other substituents of the tetrahydrocarbazole core, have been reported previously (Patır et al., 1997). Nitrogen containing heterocyclic compounds are encountered in a very large number of groups of organic compounds. They play a vital role in the metabolism of all living cells, which are widely distributed in nature and are essential to life. One of them pyridocarbazoles such as ellipcitine and olivacine are some of the most potent drugs for the treatment of a variety of cancers (Pelletier, 1970). Tetrahydrocarbazoles have been used as key compounds for the syntheses of various pyridocarbazoles (Knölker & Reddy, 2002). Amine moiety containing tetrahydrocarbazoles have also been showed antitumor activity (Chen et al., 2009). The present study was undertaken to ascertain the crystal structure of the title compound.

The molecule of the title compound contains a carbazole skeleton with methyl sulfonamide and ethyl methanesulfonate groups, (Fig. 1). In all structures atom N9 is substituted.

An examination of the deviations from the least-squares planes through individual rings shows that rings B (C4a/C5a/C8a/N9/C9a) and C (C5a/C5-C8/C8a) are nearly coplanar [with a maximum deviation of 0.032 (1) Å for atom N9] with dihedral angle of B/C = 2.16 (5)°. Ring A (C1-C4/C4a/C9a) adopts half-chair conformation, as in ethyl 4-oxo-2,3,4,9-tetrahydro-1-H-carbazole-3-carboxylate (Gündoğdu et al., 2011) and 2-{4-Methyl-N-[(2,3,4,9-tetrahydro-1H-carbazol-3-yl)methyl]benzenesulfonamido} ethyl 4-methylbenzenesulfonate (Göçmentürk et al., 2013). Ring A has a pseudo twofold axis running through the midpoints of C2-C3 and C4a-C9a bonds.

In the crystal, N—H···O hydrogen bonds (Table 1) link the molecules into a chain running along the b-axis direction (Fig. 2), and weak C—H···O hydrogen bonds and a weak C—H··· π interaction (Table 1) are observed between the chains.

2. Experimental

For the preparation of the title compound, (I), a solution of 2-((2,3,4,9 -tetrahydro-1*H*-carbazole-3-yl)methylamino)ethanol (1.0 g, 4.1 mmol) in pyridine (5 ml) was cooled to 273 K. Then, methanesulphonyl chloride (1.0 g, 9.0 mmol) was added dropwise. The mixture was stirred for 18 h at room temperature, and then washed with hydrochloric acid (10%). The organic layer was extracted with chloroform and dried over anhydrous magnesium sulfate. The solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography eluting with ethyl acetate:hexane (1:1). The solvent was evaporated under reduced pressure and the residue was recrystallized from methanol (yield; 1.1 g, 67%, m.p. 404 K).

3. Refinement

H9 atom is located in a difference Fourier synthesis and refined isotropically. The remaining C-bound H-atoms were positioned geometrically with C—H = 0.95, 1.00, 0.99 and 0.98 Å, for aromatic, methylene and methyl H-atoms, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = k \times U_{eq}(C)$, where k = 1.5 for methyl H-atoms and k = 1.2 for all other H-atoms.

Computing details

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *PLATON* (Spek, 2009).

Figure 1

The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A view of the crystal packing of the title compound. Only the N—H…O hydrogen bonds are shown as dashed lines [Hatoms not involved in hydrogen bonding have been omitted for clarity].

2-{N-[(2,3,4,9-Tetrahydro-1H-carbazol-3-yl)methyl]methylsulfonamido}ethyl methanesulfonate

Crystal data	
$C_{17}H_{24}N_2O_5S_2$ $M_r = 400.50$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc $a = 5.4399 (2) \text{ Å}$ $b = 18.0322 (6) \text{ Å}$ $c = 19.0103 (6) \text{ Å}$ $\beta = 98.973 (2)^{\circ}$ $V = 1841.96 (11) \text{ Å}^3$ $Z = 4$	F(000) = 848 $D_x = 1.444 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9016 reflections $\theta = 3.4-69.5^{\circ}$ $\mu = 2.90 \text{ mm}^{-1}$ T = 150 K Plate, colourless $0.18 \times 0.16 \times 0.13 \text{ mm}$
Data collection	
Bruker Kappa APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005) $T_{min} = 0.623, T_{max} = 0.686$	47392 measured reflections 3472 independent reflections 3357 reflections with $I > 2\sigma(I)$ $R_{int} = 0.054$ $\theta_{max} = 69.8^{\circ}, \theta_{min} = 3.4^{\circ}$ $h = -6 \rightarrow 6$ $k = -20 \rightarrow 21$ $l = -23 \rightarrow 23$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.090$ S = 1.05 3472 reflections 241 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0569P)^2 + 0.6777P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.41$ e Å ⁻³ $\Delta\rho_{min} = -0.36$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

