
Article
Appyters: Turning Jupyter
 Notebooks into data-
driven web apps
Highlights
d Appyters turn Jupyter Notebooks into full-stack web-based

applications

d The Appyters Catalog serves over 75 Appyters

d Appyters provide a way to parameterize and generalize

Jupyter Notebooks

d Appyter reports have permanent URLs that can be shared

and published
Clarke et al., 2021, Patterns 2, 100213
March 12, 2021 ª 2021 The Author(s).
https://doi.org/10.1016/j.patter.2021.100213
Authors

Daniel J.B. Clarke, Minji Jeon,

Daniel J. Stein, ..., Sam Ayling,

Sherry L. Jenkins, Avi Ma’ayan

Correspondence
avi.maayan@mssm.edu

In brief

Appyters turn Jupyter Notebooks into

fully functional standalone web-based

bioinformatics applications. Appyters

were used to create many bioinformatics

web-based reusable workflows,

including applications to build

customized machine learning pipelines,

analyze omics data, and produce

publishable figures. These Appyters are

served in an Appyters Catalog. In

summary, Appyters enable the rapid

development of lightweight, interactive,

open-source, reproducible web-based

bioinformatics applications.
ll

mailto:avi.maayan@mssm.�edu
https://doi.org/10.1016/j.patter.2021.100213
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2021.100213&domain=pdf

OPEN ACCESS

ll
Article

Appyters: Turning Jupyter Notebooks
into data-driven web apps
Daniel J.B. Clarke,1 Minji Jeon,1 Daniel J. Stein,1 Nicole Moiseyev,1 Eryk Kropiwnicki,1 Charles Dai,1 Zhuorui Xie,1

Megan L. Wojciechowicz,1 Skylar Litz,1 Jason Hom,1 John Erol Evangelista,1 Lucas Goldman,1 Serena Zhang,1

Christine Yoon,1 Tahmid Ahamed,1 Samantha Bhuiyan,1 Minxuan Cheng,1 Julie Karam,1 Kathleen M. Jagodnik,1

Ingrid Shu,1 Alexander Lachmann,1 Sam Ayling,2 Sherry L. Jenkins,1 and Avi Ma’ayan1,3,*
1Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L.
Levy Place, Box 1603, New York, NY 10029, USA
2Pencil Worx Design, 345 West 88th Street, New York, NY 10024, USA
3Lead contact

*Correspondence: avi.maayan@mssm.edu
https://doi.org/10.1016/j.patter.2021.100213
THE BIGGER PICTURE Appyters facilitate bioinformaticians to convert their Jupyter Notebook workflows
into lightweight, interactive, open-source, reproducible web-based bioinformatics applications. The Ap-
pyters Catalog is a software platform that enables biomedical researchers to analyze and visualize their
data in many ways. Appyters were developed to create many bioinformatics web-based reusable work-
flows, including applications to build customized machine learning pipelines, analyze omics data, and pro-
duce publishable figures.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Jupyter Notebooks have transformed the communication of data analysis pipelines by facilitating a modular
structure that brings together code, markdown text, and interactive visualizations. Here, we extended Jupyter
Notebooks to broaden their accessibility with Appyters. Appyters turn Jupyter Notebooks into fully functional
standaloneweb-basedbioinformaticsapplications.Appyterspresent tousersanentry formenabling themtoup-
load their data and set various parameters for amultitude of data analysis workflows. Once the form is filled, the
Appyter executes the corresponding notebook in the cloud, producing the output without requiring the user to
interact directly with the code. Appyters were used to create many bioinformatics web-based reusable work-
flows, including applications to build customized machine learning pipelines, analyze omics data, and produce
publishable figures. These Appyters are served in the Appyters Catalog at https://appyters.maayanlab.cloud. In
summary, Appyters enable the rapid development of interactive web-based bioinformatics applications.
INTRODUCTION

JupyterNotebookshave seenwidespreadadoption indata science

with over 2.5 million notebooks posted on GitHub as of September

2018.1 With the ability to construct and view code, figures, and

markdowntextall inoneplace, JupyterNotebooksare ideal forcon-

structing well-documented, reproducible data analysis pipelines,

promoting transparency and reusability. Because of this transpar-

ency, several web-based applications have adopted Jupyter Note-

books as a way of presenting scientific results of multistage user-

configurable data analysis pipelines. For example, we developed

BioJupies,2 an automated RNA-sequencing (RNA-seq) data anal-

ysis pipeline that enables users to upload their fastq files, or data ta-
This is an open access article und
bles, from RNA-seq gene expression profiling, to automatically

receive adetailed analysis report of their datadeliveredasaJupyter

Notebook. Another example is Single Cell Explorer, a single-cell

RNA-seq (scRNA-seq) data analysis environment.3 NGLview is a

Jupyter widget developed to view molecular structures inside

Jupyter Notebooks.4 These and other related tools ensure repro-

ducibility and transparency by producing reports that can bemodi-

fied both before and after execution while detailing the steps taken

for each part of the analysis. Some prior efforts have beenmade to

present Jupyter Notebooks asweb-based applications for the pur-

pose of interactive dashboards constructed directly from Jupyter

Notebooks. These efforts include nbinteract,5 bokeh,6 and voila,7

among others. Other efforts have been made, specifically by cloud
Patterns 2, 100213, March 12, 2021 ª 2021 The Author(s). 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:avi.maayan@mssm.edu
https://doi.org/10.1016/j.patter.2021.100213
https://appyters.maayanlab.cloud
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2021.100213&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Construct Jupyter
Notebook Meta-
Report

Customized
& Persistent

Report

User Submit
Data and

Parameters

Appyter

Compile

CSV

Figure 1. Appyters are created from a meta-

Jupyter Notebook report that contains

magics

Once compiled, these meta-reports are converted

into web-based applications that can accept user

input. Once the users upload their data, and enter

their parameters in a form, the notebook is auto-

matically executed in the cloud and produces a

permanent report.

ll
OPEN ACCESS Article
computing providers, to permit Jupyter Notebook rendering and

execution directly in theweb browser, or on a remote server. These

include, for example, Google Colab8 and MyBinder.9 Papermill10

facilitates the sequential execution of cells within a Jupyter Note-

book, while Bacatá11 provides a framework for generating note-

book interfaces for domain-specific languages. XML2Jupyter12

dynamically generates Jupyter widgets from XML descriptions.

None of these previous works facilitate low-barrier entry to Jupyter

Notebook rendering and execution from a skeleton template. Such

implementation can support the modification of the data or

methods implemented in the notebook without requiring direct

code manipulation. To accomplish this, we developed Appyters.

Appyters are designed to provide experimental biologists without

coding skills an easy way to execute bioinformatics workflows to

analyze their data. For computational biologists, Appyters provide

a framework to quickly construct and deploy bioinformatics web-

based applications from their Jupyter Notebooks. One part of Ap-

pyters is the expansion of the Jupyter Notebook language to sup-

port external environment variables. Appyters can be considered

a meta-Jupyter Notebook language that is compatible with stan-

dardJupyterNotebookexecution.TheAppytermeta-JupyterNote-

book language adds Jupyter "magics," which permit constructing

output Python codewith jinja2,13 declaration of injectable variables

by means of pre-defined or extendable "fields," and a mechanism

to turn the meta-Jupyter Notebook language into a full-stack

web-based bioinformatics application. Such Appyter web-based

applications help users submit their data via a web-based form

satisfying the defined fields followed by rendering and execution

of a standard Jupyter Notebook given that input (Figure 1).

