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Abstract

Glutathione S-transferases (GSTs) play an important role in detoxification of xenobiotics in both prokaryotic and eukaryotic
cells. In this study, four GSTs (LmGSTd1, LmGSTs5, LmGSTt1, and LmGSTu1) representing different classes were identified
from the migratory locust, Locusta migratoria. These four proteins were heterologously expressed in Escherichia coli as
soluble fusion proteins, purified by Ni2+-nitrilotriacetic acid agarose column and biochemically characterized. LmGSTd1,
LmGSTs5, and LmGSTu1 showed high activities with 1-chloro-2, 4-dinitrobenzene (CDNB), detectable activity with p-nitro-
benzyl chloride (p-NBC) and 1, 2-dichloro-4-nitrobenzene (DCNB), whereas LmGSTt1 showed high activity with p-NBC and
detectable activity with CDNB. The optimal pH of the locust GSTs ranged between 7.0 to 9.0. Ethacrynic acid and reactive
blue effectively inhibited all four GSTs. LmGSTs5 was most sensitive to heavy metals (Cu2+ and Cd2+). The maximum
expression of the four GSTs was observed in Malpighian tubules and fat bodies as evaluated by western blot. The nymph
mortalities after carbaryl treatment increased by 28 and 12% after LmGSTs5 and LmGSTu1 were silenced, respectively. The
nymph mortalities after malathion and chlorpyrifos treatments increased by 26 and 18% after LmGSTs5 and LmGSTu1 were
silenced, respectively. These results suggest that sigma GSTs in L. migratoria play a significant role in carbaryl detoxification,
whereas some of other GSTs may also involve in the detoxification of carbaryl and chlorpyrifos.

Citation: Qin G, Jia M, Liu T, Zhang X, Guo Y, et al. (2013) Characterization and Functional Analysis of Four Glutathione S-Transferases from the Migratory Locust,
Locusta migratoria. PLoS ONE 8(3): e58410. doi:10.1371/journal.pone.0058410

Editor: Juan Luis Jurat-Fuentes, University of Tennessee, United States of America

Received October 26, 2012; Accepted February 4, 2013; Published March 7, 2013

Copyright: � 2013 Qin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by the National Natural Science Foundation of China (International Cooperation and Exchange Program, Grant number
30810103907; Regular Research Program, Grant number 31172161, 21007036, 31101463), the Natural Science Foundation of Shanxi Province (Grant number
2011011033-1, 2012011036-6), the Public Welfare Fund for Agriculture (Grant number 200903021), and Program for the Top Young Academic Leaders of Higher
Learning Institutions of Shanxi (Grant number 20120303). The funders had no role in study design, data collection and analysis, decision to publish, or preparation
of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: maenbo2003@sxu.edu.cn (EM); zjz@sxu.edu.cn (JZ)

Introduction

Glutathione S-transferases (GSTs) are multifunctional enzymes

involved in detoxification of xenobiotics in both prokaryotic and

eukaryotic cells. In general, GSTs act by conjugating the thiol

group from glutathione (GSH; c-glutamyl-cysteinyl-glycine) to

compounds that possess an electrophilic center. By this mecha-

nism, they can eliminate substrates from a cell by rendering them

more water soluble and targeting those to specific GSH multidrug

transporters. In insects, GSTs can be separated into two major

groups: microsomal and cytosolic GSTs. The membrane-bound

microsomal GSTs are structurally and evolutionarily distinct from

the cytosolic GSTs [1]. The cytosolic GSTs are further classified

into six major classes along with several unclassified genes [1].

Among them, sigma, omega, zeta, and theta have representatives

across Metazoa whereas delta and epsilon are specific to Insecta

and Holometabola, respectively [2]. In spite of low sequence

homology among GST classes they have fairly similar tertiary

structures, topography of active site and G-sites, and are inducible

by certain insecticides and other chemicals [1,3]. Most GSTs are

cytosolic and, present in both homo and heterodimeric forms with

subunit masses of 23- to 28-kDa [4]. Each subunit contains two

domains and one active site; and within the active site there are

two binding sites, one for GSH and other for hydrophobic

substrate [5,6]. GSTs act on different substrates and can protect

insects against various plant allelochemicals and chemical

insecticides. However, not all the insect GSTs are involved in

detoxification [7]. They carry out a wide range of functions in

cells, such as the removal of reactive oxygen species and

regeneration of S-thiolated proteins (both of which are con-

sequences of oxidative stress), catalysis of conjugations with

endogenous ligands, and catalysis of reactions in metabolic

pathways not associated with detoxification [8].