 $U_{\rm iso}$ */ $U_{\rm eq}$ х v Ζ 0.02367 (12) **S**1 0.19263 (6) -0.204476(18)0.209478 (18) S2 0.21420 (6) 0.077279 (19) 0.091542 (18) 0.02505 (12) 01 0.0230(2)-0.20118(6)0.25961 (6) 0.0344(3)0.0339 (3) 02 0.0933(2)-0.21216(6)0.13524 (6) O3 0.34759 (19) 0.01082 (6) 0.13520 (5) 0.0276(2)04 0.3080(2)0.14168 (6) 0.12962 (6) 0.0368(3)05 0.2426(2)0.06975 (6) 0.01834 (6) 0.0328(3)N1 0.3567(2)-0.12840(6)0.21645 (6) 0.0218(2)N9 0.2800(2)0.16928 (7) 0.40969(7)0.0264(3)Н9 0.161 (4) 0.1983 (11) 0.4018 (10) 0.035 (5)* C1 0.1172 (3) 0.07536(8) 0.31395 (8) 0.0252(3)0.030* H1A 0.1370 0.1042 0.2709 H1B -0.05490.0824 0.3236 0.030* C2 0.1640(2) -0.00717(8)0.30133 (8) 0.0243(3)0.029* H2A 0.0927 -0.03690.3370 0.029* H2B 0.0768 -0.02130.2536 C3 0.4407(2)-0.02574(7)0.30626 (7) 0.0210(3)0.5135 H3 0.0055 0.2713 0.025* C4 0.5787(2)-0.00923(7)0.38158(7) 0.0215(3)H4A 0.5346 -0.04710.4152 0.026* 0.026* H4B 0.7606 -0.01170.3817 C4A 0.5100(3)0.06626(7)0.40525(7)0.0217(3)C5 0.8579(3) 0.10872 (8) 0.50849 (8) 0.0265 (3) Н5 0.032* 0.9663 0.0676 0.5071 C5A 0.46082(7)0.0229(3)0.6340(3)0.11314(7)C6 0.9185 (3) 0.16495 (9) 0.55752 (8) 0.0315 (3) H6 1.0704 0.1624 0.5898 0.038* C7 0.7590(3)0.22570 (9) 0.56039 (8) 0.0338(4)H7 0.8029 0.2628 0.5956 0.041* C8 0.5396 (3) 0.23279 (8) 0.51321 (8) 0.0318 (3) 0.038* H8 0.4330 0.2743 0.5149 C8A 0.4810(3)0.17645 (8) 0.46293 (7) 0.0253(3)C9A 0.2978(3)0.10205 (8) 0.37574(7) 0.0233(3)C10 0.28916(7) 0.4772(3)-0.10741(7)0.0228(3)H10A 0.6576 -0.11800.2940 0.027* H10B 0.027* 0.4078 -0.13840.3243 C11 0.4043(3)-0.27709(9)0.23392(10)0.0360(4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H14C	-0.1191	0.0670	0.1498	0.052*	
H14A	-0 1987	0 1050	0.0735	0.052*	
H14B	-0.1577	0.0172	0.0792	0.052*	
C14	-0.0999 (3)	0.06534 (9)	0.09937 (9)	0.0344 (4)	
H13B	0.1804	-0.0812	0.0871	0.032*	
H13A	0.4356	-0.0598	0.0591	0.032*	
C13	0.3519 (3)	-0.06250 (8)	0.10170 (8)	0.0264 (3)	
H12B	0.6551	-0.0892	0.1762	0.030*	
H12A	0.5300	-0.1600	0.1344	0.030*	
C12	0.4941 (3)	-0.11271 (8)	0.15714 (8)	0.0251 (3)	