RESULTS

Developing an Appyter
Appyters can be created by converting standard Jupyter Note-

books into web-based applications by inserting special code in
2 Patterns 2, 100213, March 12, 2021
the notebook. The Jupyter Notebook

magics are set up by initializing them in

the first cell of the notebook. In this way,

these magics can be used to directly seri-

alize and subsequently execute jinja2-style

template syntax. This syntax permits a

wide range of branches, which enable the

notebook’s code to be adjusted as needed

based on declared ‘‘fields.’’ These fields

represent the type of input field to be

used to construct that template variable.

Fields are available natively for all major

data types. In addition, Fields can be
extended to support more specific use cases of input form com-

ponents. These fields can be extracted by inspection and are

eventually used for the purpose of rendering a web-based

HTML form that is the initial user interface (UI) of each Appyter.

When a user of the Appyter submits the form for execution, the

Appyter assembles all the necessary variables to fully serialize

a customized instance of the target instantiation of the template

Jupyter Notebook. Importantly, Appyter forms can accommo-

date a file upload input as a form field. The file upload feature fa-

cilitates uploading user-submitted files to be utilized for a given

analysis.

Appyters have several mechanisms for extension. Some of

these extensions involve built-in features, and others involve

overriding or extending these built-in features. ‘‘Profiles’’ are

template pre-sets for the default application-defined fields;

these enable quick beautification of the Appyter with little effort.

‘‘Extras’’ are feature flags that can be used to enable certain opt-

in features such as adding a table of contents to the Jupyter

Notebook output report or providing a button for code toggling.

The Extras are independent of the Profiles. However, all existing

fields and pages can be overridden or extended by means of a

documented directory and a file structure. Overrides placed in

the proper location are automatically loaded by the Appyter,

and this makes it possible to define new fields or fine-tune the

application styling without having to make modifications to the

Appyter. Static files, Appyter fields, jinja2 filters, jinja2 templates,

and even Flask14 blueprints or Dash applications can all be

defined, integrated, extended, and overridden. The Appyter

command line interface (CLI) can be used to interact with the Ap-

pyter feature set. This includes locating and describing available

fields, profiles, and extras, as well as facilitating the inspection,

construction, evaluation, and serving (via Flask) of Appyters (Fig-

ure 2). Furthermore, the CLI facilitates interacting with remote

Appyter instances using both the Appyter REST application pro-

gramming interface (API) and websockets. This enables the

Figure 2. Example components when devel-

oping Appyters

(A) The Appyter library provides functions to initialize

Appyter-related jinja2-style template functionality

using a standard Jupyter Notebook session, allow-

ing creation and testing with default field inputs.

(B) The Appyter can be served, tested, and updated

in real time using the Appyter command line

interface.

ll
OPEN ACCESSArticle
inspection, and real-time asynchronous evaluation, of public Ap-

pyter endpoints directly from the command line or as part of a

workflow.

The Appyter Catalog
The Appyter Catalog facilitates the integration of many individual

Appyters into a unified web interface that presents each Appyter

and provides various means of categorization and search (Fig-

ure 3). By default, Appyters are sorted by their usage statistics.

Appyters can be integrated within the Appyter Catalog via

GitHub pull requests. By implementing a standardized ma-

chine-validatable set of documented requirements, Appyter

pull requests need to be formatted in a uniform way. These pull

requests are tested automatically to ensure compliance with

the Appyter guidelines to promote meaningful integration and

catch obvious errors that would result in a broken production

environment. A Python test suite asserts conformance of each

Appyter’s directory structure along with its required files. The

test also triggers additional mechanisms to assert the validity
of the content within those files. JSON

Schema15 is used to validate a required

Appyter JSON file that contains the

name, description, versioning information,

authorship, contact information, usage li-

cense, and tags for Appyter categorization

purposes. Standardized requirements and

Ubuntu system dependency text files are

required along with the rest of the directory

to construct and build a Dockerfile.16 The

Dockerfile can run the Appyter before in-

specting, constructing, and executing an

instance of the Appyter with all its defaults.

The individual dockerization of each Ap-

pyter simplifies the integration of the Ap-

pyter into the catalog. In this way, Appyters

within the catalog can have heterogeneous

requirements while enabling uniform

orchestration via systems such as Mara-

thon17 or Kubernetes.18 Relying on the

structure asserted by the validation,

several scripts are used to construct a

Docker Compose capable of serving all

the Appyters in the catalog from a single

nginx19 ingest service. Furthermore, the

Appyter Catalog is set up to enable appli-

cation-wide manipulations such as ver-

sioning or HTML template overrides. This

makes it possible to expand the capabil-
ities of the underlying Appyter as well as unifying the theme

across new and existing Appyters.

The Appyter JSON files are aggregated and supplemented

with additional information, including a README file and version

information derived from the Git history. This information ismade

available to the frontend, which constructs the UI directly from

this data model. The entire Appyter system is made of indepen-

dent microservices that communicate to constitute the Appyter

Catalog orchestration platform (Figure 4). The system imple-

ments a layer 7 load balancer that is used to serve all indepen-

dent components onto a unified system. A cloud-agnostic

S3-compatible minio is used for object storage for Appyter

data. The UI is built with svelte20 and Bootstrap21 and served

with nginx, while data-persistent capabilities such as page hits

are deferred to a PostgreSQL database22 that can be accessed

via a PostgREST microservice API. Thus, the frontend is a stati-

cally constructed single-page web application. Navigation to an

Appyter leaves the domain of this web application handled by

the accessed Appyter application. The Appyters communicate
Patterns 2, 100213, March 12, 2021 3

Figure 3. Screenshot from the Appyters Cat-

alog with the Enrichr filter applied

Each Appyter is presented as a box with tags and

links. A search engine and pre-defined buttons can

be used to find and filter Appyters.

ll
OPEN ACCESS Article
internally with the Appyter orchestrator to dispatch execution

jobs on demand. Execution jobs access data directly from S3

and send updates to the Appyter web application. All the Appyter

microservices are available as subcommands in the Appyter li-

brary, while the Appyter Catalog facilitates construction of

Docker Compose or Kubernetes helm charts for multi-Appyter

deployment.

Appyter adherence to the FAIR guidelines
The findable, accessible, interoperable, and reusable (FAIR)

guiding principles23 were considered while designing the Ap-

pyter system. We sought to satisfy several universal FAIR met-

rics as prescribed in the exemplar metrics for FAIRness.24 The

Appyter Catalog itself promotes findability of the Appyters by en-

forcing that all Appyters are formatted and annotated in a uni-

form way. The ‘‘appyter.json’’ file is JSON-schema validatable.

This ensures that Appyters contain a unique title, short descrip-

tion, spdx-compatible license identifier, authorship, and contact

information. Furthermore, a semver (https://semver.org/), which

must be updated to modify an existing Appyter, is present and

ties the Appyter to the Docker image container, ensuring histor-

ical provenance. In addition, the entire catalog is maintained un-

der Git version control. Results of an Appyter execution are tied

to a unique sha1 checksum that is formed based on the informa-

tion that went into it, resulting in reproducible globally unique

identifiers. Although Appyters are not yet registered with an inde-

pendent identifier provider, integration with the digital object

identifier (DOI) system is planned. The instance executions can

be tied directly back to the precise data and version of the

executed Appyter. The Appyter concept itself promotes interop-

erability and reusability by ensuring that all Appyters can expose

a uniform programmatic interface accessible both remotely via

its REST API and locally via a Docker instance or native execu-

tion of the Appyter CLI. Thus, Appyters may quickly and easily

interoperate with other web-based applications and become

components of data analysis workflows. Furthermore, all
4 Patterns 2, 100213, March 12, 2021
Appyters are open source, and this makes

the information they produce transparent

and reusable.