Although many GST cDNAs have been sequenced from

different insect species, little is known about functional specificities

of GSTs in different classes. In mosquitoes, GSTs are character-

ized to play a role in metabolism of DDT (dichloro-diphenyl-

trichloroethane) [9]. And GSTs show possible protective roles

against oxidative damage caused by the pyrethroids in Nilaparvata

lugens [10]. The epsilon class GSTs from Spodoptera litura and

Anopheles gambaie might be capable of detoxifying DDT and/or

deltamethrin [11,12].
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The migratory locust, Locusta migratoria, is the most widespread

locust species. It occurs throughout Africa, Asia, Australia and

New Zealand. Frequent applications of insecticides have inevitably

resulted in development of resistance in some natural populations

of the locust [13–16]. However, little is known about the role of

GSTs of L. migratoria. By searching the L. migratoria EST databases,

we have identified 10 putative cytosolic GSTs, among which nine

fall into three classes (delta, sigma, and theta), and the remaining

one does not fit any of known GST classes and is tentatively

designated as unclassified [17]. We previously reported that one of

the sigma class GSTs from L. migratoria might be capable of

detoxifying carbaryl [18]. In this study, four GSTs representing

four different classes including one delta GST (LmGSTd1), one

sigma GST (LmGSTs5), one theta GST (LmGSTt1), and one

unclassified GST (LmGSTu1), were heterologously expressed as

recombinant enzymes in Escherichia coli cells. We further charac-

terized various biochemical properties of these recombinant

proteins and assessed their detoxification functions against five

insecticides by RNA interference (RNAi). Our results are expected

to help researchers better understand biochemical properties and

detoxification functions of locust GSTs.

Materials and Methods

Insect
L. migratoria were purchased from the Insect Protein Co., Ltd. of

Cangzhou City in China and reared in the laboratory with wheat

sprouts in 22622622 plastic cages at 28uC under 14:10 h light :

dark photoperiod.

Construction and Production of the Recombinant
Plasmids

The full cDNA sequences of L. migratoria GSTs were obtained in

our previous study [16]. The cDNA sequences were analyzed by

ExPASy (http://www.expasy.ch/) to deduce the amino acid

sequence, predict protein molecular mass and pI. Open reading

frames (ORF) of the four GST cDNAs were amplified by PCR

with corresponding primers (Table S1). PCR was conducted for

one cycle at 95uC for 3 min; 35 cycles, each at 94uC for 30s, 55uC
for 30s, and 72uC for 1 min; and followed by one cycle at 72uC for

7 min. The amplified products were inserted into the pGEM-T

Easy vector (Promega, Madison, WI, USA), and the plasmids were

digested with restriction enzymes as shown in Table S1. Resulting

digests were subcloned into an expression vector, pET-28a

(Novagen, Madison, WI, USA). The recombinant plasmids were

named pET-28a-LmGSTd1, pET-28a-LmGSTs5, pET-28a-

LmGSTt1, and pET-28a-LmGSTu1. All constructs were con-

firmed by DNA sequencing. The recombinant plasmids harboring

LmGSTs were used to transform E. coli BL21 (DE3) or JM109

(Invitrogen), which were grown at 37uC on Luria-Bertani (LB)

media containing 100 mg/mL ampicillin. After the cell density

reached 0.6–0.8 at OD600, isopropyl 1-thio-b-D-galactoside

(IPTG) was added to a final concentration of 1 mM to induce

the production of recombinant proteins.

After further incubation for 4 h, cells from a 1-L culture were

harvested by centrifugation, and the resulting pellet was

resuspended in 90 ml 50 mM PBS buffer (pH 8.0) containing

0.5 M NaCl, 0.1% Triton X-100, and 0.05% Tween 20. The cell

suspension was sonicated and centrifuged at 15,0006g at 4uC for

30 min. The supernatant (cleared lysate) was transferred to 50%

slurry Ni2+- nitrilotriacetic acid (NTA) agarose beads (Qiagen,

Valencia, CA, USA) that were pre-equilibrated with above PBS.

The Ni-NTA resin was sequentially washed using 20 ml PBS

buffer with a linear gradient of imidazole from 5 to 250 mM. The

recombinant L. migratoria GSTs was eluted with PBS containing

250 mM imidazole and dialyzed against TGE buffer (50 mM Tris,

0.5 mM EDTA, 50 mM NaCl, 5% glycerine, 1% glycine,

pH 8.0). The purity of LmGSTs was evaluated by 12% sodium

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).