H11C	0.4902	-0.2689	0.2826	0.054*	
H11B	0.3142	-0.3243	0.2317	0.054*	
H11A	0.5265	-0.2786	0.2011	0.054*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	<i>U</i> ¹³	U^{23}
S1	0.02243 (19)	0.02128 (19)	0.0264 (2)	-0.00275 (12)	0.00095 (14)	-0.00032 (12)
S2	0.0270 (2)	0.0233 (2)	0.0241 (2)	-0.00371 (12)	0.00149 (14)	0.00101 (12)
01	0.0284 (5)	0.0383 (6)	0.0378 (6)	-0.0057 (4)	0.0092 (5)	0.0024 (5)
O2	0.0369 (6)	0.0322 (6)	0.0296 (6)	-0.0095 (5)	-0.0040(5)	-0.0024(4)
O3	0.0334 (6)	0.0244 (5)	0.0238 (5)	-0.0008 (4)	0.0004 (4)	0.0004 (4)
O4	0.0429 (6)	0.0259 (6)	0.0385 (6)	-0.0081 (5)	-0.0030 (5)	-0.0022 (5)
05	0.0395 (6)	0.0337 (6)	0.0256 (6)	-0.0008 (5)	0.0062 (5)	0.0050 (4)
N1	0.0236 (6)	0.0200 (6)	0.0217 (6)	-0.0010 (4)	0.0029 (4)	-0.0018 (4)
N9	0.0280 (6)	0.0215 (6)	0.0297 (7)	0.0076 (5)	0.0042 (5)	-0.0005 (5)
C1	0.0230 (7)	0.0234 (7)	0.0287 (7)	0.0035 (5)	0.0021 (6)	0.0012 (5)
C2	0.0210 (6)	0.0231 (7)	0.0283 (7)	0.0006 (5)	0.0020 (5)	-0.0005 (5)
C3	0.0216 (6)	0.0190 (6)	0.0227 (7)	0.0001 (5)	0.0039 (5)	-0.0003 (5)
C4	0.0212 (6)	0.0207 (6)	0.0226 (7)	0.0024 (5)	0.0032 (5)	-0.0003(5)
C4A	0.0237 (6)	0.0202 (6)	0.0218 (7)	0.0015 (5)	0.0059 (5)	0.0002 (5)
C5	0.0295 (7)	0.0254 (7)	0.0241 (7)	0.0012 (6)	0.0026 (6)	0.0006 (5)
C5A	0.0276 (7)	0.0212 (7)	0.0207 (6)	0.0000 (5)	0.0065 (5)	0.0010 (5)
C6	0.0363 (8)	0.0309 (8)	0.0255 (7)	-0.0042 (6)	-0.0008 (6)	-0.0002 (6)
C7	0.0492 (9)	0.0253 (7)	0.0262 (7)	-0.0048 (7)	0.0045 (7)	-0.0061 (6)
C8	0.0442 (9)	0.0218 (7)	0.0304 (8)	0.0029 (6)	0.0090 (7)	-0.0024 (6)
C8A	0.0317 (7)	0.0218 (7)	0.0235 (7)	0.0018 (6)	0.0073 (6)	0.0013 (5)
C9A	0.0246 (7)	0.0210 (7)	0.0251 (7)	0.0019 (5)	0.0062 (5)	0.0009 (5)
C10	0.0241 (7)	0.0209 (7)	0.0224 (7)	0.0014 (5)	0.0004 (5)	-0.0013 (5)
C11	0.0378 (9)	0.0207 (7)	0.0474 (10)	0.0012 (6)	0.0001 (7)	0.0010 (7)
C12	0.0243 (7)	0.0255 (7)	0.0262 (7)	0.0000 (5)	0.0062 (6)	-0.0001 (5)
C13	0.0310 (7)	0.0244 (7)	0.0239 (7)	-0.0016 (6)	0.0047 (6)	-0.0016 (5)
C14	0.0279 (8)	0.0381 (8)	0.0371 (9)	-0.0018 (6)	0.0049 (6)	-0.0067(7)