The execution framework
The Appyter framework has several steps

of execution derived from a single Jupyter

Notebook, each working in tandem. Each

step of the execution is available via the

Appyter CLI. The Jupyter nbinspect

method extracts out the fields described

in the Appyter JSON format detailing those

fields. This JSON represents the parame-

ters available to construct the Appyter.

The Jupyter nbconstruct method takes a
JSON of values reflecting available parameters and serializes it

into the complete Jupyter Notebook. The Jupyter nbexecute

method then executes the Jupyter Notebook cell by cell while re-

porting progress as the notebook is executed. In this way, each

Appyter has everything needed to run the application as a pro-

duction webserver either natively or within a Docker container.

Using supervisord, a process control system, the Appyter ren-

ders the form directly from the Jupyter Notebook. The complete

application is served on a UNIX socket behind an nginx load bal-

ancer with supervisord. The load balancer also handles serving

static files that are part of the Appyter. These files are directly ac-

cessed from the user data storage. The Appyter webserver uses

aiohttp, an asynchronous-io framework, with socketio-provided

websockets for real-time message passing between a user and

the backend. The websocket is used to transmit files during up-

load and real-time cell updates during notebook execution. The

webserver also serves several REST APIs that are responsible

for passing form uploads through nbconstruct.

To achieve cloud-agnostic scalability, Appyters have built-in

mechanisms to operate in a multi-Appyter multiexecution

setting. To achieve this in a way that is independent of the under-

lying orchestration platform, the Appyter system has a submod-

ule orchestration with extension modes that permit the set of

Appyters to run together by different mechanisms (Figure 4).

Specifically, the orchestration module consists of three main

parts: the orchestrator, the dispatchers, and the jobs. The

orchestrator is an internal REST API that queues execution re-

quests and translates them into a platform-specific dispatch.

Currently, three dispatchers are supported, but more could be

added: ‘‘native dispatch’’ runs a job using an independent Ap-

pyter process, ‘‘docker dispatch’’ triggers the job using Docker,

and ‘‘kubernetes dispatch’’ triggers the job using the Kubernetes

API. The ‘‘job’’ is responsible for running nbexecute and report-

ing progress in real time, which it does by connecting back to the

socketio room that the user triggered. Several failure modes are

considered and handled both in the job and on the client side.

https://semver.org/

Figure 4. The various components consti-

tuting the Appyters Catalog system

Once a user selects an Appyter to execute from the

catalog, the job is counted and then enters a queue.

The Appyter orchestrator then executes Appyters

with Appyter data from S3. L7 LB, layer 7 load

balancing.

ll
OPEN ACCESSArticle
This ensures that edge cases, including network disconnections,

new users joining/leaving the roommidexecution, and other sce-

narios, are resolved as efficiently and completely as possible.

Different environments also necessitate additional requirements.

Although Docker solves many issues related to per-Appyter de-

pendency management, networked file system backends such

as S3 are necessary when dealing with environments that may

execute jobs on different systems. This is achieved by abstract-

ing the file system access used throughout the application.

Currently, Appyters support both the native file system and S3-

compatible modes of file access. The Docker images enable

the user to run a given Appyter from the CLI in an environment

prepared with all the necessary dependencies.

The initial collection of Appyters in the Appyters Catalog
So far, we have developed over 40 Appyters. These can serve as

examples for the community to contribute their own Appyters to

the catalog. Below, we outline short descriptions of several of the

existing Appyters. For each Appyter, we describe the motivation

and background for creating the Appyter and the computational

tasks that can be performed with each Appyter.

The Bulk RNA-Seq Analysis Appyter

Gene expression profiling with RNA-seq is now the most com-

mon method used to profile gene expression at the genome-

wide scale.25 Processing RNA-seq data requires several key

steps, including alignment, quantification, quality control

assessment, normalization, dimensionality reduction, clus-

tering, differential expression analysis, and pathway and

network analyses. We and others developed several RNA-seq

data analysis pipelines that cover many of these steps.26–30

The Bulk RNA-Seq Analysis Appyter enables non-computa-

tional users to analyze and visualize their own RNA-seq datasets

with an array of downstream analysis and visualization tools.

The Appyter starts with an expression matrix of raw read counts

and a file that provides metadata describing each sample. First,

the Appyter implements various data normalization methods

such as counts per million, log transformation, Z score normal-

ization, and quantile normalization, which are applied to the
raw read counts. To visualize the normal-

ized data, dimensionality reduction is im-

plemented with principal-component

analysis (PCA),31 t-distributed stochastic

neighbor embedding (t-SNE),32 and uni-

form manifold approximation and projec-

tion (UMAP).33 The results from these

methods are visualized as a 3D interactive

scatterplot. Next, hierarchical clustering is

performed with Clustergrammer,34 an

interactive Jupyter widget that produces

interactive heatmaps from gene expres-
sion data tables. Clustergrammer enables users to identify clus-

ters of samples and modules of genes. The Appyter also

produces a library size analysis that calculates and displays

the total reads mapped for each RNA-seq sample. This analysis

facilitates the identification of outlier samples and provides

assessment of the overall quality of the data. Next, the Bulk

RNA-Seq Analysis Appyter computes gene expression signa-

tures. Several differential gene expression methods are imple-

mented, including limma,35 the Characteristic Direction,36

edgeR,37 and DESeq2.38 The differential expression results are

visualized as volcano plots and MA plots. Because the Appyter

has implementations of four different methods that compute dif-

ferential expression, it is relatively straightforward to compare

the similarities and differences among the gene sets called by

these methods. To illustrate this concept, we used the Set Com-

parison Appyter to visualize the intersection among the top 500

upregulated genes as determined by these four methods when

applied to the Bulk RNA-Seq Analysis Appyter example. The

example is taken from an unpublished study (Gene Expression

Omnibus [GEO] accession GSE70466) that compared normal

and cancerous prostate cell lines, LNCaP (n = 3) and PrEC

(n = 3). In general, we can quickly see that about 60% of the

same genes rank in the top 500 genes produced by each of

the four methods (Figure 5). We do not intend to provide here

an exhaustive analysis that compares these methods, but sim-

ply demonstrate that various Appyters can be used to perform

such analyses with ease. Gene set enrichment analysis within

the Bulk RNA-Seq Analysis Appyter is applied to the up/down-

regulated genes with Enrichr.39 The enrichment analysis results

from key libraries are displayed directly within the Appyter.

These libraries include Gene Ontology,40 KEGG,41 Reactome,42

WikiPathway,43 ChEA,44 ENCODE,45 KEA46,47 and miRTar-

Base.48 Finally, the computed gene expression signatures are

submitted to L1000CDS249 and L1000FWD,50 which are two

web-based search engines that match input gene expression

signatures with gene expression signatures generated by the Li-

brary of Integrated Network-Based Cellular Signatures

(LINCS)51 L1000 assay.52 Overall, the Bulk RNA-Seq Analysis
Patterns 2, 100213, March 12, 2021 5

Figure 5. Overlap among the top-ranked 500

differentially expressed genes computed for

data downloaded from the GEO study

GSE70466

The differentially expressed genes are determined

using the Bulk RNA-Seq Analysis Appyter, and the

visualization is achieved with a SuperVenn diagram

implemented within the Set Comparison Appyter.

ll
OPEN ACCESS Article
Appyter provides detailed reports that can enable experimental

biologists to extract more knowledge from their RNA-seq data.