GST Activity Assays
The enzyme activity of LmGST recombinant proteins were

assayed as described by Qin et al. [18]. Ten microliters (10 mg) of

protein was used in a total volume of 200 mL of a reaction

mixture. The two substrates for GST, 1-chloro-2, 4-dinitroben-

zene (CDNB) and reduced glutathione, were added to the reaction

wells. The change in absorbance of CDNB conjugate for the first

minute was measured at 340 nm and 28uC, with 10-s intervals

using Multiple Mode Microplate Reader SpectraMax M5

(e340 = 9600 M21 cm21) (Molecular Devices Corporation, Sun-

nyvale, CA, USA). Controls were performed in parallel in order to

correct for nonenzymatic conjugation of GSH to the substrates.

Protein concentration was determined according to the method of

Bradford using bovine serum albumin as a standard (0–4 mg/ml)

[19]. Enzyme activity is presented as nmol of CDNB conjugated

per min per mg protein. The apparent Km and Vmax were

determined for each of four purified GSTs using non-linear

regression of hyperbolic plots (V versus S). Each data point

represents the average of 3 measurements. When other substrates

were used in the assay for GST under the same conditions

described above, changes in absorbance per min were converted

into nanomoles of the substrate conjugated/min/mg protein using

the molar extinction coefficient: e345 = 8500 M21 cm21 for 1,2-

dichloro-4-nitrobenzene (DCNB), e310 = 1900 M21 cm21 for p-

nitro-benzyl chloride (p-NBC), and e270 = 5000 M21 cm21 for

ethacrynic acid (ECA).

For the assay of in vitro inhibition of GST, the enzyme activities

were measured at 28uC in a total volume of 200 mL of 0.1 M

phosphate buffer (pH 7.5) containing 2 mM CDNB and 5 mM

GSH in the presence or absence of 10 mL of appropriately diluted

inhibitors, or heavy metal solutions.

Western Blot Analysis
Total protein was extracted from each of 9 different tissue

samples, including foregut, midgut, gastric caecum, hindgut,

Malpighian tubules, fat bodies, muscles, spermaries and ovaries,

dissected from fifth-instar nymphs in ice-cold lysis buffer (1%

Nonidet P40, 1 mM EDTA, 125 mM sodium fluoride, 0.5 mM

sodium vanadate, 2.5 mg/mL of aprotinin, 5 mg/mL of pepstatin,

50 mg/mL of leupeptin, 25 mM PMSF, and 25 mg/mL of Trypsin

inhibitor). Protein concentration was determined according to the

method of Bradford using bovine serum albumin as a standard

[19].The lysates were centrifuged at 13,000 rpm for 15 min and

supernatants were collected. Purified LmGST proteins were

emulsified with Freund’s complete adjuvant and injected sub-

cutaneously into two 6-month old male rabbits. Booster injections

of LmGSTs, emulsified with Freund’s incomplete adjuvant were

also administered. Serum was collected after the second booster

and IgG was purified using Protein-A-affinity chromatography

(Bio-Rad). The specificity of the primary antibody were detected

(Figure S1). SDS-PAGE was performed using 150 mg protein

samples and precast 12% resolving and 4% stacking Tris-HCl gels

(Bio-Rad). Separated proteins were then transferred to a nitrocellu-

lose membrane (Millipore, Billerica, MA). After blocking (blocking

solution: 5% non-fat milk dissolved in PBS +0.1% Tween 20,

pH 7.4) proteins were incubated overnight at 4uC with anti-GST

antibodies, at a concentration of 1:200 (for GSTd1), 1:500 (for

GSTt1), or 1:5000 (for GSTs5 and GSTu1). Exposure to
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fluorescently labeled secondary antibody (1:3000) [IRDye 680CW

goat anti-rabbit IgG (H+L), LI-COR] was followed by scanning

and detecting with LI-COR Odyssey Infrared Fluorescent System.

Synthesis of dsRNA and Performance of RNAi
Double-stranded RNA (dsRNA) was synthesized and RNAi was

performed as described in an established protocol [18]. Briefly, C-

terminal alpha helical domain fragment of each L. migratoria GST

was obtained by PCR from the full-length cDNA clone using

sequence-specific primers (Table S1). dsRNA was synthesized

using T7 RiboMAX Express RNAi System (Promega) according

to manufacturer’s instructions. Then, 2 mL of dsRNA (1.5 mg

mL21) from target genes or green fluorescent protein (GFP) control

was injected into the abdomen between the second and third

abdominal segments of each second-instar nymph (3 days old) by

using a microsyringe. The efficiency of RNAi was examined by

quantitative reverse transcription PCR (qRT-PCR) using specific

primers (Table S1). For each locust GSTs RNAi assay, 250–300

nymphs were injected with dsRNA of GFP or GSTs. The nymphs

from either control or treatment group were reassigned into 5

different insecticides groups, and each was exposed to each of five

different insecticides including DDT, chlorpyrifos, carbaryl,

deltamethrin, and malathion at 24 h after injection. About 50–

60 nymphs from the control or locust GSTs dsRNA- injected

group were randomly divided into three subgroups, each with 15–

20 insects as a biological sample for each insecticides bioassay.