Geometric parameters (Å, °)

C4A—C9A	1.365 (2)
C5—C6	1.382 (2)
С5—Н5	0.9500
C5A—C4A	1.4363 (19)
	C4A—C9A C5—C6 C5—H5 C5A—C4A

S2—O3	1.5697 (10)	C5A—C5	1.402 (2)
S2—O4	1.4205 (11)	C5A—C8A	1.4169 (19)
S2—O5	1.4303 (11)	C6—C7	1.404 (2)
S2—C14	1.7516 (16)	С6—Н6	0.9500
O3—C13	1.4693 (17)	C7—C8	1.383 (2)
N1—C10	1.4836 (17)	С7—Н7	0.9500
N1—C12	1.4742 (18)	C8—C8A	1.397 (2)
N9—C8A	1.3753 (19)	С8—Н8	0.9500
N9—C9A	1.3837 (18)	C9A—C1	1.489 (2)
N9—H9	0.83 (2)	C10—H10A	0.9900
C1—C2	1.5350 (19)	C10—H10B	0.9900
C1—H1A	0.9900	C11—H11A	0.9800
C1—H1B	0.9900	C11—H11B	0.9800
C2—C3	1.5304 (18)	C11—H11C	0.9800
C2—H2A	0.9900	C12—C13	1.508 (2)
C2—H2B	0.9900	C12—H12A	0.9900
C3—C4	1.5386 (18)	C12—H12B	0.9900
C3—C10	1.5278 (18)	С13—Н13А	0.9900
С3—Н3	1.0000	С13—Н13В	0.9900
C4—H4A	0.9900	C14—H14B	0.9800
C4—H4B	0.9900	C14—H14A	0.9800
C4A - C4	1 4992 (18)	C14 - H14C	0.9800
	1.1992 (10)		0.9000
01 - 1 - 02	118 47 (7)	C5-C5A-C4A	134 64 (13)
01 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	108 26 (6)	C5-C5A-C8A	118 82 (13)
01 - S1 - C11	108.63 (8)	C8A - C5A - C4A	106.54(12)
$O_2 S_1 N_1$	106.05 (6)	C_{5} C_{6} C_{7}	100.94(12) 120.98(14)
02 - 51 - 11	108.56 (8)	C5 C6 H6	120.98 (14)
$N_1 = S_1 = C_{11}$	106.30(8) 106.12(7)	C7 C6 H6	119.5
$03 \ S2 \ C14$	100.12(7) 103.76(7)	C6 C7 H7	119.5
03 - 52 - 014	103.70(7) 104.78(6)	C_{0}	119.2 121.55 (14)
04 - 52 - 05	104.78(0) 110.25(7)	$C_8 = C_7 = H_7$	121.33 (14)
04 - 52 - 03	119.23(7)	C_{0}	119.2 117.27(14)
04 - 52 - 014	109.30 (8)	$C/-C\delta-C\delta A$	117.27 (14)
05 - 52 - 03	109.32 (6)	C/-C8-H8	121.4
05-52-014	109.02 (8)	C8A = C8 = H8	121.4
C13 - 03 - S2	119.68 (9)	N9-C8A-C5A	107.83 (12)
C10—NI—SI	116.55 (9)	N9-C8A-C8	129.95 (14)
C12—NI—SI	115.83 (9)	C8—C8A—C5A	122.21 (14)
C12—N1—C10	117.43 (11)	N9—C9A—C1	124.46 (12)
C8A—N9—C9A	108.69 (12)	C4A—C9A—N9	109.80 (13)
C8A—N9—H9	125.7 (13)	C4A—C9A—C1	125.68 (13)
С9А—N9—H9	125.3 (13)	N1—C10—C3	113.02 (11)
C2—C1—H1A	109.8	N1—C10—H10A	109.0
C2—C1—H1B	109.8	N1—C10—H10B	109.0
C9A—C1—C2	109.37 (11)	C3—C10—H10A	109.0
C9A—C1—H1A	109.8	C3—C10—H10B	109.0
C9A—C1—H1B	109.8	H10A—C10—H10B	107.8
H1A—C1—H1B	108.2	S1—C11—H11A	109.5
C1—C2—H2A	109.0	S1—C11—H11B	109.5