The Bulk RNA-Seq Analysis Appyter is available at https://

appyters.maayanlab.cloud/#/Bulk_RNA_seq.

The scRNA-Seq Analysis Appyter

Since the first publication of scRNA-seq in 2009,53 scRNA-seq

profiling has been improved in cost and quality, and as a result

the number of scRNA-seq studies deposited into GEO54 has

been rapidly growing. To assist experimental biologists with no

computational skills in analyzing their scRNA-seq data, and to

explore published scRNA-seq data, we developed the scRNA-

Seq Analysis Appyter. First, the Appyter evaluates the quality

of the scRNA-seq data by examining the expression level of

mitochondrial genes. High expression level of mitochondrial

genes indicates poor scRNA-seq data quality.55,56 This is

because when the cell membrane is lysed, cytoplasmic RNA is

lost, but mRNA enclosed in the mitochondria is retained. This

analysis removes single cells that likely had lysed cell mem-

branes during mRNA extraction. Next, library size analysis is

applied to each sample, and a bar chart is produced to visualize

the total readsmapped to each sample. This analysis helps iden-

tify outlier samples and assess the overall quality of the scRNA-

seq data. Next, the scRNA-Seq Analysis Appyter performs

several standard data normalization methods developed specif-

ically for scRNA-seq data analysis.57–59 These methods convert

the raw reads into standardized measures of gene expression by

removing confounding factors that may affect downstream anal-

ysis. After normalization, the Appyter visualizes the most highly

expressed genes across all samples. Then, dimensionality

reduction is performed using PCA.31 Next, the scRNA-Seq

Analysis Appyter performs data imputation with the Markov af-

finity-based graph imputation of cells (MAGIC) method.60 An

interactive hierarchical clustering heatmap is generated with

Clustergrammer34 to enable exploring similarity between sam-

ples and to identify co-expression gene modules. The scRNA-

Seq Analysis Appyter also provides differential gene expression

analysis with the same four methods implemented for the Bulk
6 Patterns 2, 100213, March 12, 2021
RNA-Seq Appyter, namely, limma,35 the

Characteristic Direction,36 edgeR,37 and

DESeq2.59 Clusters of single cells are iden-

tified with the Leiden algorithm,61 which

automatically labels samples based on

their optimal cluster membership assign-

ment. Differential expression between

clusters is then computed by comparing

each cluster with the others. The differen-

tially expressed genes for each cluster

are submitted to Enrichr39 for enrichment

analysis. Next, trajectory inference anal-
ysis, which arranges cells based on their progression through

the differentiation process, is implemented with three indepen-

dent methods: diffusion pseudotime,62 Monocle,63 and

Tempora.64 Tempora is a pathway-based single-cell trajectory

inference method that infers the developmental lineage of single

cells based on pathway information. To predict cell types, Digital

Cell Sorter65 is implemented to categorize single cells into their

hematopoietic lineage. In the future, we plan to add additional

cell type prediction algorithms. In summary, the scRNA-Seq

Analysis Appyter provides an example scRNA-seq analysis

workflow that can be used by experimental biologists to glean

knowledge about their scRNA-seq data by uploading their data

into an online form. The scRNA-Seq Analysis Appyter is available

at https://appyters.maayanlab.cloud/#/scRNA_seq.

The Harmonizome-ML Appyter

TheHarmonizome resource66 provides a collection of processed

datasets gathered to serve and mine knowledge about genes

and proteins from >100 major online resources and repositories.

To create the Harmonizome, we extracted, abstracted, and

organized data into >100million functional associations between

human genes and their attributes. Such attributes can be phys-

ical interactions with other biomolecules, expression in cell lines

and tissues, genetic associations with human phenotypes, or

changes in expression after drug treatment. We stored these as-

sociations in a relational database along with rich metadata for

the genes, their attributes, and the original resources. The Har-

monizome-ML Appyter provides on-the-fly imputation of knowl-

edge about genes and proteins with machine learning using data

from the Harmonizome resource.66 By integrating knowledge

from a variety of high-content omics resources with low-content

literature-based knowledge, it is possible to predict gene and

protein function with machine learning. The Harmonizome-ML

Appyter empowers non-coding users to perform gene and pro-

tein knowledge imputation. Users can select attributes for

training from a variety of processed omics datasets and predict

almost any biological function for genes, such as associations

with human diseases, membership in cell signaling or metabolic

https://appyters.maayanlab.cloud/#/Bulk_RNA_seq
https://appyters.maayanlab.cloud/#/Bulk_RNA_seq
https://appyters.maayanlab.cloud/#/scRNA_seq

ll
OPEN ACCESSArticle
pathways, and knockout mouse phenotypes. Harmonizome-ML

first presents the user with a form onwhich they can choose from

a collection of processed omics datasets to use as the attributes

for learning and a class of knowledge to predict. Users can then

select from a variety of machine learning algorithms, their various

parameter settings, and the model performance evaluation

methods. Once those options are entered, the Harmonizome-

ML Appyter generates a report that contains the predictions

with an assessment of the predictive model performance. The

output Jupyter Notebook produced by the Harmonizome-ML

Appyter provides an opportunity to modify the code for custom-

ized analyses. Using Harmonizome-ML, investigators can

quickly explore machine learning-backed predictions for under-

studied gene-gene function associations to guide their research.

The Harmonizome-ML Appyter is available at https://appyters.

maayanlab.cloud/#/harmonizome_ml.

The Drugmonizome-ML Appyter

A wealth of data from a multitude of sources for thousands of

bioactive small molecules is readily available. This information

could be harnessed to developmachine learningmodels that uti-

lize such harmonized data to predict the properties of small mol-

ecules that are poorly annotated. The Drugmonizome database

draws upon a variety of publicly available resources to label

each compound by its associations with protein targets, induced

gene expression profiles, chemical features, and other attri-

butes. The Drugmonizome-ML Appyter is built on top of the

Drugmonizome (https://maayanlab.cloud/drugmonizome/) da-

tasets to predict novel indications and other attributes such as

drug targets or side effects for poorly annotated bioactive small

molecules with machine learning. The machine learning model

constructed by the Drugmonizome-ML Appyter uses the scikit-

learn package,67 which provides a variety of options for various

canonical classification algorithms and dimensionality reduction

techniques, as well as feature selection and cross-validation

methods. These options can be selected from the Drugmoni-

zome-ML Appyter form. When executed, the Drugmonizome-

ML pipeline trains a model for each cross-validation split to

predict properties for all available drugs and small molecules.

The cross-validated model performance is displayed with

receiver operating characteristic and precision-recall curves.

The results from such analysis can be used to assign novel indi-

cations for existing drugs and other small molecules. When

recursive feature selection is selected, the relative importance

of individual input features for a specific prediction task is as-

sessed. Examining feature importance improves the interpret-

ability of Drugmonizome-ML-generated models. In addition,

important features may suggest drug attributes to consider for

therapeutic design, or for discovering aspects of the biology

playing a role in the underlying mechanisms of action of the

drug. In summary, Drugmonizome-ML is a general-purpose ma-

chine learning platform that can be used for predicting drug and

small-molecule attributes using rapidly accumulating pharmaco-

logical knowledge. The Drugmonizome-ML Appyter is available

at https://appyters.maayanlab.cloud/#/Drugmonizome_ML.