And a droplet of 2 mL of acetone containing DDT (220 ng/mL),

chlorpyrifos (6.5 ng/mL), carbaryl (17 ng/mL), deltamethrin

(0.5 ng/mL), or malathion (85 ng/mL), was topically applied onto

the abdomen between the second and third sterna of each nymph.

Mortality was recorded at 24 h after topical applications. Nymphs

were considered dead if they were not able to move in

a coordinated way when touched with a brush.

Results

Sequence Analysis of L. migratoria GSTs
The detailed information of complete cDNA, the predicted

molecular mass, and their estimated pI of four L. migratoria GSTs

are summarized in Table 1. The complete cDNA of LmGSTs are

from 680 to 1100 bp. The open reading frames (ORF) are from

609 to 696 bp with a coding capacity of 202–231 amino acid

residues. The predicted molecular masses of these deduced

proteins are from 23.1 to 26.6 kDa. The estimated pI values

range from 5.57 to 7.76.

L. migratoria GSTs show the characteristics of other insect GSTs.

Specifically, multiple alignments of locust GSTs along with A.

gambiae, Bombyx mori, and Apis mellifera GSTs revealed several key

residues that are conserved across different insect orders (Fig. 1 A–

C). The LmGSTu1 showed similar GSH binding site and the

electrophilic-binding site to delta class GSTs (Fig. 1A). These

residues constituted the putative GSH binding site and the

electrophilic-binding site in the deduced amino acid sequence for

the GSTs within their corresponding classes.

Heterologous Expression and Purification of L. migratoria
GSTs

LmGSTd1 and LmGSTs5 were heterologously expressed in

transformed E. coli JM109 with the pET-28a vector after 1 mM

IPTG induction, whereas LmGSTt1 and LmGSTu1 were

expressed in transformed E. coli BL21 (DE3). SDS-PAGE analysis

of the cell lysate revealed that four LmGSTs were expressed in

soluble forms (Fig. 2A–D). We finally obtained about 40–50 mg

for each highly purified LmGSTs from E. coli cells with an

approximate 1.3–5.6-fold purification. The recoveries were more

than 50% (Table S2). The specific activities of the final

preparations ranged from 1.77 to 14.29 mmol/min/mg protein.

The molecular mass of purified LmGSTs were estimated to be

approx. 27–30 kDa by SDS-PAGE (Fig. 2A–D). These are slightly

larger than that predicted (23.1–26.6 kDa on the basis of its

amino-acid composition) due to a 3.5 kDa vector-derived tag that

is present on the N-terminal of the expressed proteins.

Characterization of Recombinant L. migratoria GSTs
Kinetic analysis was carried out with 5 mM GSH and 0.15–

0.5 mM different substrates at pH 7.5 and the results are

summarized in Table 2. LmGSTd1 conjugated CDNB about

20- and 28,000-fold faster than LmGSTu1 and LmGSTt1,

respectively. On the other hand, LmGSTs5 conjugated pNBC

about 3-, 23-, and 109-fold faster than LmGSTd1, LmGSTu1,

and LmGSTt1, respectively. Moreover, LmGSTs5 conjugated

DCNB about 7.5- and 18-fold faster than LmGSTu1 and

LmGSTd1, respectively (Table 2). The activities of four LmGSTs

were undetectable when ECA was used as a substrate.

The enzymatic properties of LmGSTs were determined using

the purified LmGST enzyme with CDNB and GSH as substrates.

The optimal pH of the four GSTs ranged between pH 7.0 and 9.0

(Fig. 3A). Their thermostabilities were determined by preincubat-

ing each enzyme solution at various temperatures for 30 min

before the residual activity was assayed. These GSTs were

relatively stable during incubations at temperatures below 40uC
(Fig. 3B). Theta GST is the most heat-tolerant protein; the residual

activity was about 80% after the enzyme was incubated at 50uC
for 30 min. The pH stability assessed by preincubation of the

enzyme solution at various pHs at 4uC for 24 h before residual

activity was assayed. The stabilities of these GSTs at different pH

conditions varied significantly (Fig. 3C). Most LmGSTs retained

activities at pH between 4.0 and 9.0, whereas LmGSTt1 retained

more than 80% of its original activity at alkaline conditions.