C1—C2—H2B	109.0	S1—C11—H11C	109.5
C3—C2—C1	112.84 (11)	H11A—C11—H11B	109.5
C3—C2—H2A	109.0	H11A—C11—H11C	109.5
C3—C2—H2B	109.0	H11B—C11—H11C	109.5
H2A—C2—H2B	107.8	N1—C12—C13	112.57 (11)
C2—C3—C4	110.32 (11)	N1—C12—H12A	109.1
С2—С3—Н3	108.9	N1—C12—H12B	109.1
С4—С3—Н3	108.9	C13—C12—H12A	109.1
C10—C3—C2	110.92 (11)	C13—C12—H12B	109.1
C10—C3—C4	108.89 (11)	H12A—C12—H12B	107.8
С10—С3—Н3	108.9	O3—C13—C12	106.16 (11)
C3—C4—H4A	109.6	O3—C13—H13A	110.5
C3—C4—H4B	109.6	O3—C13—H13B	110.5
C4A—C4—C3	110.28 (11)	С12—С13—Н13А	110.5
C4A—C4—H4A	109.6	С12—С13—Н13В	110.5
C4A—C4—H4B	109.6	H13A—C13—H13B	108.7
H4A - C4 - H4B	108.1	S2-C14-H14B	109 5
C5A - C4A - C4	130 15 (13)	S2—C14—H14A	109.5
C9A - C4A - C5A	107.10(12)	S_2 C_14 H_14C	109.5
C9A - C4A - C4	107.10(12) 122.73(13)	H_{14B} C_{14} H_{14A}	109.5
C5A-C5-H5	120.5	$H_{14B} - C_{14} - H_{14C}$	109.5
C6-C5-C5A	119 09 (14)	H14A - C14 - H14C	109.5
C6-C5-H5	120.5		109.5
	120.5		
O1—S1—N1—C10	50.95 (11)	C5A—C4A—C4—C3	-161.46 (13)
O1—S1—N1—C12	-164.56 (10)	C9A—C4A—C4—C3	20.88 (18)
O2—S1—N1—C10	179.12 (10)	C4—C4A—C9A—N9	178.07 (12)
O2—S1—N1—C12	-36.39(11)	C4—C4A—C9A—C1	-4.8(2)
C11—S1—N1—C10	-65.50 (12)	C5A—C4A—C9A—N9	-0.06 (16)
C11—S1—N1—C12	78.99 (12)	C5A—C4A—C9A—C1	177.07 (13)
O4—S2—O3—C13	-162.57 (10)	C5A—C5—C6—C7	0.4 (2)
O5—S2—O3—C13	-33.66 (12)	C5—C5A—C4A—C4	3.9 (3)
C14—S2—O3—C13	82.53 (11)	C5—C5A—C4A—C9A	-178.12 (16)
S2-03-C13-C12	179.57 (9)	C8A—C5A—C4A—C4	-176.65 (13)
S1—N1—C10—C3	-133.41 (10)	C8A—C5A—C4A—C9A	1.29 (15)
C12—N1—C10—C3	82.67 (14)	C4A—C5A—C5—C6	-178.55 (15)
S1—N1—C12—C13	94.59 (12)	C8A—C5A—C5—C6	2.1 (2)
C10—N1—C12—C13	-121.24 (13)	C4A—C5A—C8A—N9	-2.05(15)
C9A—N9—C8A—C5A	2.05 (16)	C4A—C5A—C8A—C8	177.19 (13)
C9A—N9—C8A—C8	-177.12(15)	C5—C5A—C8A—N9	177.48 (13)
C8A—N9—C9A—C1	-178.42(13)	C5—C5A—C8A—C8	-3.3(2)
C8A—N9—C9A—C4A	-1.25 (16)	C5—C6—C7—C8	-1.9(2)
C9A—C1—C2—C3	-43.77 (16)	C6-C7-C8-C8A	0.8 (2)
C1—C2—C3—C4	62.50 (15)	C7—C8—C8A—N9	-179.12 (15)
C1—C2—C3—C10	-176.76 (11)	C7—C8—C8A—C5A	1.8 (2)
C2—C3—C4—C4A	-47.92 (15)	N9—C9A—C1—C2	-167.67 (13)
C10—C3—C4—C4A	-169.87 (11)	C4A—C9A—C1—C2	15.6 (2)
C2-C3-C10-N1	60.12 (15)	N1—C12—C13—O3	69.55 (14)
C4—C3—C10—N1	-178.29 (11)		~ /

Hydrogen-bond geometry (Å, °)

Cg2 is the	centroid of the	C4a/C5a/C8a/N9/	C9a ring.
- 8			e ,

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N9—H9…O2 ⁱ	0.83 (2)	2.17 (2)	2.9804 (16)	166 (2)
C11—H11 <i>C</i> ···O4 ⁱⁱ	0.98	2.45	3.171 (2)	130
C13—H13A····O5 ⁱⁱⁱ	0.99	2.46	3.4148 (19)	161
C14—H14 <i>B</i> ····O5 ^{iv}	0.98	2.42	3.317 (2)	152
C11—H11 <i>A</i> ··· <i>Cg</i> 2 ⁱⁱ	0.98	2.95	3.6705 (19)	131

Symmetry codes: (i) -x, y+1/2, -z+1/2; (ii) -x+1, y-1/2, -z+1/2; (iii) -x+1, -y, -z; (iv) -x, -y, -z.