The Patient Cohorts RNA-Seq Viewer Appyter

The Patient Cohorts RNA-Seq Viewer Appyter provides a cus-

tomizable interface for processing, visualizing, and analyzing

RNA-seq data from patient cohorts. The goal of the Appyter is

to provide comprehensive analysis of patient cohorts by consid-
ering the RNA-seq profiling of the patient samples together with

information about their clinical parameters. The Appyter auto-

matically identifies clusters of patients based on their RNA-seq

profiles and associates clinical metadata with each cluster. The

Appyter is preloaded with example data collected by The Cancer

Genome Atlas (TCGA)68 but can accommodate other user-up-

loaded patient cohort RNA-seq datasets. A standard RNA-seq

pre-processing pipeline, including normalization and dimension-

ality reduction, is implemented. Clusters of patients and their

associated differential gene expression profiles are fed into a se-

ries of downstreamanalyses. These include survival analysiswith

Kaplan-Meier plots, enrichment analysis with Enrichr,39 and

small-molecule and drug prioritization based on the L1000 data

with L1000FWD.50 These analyses provide insights into each clu-

ster’s unique genomic, transcriptomic, and clinical features. In

summary, the Patient Cohorts RNA-Seq Viewer Appyter enables

researchers with no programming background to perform com-

plex analyses to uncover patterns embedded in their RNA-seq

patient cohort datasets. The Patient Cohorts RNA-Seq Viewer

Appyter is available at https://appyters.maayanlab.cloud/

#/Patient_Cohorts_RNASeq_Viewer.

Appyters to extract, transform, and load data for

Harmonizome

TheHarmonizomeExtract, Transform, and Load (ETL) suite of Ap-

pyters contains pipelines to convert omics resources into a format

that is compatible with the Harmonizome data model. These Ap-

pyters enable the loading of files downloaded from the various on-

line biomedical resources that have available processed data

within Harmonizome.69 After uploading these files, the Appyters

filter, normalize, and standardize the uploaded raw data to create

a Harmonizome-compatible output, which includes gene set li-

braries, bipartite graphs, and attribute tables. Data summaries

are visualized to examine the ingested harmonized data within

each Appyter. In summary, the Harmonizome ETL suite of Ap-

pyters makes it easy to maintain the Harmonizome resource by

having coding-free workflows to transform data into the harmo-

nized formatprovidedbyHarmonizome.On their own, theHarmo-

nizome ETL Appyters in this suite serve up-to-date harmonized

and abstract biomedical data from multiple key resources useful

for many other applications. There are currently 38 Harmonizome

ETL Appyters, which are available from https://appyters.

maayanlab.cloud/#/?tags=Harmonizome&q=ETL.

Enrichr visualization Appyters

Gene set enrichment analysis is a computational method that en-

ables the identification of underlying biological functions and

processes for a given experimentally determined input gene

set. Enrichment analysis results are commonly communicated

in publications as tables and bar charts. However, bar charts

can accommodate the visualization of only a small subset of

the enriched terms and do not convey the similarity among en-

riched gene sets. Utilizing the Enrichr API,39 three Appyters

generate alternative visualizations for enrichment analysis re-

sults. The Canvas Enrichment Analysis Appyter creates hexago-

nal grids in which each hexagon represents a gene set from an

Enrichr library. The hexagons are arranged so that similar gene

sets are grouped together, and this is achieved via offline simu-

lated annealing of each library. Hexagons are colored with vary-

ing intensity depending on the enrichment analysis p values, with

most hexagons colored in gray, while enriched terms are colored
Patterns 2, 100213, March 12, 2021 7

https://appyters.maayanlab.cloud/#/harmonizome_ml
https://appyters.maayanlab.cloud/#/harmonizome_ml
https://maayanlab.cloud/drugmonizome/
https://appyters.maayanlab.cloud/#/Drugmonizome_ML
https://appyters.maayanlab.cloud/#/Patient_Cohorts_RNASeq_Viewer
https://appyters.maayanlab.cloud/#/Patient_Cohorts_RNASeq_Viewer
https://appyters.maayanlab.cloud/#/?tags=Harmonizome&q=ETL
https://appyters.maayanlab.cloud/#/?tags=Harmonizome&q=ETL

Figure 6. Three methods of visualization of

gene set enrichment analysis results

(A) Hexagonal grid visualization places all the terms

from a gene set library near one another based on

gene set content similarity. Top enriched terms are

highlighted in blue.

(B) Manhattan plot visualization of enrichment re-

sults for four gene set libraries from Enrichr.

(C) Scatterplot visualization of enrichment results.

Each point represents a gene set. The points are

scattered based on their gene set similarity. Points

highlighted in blue are enriched terms. For all ana-

lyses default settings and example files were used.

ll
OPEN ACCESS Article
in purple (Figure 6A). The Manhattan Plot Enrichment Analysis

Appyter creates both static and dynamic Manhattan plots to

visualize enrichment analysis p values for multiple libraries at

once (Figure 6B). The Scatter Plot Enrichment Analysis Appyter

creates scatterplot visualizations of each Enrichr gene set library

wherein each point represents a gene set from the library and

similar gene sets are clustered together (Figure 6C). This

arrangement is determined and created using offlinemultidimen-

sional scaling70 and term frequency-inverse document fre-

quency calculations. The points are colored blue if the terms

they represent are significantly enriched compared with the

user-input gene list. In summary, the collection of these three

enrichment analysis data visualization Appyters provides re-

searchers with alternative methods to visualize their gene set

enrichment analysis results. The Enrichr Visualization Appyters

are available at https://appyters.maayanlab.cloud/#/?

tags=Enrichr&q=skylar.

Set Comparison Appyter

Although there are bioinformatics tools developed to compare

gene sets, including creating Venn diagrams from several input
8 Patterns 2, 100213, March 12, 2021
gene sets, important features such as p

value overlap calculation and links to

downstream analyses tools are commonly

missing from current applications. The

Gene Set Comparison Appyter can be

used to generate a complete report that

compares two to six gene sets. The Ap-

pyter generates Venn, UpSet, and Super-

Venn diagrams from the input gene sets.

To further analyze overlapping sets, set in-

tersections are linked to downstream

enrichment analysis with Enrichr.39 More-

over, the Fisher exact test is calculated to

determine whether the overlap between

input gene sets is significant. This test is

performed on all possible pairs of sets.

The results of these tests are displayed in

a table as a heatmap. The users of the

Set Comparison Appyter can customize

the color of the display items and save

the figures inmultiple formats. In summary,

the Gene Set Comparison Appyter is a

useful tool for experimental and computa-

tional biologists to compare their gene sets

and generate publication-ready graphics.
The Set Comparison Appyter is available at https://appyters.

maayanlab.cloud/#/CompareSets.

Other Appyters

There are several additional Appyters that are not described here

in detail. For example, there are numerous Appyters that perform

ETL to process data describing properties of drugs and small

molecules. There are also Appyters to perform kinase enrich-

ment analysis,47 predict gene function for non-coding genes

using RNA-seq co-expression data, perform cross-linking

immunoprecipitation-seq analysis, analyze the LINCS L1000

shRNA knockdown data,52 and analyze the LINCS KinomeScan

data.51 A selected list of 27 Appyters that are currently provided

within the Appyter Catalog is provided (Table 1).