The inhibitory effects of GST inhibitors including ECA and

reactive blue (RB) on LmGSTs were examined with CDNB and

reduced GSH as substrates. The results from inhibition experi-

Table 1. Summary of molecular properties of four L. migratoria GSTs.

GenBank accession number Gene name Length of cDNA (bp) ORF(bp)
Number of deduced
amino acid residues

Molecular mass
(kDa) pI

HM131834 lmGSTd1 866 657 218 24.8 5.57

HM131840 lmGSTs5 680 609 202 23.1 5.72

HM131843 lmGSTt1 1100 696 231 26.6 7.63

HM131835 lmGSTu1 799 645 214 24.3 7.76

doi:10.1371/journal.pone.0058410.t001
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ments on LmGSTs indicated that both of the GST inhibitors

inhibited the enzymes considerably, and that residual activity

decreases with increasing concentrations of inhibitors (Fig. 4).

ECA showed I50 values in the similar mM range against

LmGSTd1, LmGSTt1, and LmGSTu1 (Table S3), whereas it

showed relatively poor inhibition to LmGSTs5. In contrast, RB

showed more than 34-fold greater potency against LmGSTs5

(Table S3). On the other hand, LmGSTt1 was relatively poorly

inhibited by RB as compared with other L. migratoria GSTs (Table

S3).

Inhibition study showed that the recombinant LmGSTs5 was

sensitive to heavy metals (Fig. 5). The residual activity of

LmGSTt1 was decreased significantly in the presence of 50 mM

CuSO4 (Fig. 5). The residual activities of LmGSTs5 and

LmGSTt1 decreased significantly with exposure time in the

presence of 50 mM heavy metals. While no significant inhibited

effects were observed in LmGSTd1 and LmGSTu1 after heavy

metals treatment (Fig. 5).

Tissue-specific Expression Patterns of GSTs in L.
migratoria

Tissue-specific expression patterns of the four L. migratoria GST

proteins were analyzed in nine different tissues, including foregut,

midgut, gastric caecum, hindgut, Malpighian tubules, fat bodies,

muscles, spermaries and ovaries by using western blot. Our results

indicated that all the four classes of GST were expressed in all

tissues examined, although there were some noticeable variations

in expression levels among different tissues (Fig. 6). LmGSTd1

Figure 1. Similarity comparisons of the amino acid sequences of L. migratoria GSTs with GSTs from Anopheles gambaie (Ag), Bombyx
mori (Bm), and Apis mellifera (Am). (A) Similarity comparisons of delta GSTs, including LmGSTd1 (ADR30117), AgGSTd1 (XP_313050), BmGSTd2
(NP_001036974), AmGSTd1 (NP_001171499.1), and LmGSTu1 (AEB91972.1). (B) Similarity comparisons of sigma GSTs, including LmGSTs5 (AEB91977),
AgGSTs (P46428), BmGSTs1 (NP_001037077), and AmGSTs1 (NP_001153742). (C) Similarity comparisons of theta GSTs, including LmGSTt1
(AEB91980.1), AgGSTt1 (XP_311299), BmGSTt1 (NP_001108463), and AmGSTt1 (XP_624692). The conserved G-site residues are shaded in red, and the
substrate binding pockets (H-site) are shaded in green.
doi:10.1371/journal.pone.0058410.g001
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appeared to be strongly expressed in all these tissues. The

maximum expression of four L. migratoria GST proteins was

observed in Malpighian tubules and fat bodies. High expressions

of GSTs were also detected in the midgut, gastric caecum, and

hindgut. However, lower expression of LmGSTs5 was observed in

the foregut and muscles. In contrast, LmGSTu1 was expressed

mainly in the midgut, gastric caecum, hindgut, Malpighian

tubules, and fat bodies, whereas the expression of LmGSTt1 was

virtually undetectable in the foregut.

Effect of L. migratoria GST Gene Silencing on Locust
Susceptibility to Insecticides

Our qRT-PCR analysis of each LmGST transcript at 24 h after

the injection of L. migratoria GST dsRNA showed a significant

decrease as compared with that of each corresponding control,

indicating an effective silencing of L. migratoria GSTs by RNAi.