DISCUSSION

It is expected that the collection of Appyters will continually grow

by contributions from the community. This is because devel-

oping such web-based bioinformatics applications requires

much less effort and skill compared with other alternatives.

https://appyters.maayanlab.cloud/#/?tags=Enrichr&q=skylar
https://appyters.maayanlab.cloud/#/?tags=Enrichr&q=skylar
https://appyters.maayanlab.cloud/#/CompareSets
https://appyters.maayanlab.cloud/#/CompareSets

Table 1. List of Appyters currently available from the Appyter Catalog

Appyter name URL to Appyter (from base URLa) Description

Bulk RNA-Seq Bulk_RNA_seq generates reports for bulk RNA-seq

downstream analysis

ChIP-Seq ChIP_seq generates reports for downstream ChIP-

seq analysis

Compare Sets CompareSets compares sets with Venn diagrams and

UpSet plots

DrugShot DrugShot converts PubMed search terms to drug sets

based on co-occurrence

Drugmonizome Consensus Terms Drugmonizome_Consensus_Terms combines drug set enrichment analysis for

multiple drug sets

Drugmonizome ML Drugmonizome_ML produces machine learning pipelines for

predicting drug properties

Enrichr Visualizer Enrichment_Analysis_Visualizer produces visualization of Enrichr

enrichment results for one library

Enrichr Canvas Enrichr_Canvas_Appyter visualizes Enrichr results as hexagonal

canvas for multiple libraries

Enrichr Consensus Term Enrichr_Consensus_Terms combines Enrichr enrichment analysis

results for multiple gene sets

Enrichr Manhattan Plot Enrichr_Manhattan_Plot visualizes Enrichr results as a

Manhattan plot

Enrichr Scatterplot Enrichr_Scatterplot_Appyter visualizes Enrichr results as a scatterplot

Enrichr Compressed Bar Chart Enrichr_compressed_bar_chart_figure visualizes Enrichr results as a bar chart

GTEx Tissue RNA-Seq Analysis GTEx_Tissue_RNA_Analysis creates notebooks for human tissues

profiled with RNA-seq

Gene Aging Trends Gene_Age_Trends_Appyter displays changes in expression for genes at

different ages

Gene Conversion Gene_Conversion_Appyter converts tables of gene expression data

from GEO to Entrez genes

ncRNAs Gene Function Predictions Gene_Level_Functional_Predictions predicts gene function for non-coding gene

based on co-expression

Kinase Enrichment Analysis KEA3_Appyter performs kinase enrichment analysis to

associate kinases with proteins

KINOMEscan Data Visualization KINOMEscan associates small molecules with kinases

and kinases with small molecules

L1000FWD Consensus Drugs L1000FWD_Consensus_Drugs combines L1000FWD queries to rank

consensus drugs and small molecules

L1000 Knockdown Search L1000KD2 queries the LINCS L1000 shRNA

knockdown dataset

Patient Cohorts RNA-Seq Viewer Patient_Cohorts_RNASeq_Viewer generates reports from RNA-seq data

collected from patient cohorts

PrismEXP PrismEXP predicts gene function based on vertical

partitioning of co-expression data

TCGA Data Loader TCGA_Data_Loader converts TCGA data into data frames for

easy load into workflows

Example Appyter Example provides a simple Appyter to demonstrate

how an Appyter works

Harmonizome ML harmonizome_ml produces machine learning pipelines for

predicting gene properties

CLIP-Seq miRNA Analysis miRNA_Target_Discovery generates reports for bulk CLIP-seq

downstream analysis
aThe base URL for accessing these Appyter is https://appyters.maayanlab.cloud/. The base URL for accessing the source code is https://github.com/

MaayanLab/appyter-catalog/tree/master/appyters.

ll
OPEN ACCESSArticle

Patterns 2, 100213, March 12, 2021 9

https://appyters.maayanlab.cloud/
https://github.com/MaayanLab/appyter-catalog/tree/master/appyters
https://github.com/MaayanLab/appyter-catalog/tree/master/appyters

ll
OPEN ACCESS Article
One such alternative is developing bioinformatics applications

with R Shiny,71 a framework to convert R code into web-based

applications. Many bioinformatics tools and web-based re-

sources are developed with R Shiny. Appyters are different

from R Shiny in many ways, but the most central difference is

that Appyters convert a Jupyter Notebook into a web app, while

R Shiny applications require the developer towrite the server and

client components of the application. The R environment also

has notebooks called R markdown.72 Like Jupyter Notebooks,

R markdown notebooks contain code, markdown text, and

generated output such as static and interactive figures, but

currently there are no simple ways to convert R markdown note-

books to web-based applications. It should be noted that Ap-

pyters can support R code in notebooks. Another emerging

notebook technology is Observable.73 Observable is leveraging

the flexible and modular capabilities of the JavaScript library

D374 to create interactive web-based notebooks. It is undeter-

mined yet how this technology will influence the implementation

of bioinformatics applications. One of the challenges with

serving executable computational pipelines in the cloud is man-

aging cloud costs and server resources. The Appyter Catalog

currently can support concurrent users who execute several Ap-

pyters via a queuing system, but scaling can become chal-

lenging if more users utilize the system. To manage costs, we

have currently set a global execution cap and share execution

costs among all users. To achieve scalable management of re-

sources it may be required to add user accounts and require

heavy users to share the expense of executing their Appyters.

Alternatively, the Appyters can be deployed on cloud resources

such as Google Colaboratory,8 Kaggle (https://www.kaggle.

com/), and Binder,75 or other platforms that provide similar ser-

vices. Currently, Appyters do not offer a way to directly interact

with the notebookwhile it is running. Google Colaboratory,8 Kag-

gle (https://www.kaggle.com/), and Binder offer interactive

execution of Jupyter Notebooks in the cloud but with similar

execution limitations. To enable such a feature users will be

required to log in to perform Appyter execution. It is expected

that more systems that enable execution of bioinformatics work-

flows in the cloud will become available in the coming years. This

will require users to establish accounts on these systems and

then export their Appyters into these accounts. In most cases,

users will be able to follow the simple instructions we provide

to deploy their Appyters locally, or at any remote machine. We

also plan to enable user accounts on the Appyter Catalog.

Such user accounts will enable users to control the privacy of

their Appyters. Private accounts will also enable users to store

their data together with their analysis pipelines and their results

in the cloud. Although Appyters offer a way to rapidly convert Ju-

pyter Notebooks into fully functioning web applications, not all

Jupyter Notebooks are suitable for conversion into Appyters,

and not all web-based bioinformatics applications can be con-

verted into Appyters. Appyters provide a way to parameterize

and generalize a Jupyter Notebook for constructing a template

data analysis workflow. Details such as the incoming file format,

or data cleaning and normalization steps, are often specific to

each instance of a workflow. If these assumptions are not met

when a user uploads his or her input file, the user may face

execution errors or incorrect output. To mitigate this issue, the

burden is placed on the Appyter developer to clarify important
10 Patterns 2, 100213, March 12, 2021
assumptions up-front, provide appropriate options, and develop

validation functions that provide feedback to the user. The rapid

expansion of biotechnologies that produce different types of bio-

logical data is continually increasing in variety and volume. Open

and freely available bioinformatics software that properly ex-

tracts knowledge from such data is always a few years behind.

Currently, non-coding users who collect data using various

advanced biotechnologies must resort to establishing collabora-

tions with computational biologists to analyze their data because

robust tools do not exist yet. Appyters potentially provide an op-

portunity to close this gap because the framework can assist

data scientists with publishing their workflows in a way that en-

ables non-coding users to rerun those workflows on their own

data. In addition, in many cases, non-coding users are not aware

of the details of the computational workflows applied to their

data. With Appyters, there is a permanent record that they can

obtain and publish. Appyters can also become micro-publica-

tions where the Appyter itself, or its instantiations, can become

citable. Furthermore, Appyters can potentially become

embedded within other Appyters to construct workflows from

building block Appyters. Finally, while our initial Appyter applica-

tions are all focused on bioinformatics workflow implementa-

tions, Appyters enable agile development of apps across many

other scientific and non-scientific fields.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for digital resources should be directed to

and will be fulfilled by the lead contact, Avi Ma’ayan (avi.maayan@mssm.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The Appyter Catalog and documentation are available at https://appyters.

maayanlab.cloud/.

The code for Appyters is available on GitHub at https://github.com/

MaayanLab/appyter.

The code for the Appyters Catalog is available on GitHub at https://github.

com/MaayanLab/appyter-catalog.

ACKNOWLEDGMENTS

This work was partially supported by NIH grants U24CA224260,

U54HL127624, and OT2OD030160.

AUTHOR CONTRIBUTIONS

D.C. and A.M. initiated the study; D.C., M.J., D.S., N.M., C.D., E.K., M.W., S.L.,

J.H., J.E., L.G., Z.X., I.S., S.Z., C.Y., T.A., A.L., and M.C. developed Appyters;

S.B., K.J., and J.K. tested Appyters; S.A. created the logo and contributed to

the user interface design; S.J. and A.M. managed the project; D.C. developed

and designed the Appyter library, orchestration, and execution system; A.M.,

D.C., M.J., D.S., N.M., S.L., C.D., E.K., J.H., and Z.X. wrote the paper.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: November 11, 2020

Revised: December 28, 2020

Accepted: January 28, 2021

Published: March 4, 2021

https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
mailto:avi.maayan@mssm.edu
https://appyters.maayanlab.cloud/
https://appyters.maayanlab.cloud/
https://github.com/MaayanLab/appyter
https://github.com/MaayanLab/appyter
https://github.com/MaayanLab/appyter-catalog
https://github.com/MaayanLab/appyter-catalog

ll
OPEN ACCESSArticle
REFERENCES

1. Perkel, J.M. (2018). Why Jupyter is data scientists’ computational note-

book of choice. Nature 563, 145–147.

2. Torre, D., Lachmann, A., and Ma’ayan, A. (2018). BioJupies: automated

generation of interactive notebooks for RNA-seq data analysis in the

cloud. Cell Syst. 7, 556–561.

3. Feng, D., Whitehurst, C.E., Shan, D., Hill, J.D., and Yue, Y.G. (2019). Single

Cell Explorer, collaboration-driven tools to leverage large-scale single cell

RNA-seq data. BMC Genomics 20, 676.

4. Nguyen, H., Case, D.A., and Rose, A.S. (2018). NGLview interactive mo-

lecular graphics for Jupyter notebooks. Bioinformatics 34, 1241–1242.

5. Lau, S., and Hug, J. (2018). nbinteract: generate interactive web pages

from Jupyter notebooks. Master’s thesis (EECS Department, University

of California, Berkeley).

6. Team BD (2014). Bokeh: Python library for interactive visualization

(Wichita, KS: Bokeh Development Team).

7. Team V (2020). Voila: Rendering of live Jupyter notebooks with interactive

widgets. GitHub https://github.com/voila-dashboards/voila.

8. Bisong, E. (2019). Google Colaboratory. Building Machine Learning and

Deep Learning Models on Google Cloud Platform (Springer), pp. 59–64.

9. Auer, E., and Landers, R. (2019). Creating Reproducible and Interactive

Analyses with JupyterLab and Binder (34th Annual Conference of the

Society for Industrial and Organizational).

10. Team P (2020). Papermill: parameterize, execute, and analyze notebooks

(2.2.3). https://papermillreadthedocsio/.

11. Merino, M.V., Vinju, J., and van der Storm, T. (2018). Bacatá: a language

parametric notebook generator (tool demo). Proceedings of the 11th

ACM SIGPLAN International Conference on Software Language

Engineering, 210–214.

12. Heiland, R., Mishler, D., Zhang, T., Bower, E., and Macklin, P. (2019).

xml2jupyter: Mapping parameters between XML and Jupyter widgets.

Journal of open source software 4.

13. Ronacher, A. (2008). Jinja2 Documentation. Welcome to Jinja2 (Jinja2

Documentation (28-dev)).

14. Grinberg, M. (2018). Flask web development: developing web applications

with python (O’Reilly Media, Inc.).

15. Pezoa, F., Reutter, J.L., Suarez, F., Ugarte, M., and Vrgo�c, D. (2016).

Foundations of JSON schema. Proceedings of the 25th International

Conference on World Wide Web, 263–273.

16. Bhat, S. (2018). Understanding the Dockerfile. Practical Docker with

Python (Springer), pp. 53–89.

17. Ravula, S. (2017). Achieving Continuous Delivery of Immutable

Containerized Microservices with Mesos/Marathon (Master’s thesis).

18. Sayfan, G. (2017). Mastering kubernetes (Packt Publishing Ltd).

19. Aivaliotis, D. (2013). Mastering Nginx (Packt Publishing Ltd).

20. Team S (2020). sveltejs/svelte: Cybernetically enhanced web apps

(GitHub). https://github.com/sveltejs/svelte.

21. Spurlock, J. (2013). Bootstrap: Responsive Web Development (O’Reilly

Media, Inc.).

22. Momjian, B. (2001). PostgreSQL: introduction and concepts, vol. 192 (New

York: Addison-Wesley).

23. Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., Appleton, G., Axton, M.,

Baak, A., Blomberg, N., Boiten, J.W., da Silva Santos, L.B., Bourne, P.E.,

et al. (2016). The FAIR Guiding Principles for scientific data management

and stewardship. Sci. Data 3, 1–9.

24. Wilkinson, M.D., Sansone, S.A., Schultes, E., Doorn, P., Bonino da Silva

Santos, L.O., and Dumontier, M. (2018). A design framework and exemplar

metrics for FAIRness. Sci. Data 5, 180118.

25. Hrdlickova, R., Toloue, M., and Tian, B. (2017). RNA-Seqmethods for tran-

scriptome analysis. Wiley Interdiscip. Rev. RNA 8, e1364.
26. Love, M.I., Anders, S., Kim, V., and Huber, W. (2015). RNA-Seq workflow:

gene-level exploratory analysis and differential expression. F1000Res.

4, 1070.

27. Law, C.W., Alhamdoosh, M., Su, S., Dong, X., Tian, L., Smyth, G.K., and

Ritchie, M.E. (2016). RNA-seq analysis is easy as 1-2-3 with limma,

Glimma and edgeR. F1000Res. 5, 1408.

28. Zhang, X., and Jonassen, I. (2020). RASflow: an RNA-Seq analysis work-

flow with Snakemake. BMC Bioinformatics 21, 1–9.

29. Cornwell, M., Vangala, M., Taing, L., Herbert, Z., Köster, J., Li, B., Sun, H.,

Li, T., Zhang, J., Qiu, X., et al. (2018). VIPER: visualization Pipeline for RNA-

seq, a Snakemake workflow for efficient and complete RNA-seq analysis.

BMC Bioinformatics 19, 135.

30. Wang, Z., and Ma’ayan, A. (2016). An open RNA-Seq data analysis pipe-

line tutorial with an example of reprocessing data from a recent Zika virus

study. F1000Res. 5, 1574s.

31. Clark, N.R., and Ma’ayan, A. (2011). Introduction to statistical methods to

analyze large data sets: principal components analysis. Sci. Signal. 4,

tr3-tr3.

32. Maaten, L.v.d., and Hinton, G. (2008). Visualizing data using t-SNE.

J. Machine Learn. Res. 9, 2579–2605.

33. McInnes, L., Healy, J., and Melville, J. (2018). UMAP: uniform manifold

approximation and projection for dimension reduction. J. Open Source

Softw. 3, 861.