Furthermore, the injection of each of four dsRNA did not show

any effect on the transcript level of other locust GST genes,

indicating a specific silencing of each of these genes by RNAi

(Fig. 7).

Insecticide bioassays showed that nymph mortalities in response

to carbaryl treatment increased significantly (28 and 12%) after

LmGSTs5 and LmGSTu1 were silenced, respectively. The nymph

mortalities in response to malathion treatment increased from 13.9

to 40% after LmGSTs5 was silenced, whereas the nymph

mortalities in response to chlorpyrifos treatment increased from

39.4 to 57.5% after LmGSTu1 was silenced (Fig. 8). Neither

deltamethrin nor DDT showed significant changes in nymph

mortalities after each of the four LmGST genes were silenced

(Fig. 8).

Discussion

It is well known that GSTs are a large family of multifunctional

enzymes involved in the detoxification of hydrophobic and

electrophilic toxicants including many drugs, herbicides and

insecticides. There are at least 41 DmGSTs found in Drosophila

melanogaster [20], 37 AgGSTs in A. gambiae [21], 12 AmGSTs in A.

mellifera [22] and 23 BmGSTs in B. mori [23]. In our previous

study, 10 GSTs were identified from L. migratoria. Among the 10

GSTs, nine were classified to three different cytosolic classes,

including 1 in delta, 7 in sigma, 1 in theta, and the remaining one

was designated as unclassified [17]. In this study, we selected one

LmGST gene from each of the three classes and the unclassified

group as the class representatives to biochemically characterize

their heterologously expressed recombinant GSTs and function-

ally analyze their corresponding genes by using RNAi.

The cytosolic GSTs in most organisms are all dimeric with

subunit molecular masses from 21 to 29 kDa [5]. Our predicted

Figure 2. Analysis of the heterologously expressed and purified recombinant L. migratoria GST proteins by SDS-PAGE. (A) LmGSTd1,
(B) LmGSTs5, (C) LmGSTt1, (D) LmGSTu1. The gel (12%) was stained with Coomassie Blue G-250. Lane M, protein molecular size marker. Lane 1, extract
of BL21/JM109 carrying the expression vector for GSTs without IPTG. Lane 2, extract of BL21/JM109 carrying the expression vector for GSTs with IPTG
induction. Lane 3, purified locust GSTs.
doi:10.1371/journal.pone.0058410.g002

Table 2. Kinetic parameters of four L. migratoria GSTs heterologously expressed in E. coli as determined using selected substrates.

LmGST CDNB pNBC DCNB

Km (mM) Vmax (nmol/min/mg) Km (mM) Vmax (nmol/min/mg) Km (mM) Vmax (nmol/min/mg)

LmGSTd1 0.560.025 50006151 6.3860.57 49.0263.66 1.0060.087 0.4060.053

LmGSTs5 1.1760.29 38896962 0.4760.083 156.19618.44 1.7360.24 7.4160.96

LmGSTt1 4.7360.35 0.1860.03 7.8561.08 1.4360.13 ND ND

LmGSTu1 0.2560.025 250621 1.5860.17 6.7760.74 0.7360.064 0.9860.10

Values are expressed as means 6 SE of three independent experiments.
Km: concentration of substrate that produces half-maximal velocity.
ND: activity was not detected.
doi:10.1371/journal.pone.0058410.t002
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molecular masses of L. migratoria GSTs were in accordance with

those previously reported. The kinetic parameters of L. migratoria

GSTs were similar to corresponding GST classes from Anopheles

dirus [24], A. gambiae [25], Bemisia tabaci [26], B mori [27], Culex

Figure 3. Enzymatic properties assayed with CDNB and GSH as substrates. The maximum value obtained was set to 100%. (A) Optimal pH
of L. migratoria GSTs assayed using citrate–phosphate–borate buffer at various pH conditions. (B) Thermostability of L. migratoria GSTs.
Thermostability determined by preincubation of the enzyme solution at various temperatures for 30 min before residual activity was assayed. (C) pH
stability of L. migratoria GSTs. pH stability assessed by preincubation of the enzyme solution at various pH conditions at 4uC for 24 h before residual
activity was assayed. Data are means and standard errors (SE) of three independent experiments (n=3).
doi:10.1371/journal.pone.0058410.g003

Figure 4. Inhibition of L. migratoria GSTs with ethacrynic acid (ECA) and reactive blue (RB). Data are means and standard errors (SE) of
three independent experiments (n=3).
doi:10.1371/journal.pone.0058410.g004
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pipiens [28], D. melanogaster [29], and Hyphantria cunea [30]. In the

present study, we revealed optimal pH of the locust GSTs ranging

between 7.0 and 9.0. Although most eukaryotic GSTs are known

to have optimal pH ranging between 6.0 and 6.5 [31], some

reports suggest that insect GSTs also have considerable activities at

higher pH. For example, Corcyra cephalonica GST has an optimal

pH 8.3 [4]. A recombinant GSTt1 expressed in E.coli from B. mori

showed broadly optimal pH ranging between 4.0 and 9.0 [27].

Since it has been reported that locusts have alkaline internal

environment after feeding [32], the GSTs with optimal pH in the

alkaline range may be related to their functions.

The potency of ECA as GST inhibitor towards CDNB has been

observed in earlier experiments with insects at similar inhibition

level, e.g. N. lugens (40 nM), Blattella germanica (350 nM), C. pipiens

(2.5 mM), Spodoptera frugiperda (150 nM), and B. tabaci (5.8 mM)

[26,28,33–35]. ECA has a ketone moiety that forms a conjugate

Figure 5. Effects of CuSO4 or CdCl2 on the activity of L. migratoria GSTs. (A, C, E, F) Enzymatic activity was measured in the presence of
various concentrations of CuSO4 or CdCl2. (B, D) Enzymatic activity was measured by different incubation time in the presence of 50 mM CuSO4 or
CdCl2. Data are means and standard errors (SE) of three independent experiments (n= 3).
doi:10.1371/journal.pone.0058410.g005
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Figure 6. Tissue-specific expression patterns of the four GST proteins in L. migratoria as evaluated using western blot in foregut
(FG), midgut (MG), gastric caecum (GC), hindgut (HG), Malpighian tubules (MT), fat bodies (FB), muscles (MU), spermary (SP), and
ovary (OV).
doi:10.1371/journal.pone.0058410.g006

Figure 7. RNA interference efficiency of L. migratoria GSTs. RNAi analyzed by qRT-PCR at 24 h after injection of 3 mg double stranded RNA
specific to each LmGST gene. The control locusts were injected with the same volumes of dsRNA of GFP gene. The mRNA levels in the control and
treated groups were normalized using b-actin as a reference gene. Vertical bars indicated standard errors of the mean (n =3). Data are means and
standard errors (SE) of three independent experiments (n= 3). Significant differences in the treated groups from their corresponding controls were
assessed by t-test at * P,0.05, ** P,0.01, *** P,0.001.
doi:10.1371/journal.pone.0058410.g007
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with GSH through a GST-catalyzed Michael addition reaction.

This reaction is thermodynamically more favorable than the

conjugation of CDNB to GSH via an addition-substitution

reaction [36]. Thus, ECA can function to deplete GSH. Although

the amino acid sequence comparisons indicated that both

LmGSTs5 and LmGSTs3 are sigma-class GSTs, these GSTs

showed unique inhibition profiles [18], suggesting that their

substrate preferences may also be unique.

Copper (Cu2+) easily catalyzes the oxidation of the sulfhydryl

group of GST (Christie and Costa, 1984). Cadmium (Cd2+) forms

more stable coordination complexes with GST [37]. The in-

hibitory effect of Cu2+ and Cd2+ of the soluble GST forms has

been reported previously [38,39]. The addition of CuCl2 and

CdCl2 0.2 mM to the incubation mixture inhibits GST activity by

82 and 37%, respectively in vitro from rat liver [40]. GSTs in

Calystegia sepium are inhibited by cadium ions only at concentra-

tions higher than 100 mM [39]. However, little is known about

which GST class is susceptible to inhibition by Cu2+ and Cd2+.

Previous study presents the inhibition of a mu-class GST of the

marine shrimp Litopenaeus vannamei by Cu2+ and Cd2+ [41].

Nevertheless, our study showed that sigma GST appeared to be

the most sensitive to inhibition by both Cu2+ and Cd2+ in L.

migratoria.

It is recognized that the expression of GSTs can change in

different developmental stages and tissue types, and can be

affected by feeding behavior and genetic factors of an organism

[42]. Western blot analysis with antibodies generated against a C.

cephalonica GST (CcGST) showed maximum expression of CcGST

protein in fat bodies [4]. Our data are consistent with their

findings by showing that the maximum expressions of the four L.

migratoria GST proteins were observed in Malpighian tubules and

fat bodies. The protein expressions of LmGSTd1, LmGSTs5, and

Figure 8. RNA interference effects of L. migratoria GSTs on the susceptibility of locusts to insecticides. Changes in the susceptibility of
the locusts to different insecticides after the injection of locust GST dsRNA in second-instar nymphs. Insecticides bioassays were conducted 24 h after
the injections by topical application. The mortalities of the locusts were assessed 24 h after the insecticides treatments. Data are means and standard
errors (SE) of three independent experiments (n= 3). Significant differences in the treated groups from their corresponding controls were assessed by
t-test at * P,0.05, ** P,0.01, *** P,0.001.
doi:10.1371/journal.pone.0058410.g008
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LmGSTt1 in all tissues examined were consistent with their

mRNA levels reported in our previous study [17]. However, high

protein expressions of LmGSTu1 were observed in the hindgut

and fat bodies other than midgut, gastric caecum, and Malpighian

tubules. The mRNA of LmGSTu1 was highly expressed in the latter

[17]. Insects have long been known to excrete toxins via the

Malpighian (renal) tubules, and the expressions of several GST

genes have been found to be enriched in Malpighian tubules [43].

On the other hand, the fat bodies of insects are considered to be

a major metabolic center and perform a large number of complex

cellular functions [44]. High expression of LmGSTs in the midgut,

gastric caecum and hindgut, which are generally exposed to

a variety of xenobiotics through food, suggests that the LmGSTs

might play an important role in detoxification of xenobiotics.

Indeed, the function of GSTs is generally considered to be the

detoxification of both endogenous and xenobiotic compounds, and

GSTs are involved in intracellular transport, biosynthesis of

hormones and protection against oxidative stress [1]. Though

GSH-dependent DDTase activity was discovered in several insect

species, such as Musca domestica (housefly) [45], D. melanogaster [46],

A. gambiae [9], A. dirus [47], and Aedes aegypti [48], detoxification of

DTT was not observed by any of the four locust GST genes based

on our RNAi experiments followed by DDT bioassay. Neverthe-

less, the detoxification roles of several LmGST genes against

carbaryl, malathion, and chlorpyrifos have been evidenced by

RNAi in this study.

Carbaryl is a member of the widely used carbamate insecticides.

Like all carbamate insecticides, carbaryl acts as an inhibitor of

acetylcholinesterase (AChE), an important enzyme involved in

cholinergic neurotransmission in all animals including vertebrates

and insects [49]. Carbaryl is not considered be metabolized via

GST in previous study [50]. However, as validated by LmGSTs3

[18] and LmGSTs5 RNAi followed by insecticides bioassay, our

results indicated that sigma GSTs in L. migratoria play a significant

role in carbaryl detoxification. It has been well established that

organophosphate (OP) insecticides are primarily metabolized by

cytochrome P450 monooxygenases and hydrolases. However,

there is a growing body of evidences that GSTs also play an

important role in OP detoxification [51]. The action of GSTs on

OP insecticides can lead to activation or detoxification [52].

Thiono-type OP insecticides, such as malathion, are not AChE

inhibitors and require metabolic activation to become strong

irreversible inhibitors of AChE in vivo. This activation mainly

occurs through the action of cytochrome P450 enzymes, but

subsequent reactions generally involve phase II reactions catalyzed

by the enzymes such as GST. Our results indicate that LmGSTs5

is involved in malathion detoxification.

Chlorpyrifos, another widely used OP insecticide, is activated to

chlorpyrifos oxon by cytochrome P450 enzymes and undergoes

deethylation and dearylation, in human hepatocytes, or in vivo

[53]. The metabolism yields a large number of metabolites which

can be ultimately conjugated by GSH through GSTs. The locust

mortalities after carbaryl and chlorpyrifos treatments increased

after LmGSTu1 were silenced. It suggested that the unclassified

LmGST played significant roles in both carbaryl and chlorpyrifos

detoxification.

In conclusion, four GSTs representing different classes from

Locusta migratoria were heterologously expressed in E. coli and

biochemically characterized in this study. LmGSTt1 differed from

other three GSTs at optimal pH, thermostability, and pH stability.

The maximum expression of the four GSTs was observed in

Malpighian tubules and fat bodies as evaluated by western blot.

Our study suggest that sigma GSTs in L. migratoria play a significant

role in carbaryl detoxification. LmGSTs5 also involved in

malathion detoxification. The unclassified LmGST played signif-

icant roles in both carbaryl and chlorpyrifos detoxification. Studies

such as this may lead to a more informed insecticide design

strategy that takes into account the likelihood of degradation by

the detoxification enzymes of the pest insect. However, genome-

wide search of all the GST genes in L. migratoria followed by

functional analysis is needed in future research.
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