34. Fernandez, N.F., Gundersen, G.W., Rahman, A., Grimes, M.L., Rikova, K.,

Hornbeck, P., and Ma’ayan, A. (2017). Clustergrammer, a web-based

heatmap visualization and analysis tool for high-dimensional biological

data. Sci. Data 4, 170151.

35. Smyth, G.K. (2005). Limma: linear models for microarray data. In

Bioinformatics and Computational Biology Solutions Using R and

Bioconductor. Statistics for Biology and Health (Springer), pp. 397–420.

36. Clark, N.R., Hu, K.S., Feldmann, A.S., Kou, Y., Chen, E.Y., Duan, Q., and

Ma’ayan, A. (2014). The characteristic direction: a geometrical approach

to identify differentially expressed genes. BMC Bioinformatics 15, 1–16.

37. Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR: a

Bioconductor package for differential expression analysis of digital gene

expression data. Bioinformatics 26, 139–140.

38. Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold

change and dispersion for RNA-seq data with DESeq2. Genome Biol.

15, 550.

39. Chen, E.Y., Tan, C.M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G.V., Clark,

N.R., andMa’ayan, A. (2013). Enrichr: interactive and collaborative HTML5

gene list enrichment analysis tool. BMC Bioinformatics 14, 128.

40. GO Consortium (2019). The gene ontology resource: 20 years and still

GOing strong. Nucleic acids research 47, D330–D338.

41. Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., and Hattori, M. (2004).

The KEGG resource for deciphering the genome. Nucleic Acids Res. 32,

D277–D280.

42. Fabregat, A., Matthews, L., Viteri, G., Gong, C., Lorente, P., Fabregat, A.,

Sidiropoulos, K., Cook, J., Gillespie, M., Haw, R., Loney, F., et al. (2018).

The reactome pathway knowledgebase. Nucleic Acids Res. 46,

D649–D655.

43. Slenter, D.N., Kutmon,M., Hanspers, K., Riutta, A., Windsor, J., Nunes, N.,

Mélius, J., Cirillo, E., Coort, S.L., Digles, D., et al. (2018). WikiPathways: a

multifaceted pathway database bridging metabolomics to other omics

research. Nucleic Acids Res. 46, D661–D667.

44. Lachmann, A., Xu, H., Krishnan, J., Berger, S.I., Mazloom, A.R., and

Ma’ayan, A. (2010). ChEA: transcription factor regulation inferred from

integrating genome-wide ChIP-X experiments. Bioinformatics 26,

2438–2444.

45. EP Consortium (2004). The ENCODE (ENCyclopedia of DNA elements)

project. Science 306, 636–640.

46. Pedregosa, F., et al. (2011). Scikit-learn: machine learning in Python.

J. Machine Learn. Res. 12, 2825–2830.
Patterns 2, 100213, March 12, 2021 11

http://refhub.elsevier.com/S2666-3899(21)00023-4/sref1
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref1
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref2
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref2
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref2
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref3
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref3
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref3
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref4
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref4
http://refhub.elsevier.com/S2666-3899(21)00023-4/optuLv3KUlG8r
http://refhub.elsevier.com/S2666-3899(21)00023-4/optuLv3KUlG8r
http://refhub.elsevier.com/S2666-3899(21)00023-4/optuLv3KUlG8r
http://refhub.elsevier.com/S2666-3899(21)00023-4/optze2ui2C6Ol
http://refhub.elsevier.com/S2666-3899(21)00023-4/optze2ui2C6Ol
https://github.com/voila-dashboards/voila
http://refhub.elsevier.com/S2666-3899(21)00023-4/optEucqtcfnQp
http://refhub.elsevier.com/S2666-3899(21)00023-4/optEucqtcfnQp
http://refhub.elsevier.com/S2666-3899(21)00023-4/optIhne0aUphP
http://refhub.elsevier.com/S2666-3899(21)00023-4/optIhne0aUphP
http://refhub.elsevier.com/S2666-3899(21)00023-4/optIhne0aUphP
https://papermillreadthedocsio/
http://refhub.elsevier.com/S2666-3899(21)00023-4/optSdf3mPQ23S
http://refhub.elsevier.com/S2666-3899(21)00023-4/optSdf3mPQ23S
http://refhub.elsevier.com/S2666-3899(21)00023-4/optSdf3mPQ23S
http://refhub.elsevier.com/S2666-3899(21)00023-4/optSdf3mPQ23S
http://refhub.elsevier.com/S2666-3899(21)00023-4/opt0Ef6SsM4eZ
http://refhub.elsevier.com/S2666-3899(21)00023-4/opt0Ef6SsM4eZ
http://refhub.elsevier.com/S2666-3899(21)00023-4/opt0Ef6SsM4eZ
http://refhub.elsevier.com/S2666-3899(21)00023-4/opt8eZTyjMv7M
http://refhub.elsevier.com/S2666-3899(21)00023-4/opt8eZTyjMv7M
http://refhub.elsevier.com/S2666-3899(21)00023-4/optnwMIeJcI0G
http://refhub.elsevier.com/S2666-3899(21)00023-4/optnwMIeJcI0G
http://refhub.elsevier.com/S2666-3899(21)00023-4/optjFtpXfOgOn
http://refhub.elsevier.com/S2666-3899(21)00023-4/optjFtpXfOgOn
http://refhub.elsevier.com/S2666-3899(21)00023-4/optjFtpXfOgOn
http://refhub.elsevier.com/S2666-3899(21)00023-4/optjFtpXfOgOn
http://refhub.elsevier.com/S2666-3899(21)00023-4/optg23pH88n5I
http://refhub.elsevier.com/S2666-3899(21)00023-4/optg23pH88n5I
http://refhub.elsevier.com/S2666-3899(21)00023-4/optoEltiHAPPI
http://refhub.elsevier.com/S2666-3899(21)00023-4/optoEltiHAPPI
http://refhub.elsevier.com/S2666-3899(21)00023-4/optq3uV9oGtue
http://refhub.elsevier.com/S2666-3899(21)00023-4/optXT9YSXhqNk
https://github.com/sveltejs/svelte
http://refhub.elsevier.com/S2666-3899(21)00023-4/opt2J0nQorXKZ
http://refhub.elsevier.com/S2666-3899(21)00023-4/opt2J0nQorXKZ
http://refhub.elsevier.com/S2666-3899(21)00023-4/optTaUeprngia
http://refhub.elsevier.com/S2666-3899(21)00023-4/optTaUeprngia
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref5
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref5
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref5
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref5
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref6
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref6
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref6
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref7
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref7
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref8
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref8
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref8
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref9
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref9
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref9
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref10
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref10
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref11
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref11
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref11
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref11
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref12
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref12
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref12
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref13
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref13
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref13
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref14
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref14
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref15
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref15
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref15
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref16
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref16
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref16
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref16
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref17
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref17
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref17
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref18
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref18
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref18
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref19
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref19
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref19
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref20
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref20
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref20
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref21
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref21
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref21
http://refhub.elsevier.com/S2666-3899(21)00023-4/optKHA6z6Hz6b
http://refhub.elsevier.com/S2666-3899(21)00023-4/optKHA6z6Hz6b
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref23
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref23
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref23
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref24
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref24
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref24
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref24
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref25
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref25
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref25
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref25
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref26
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref26
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref26
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref26
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref27
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref27
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref46
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref46

ll
OPEN ACCESS Article
47. Lachmann, A., and Ma’ayan, A. (2009). KEA: kinase enrichment analysis.

Bioinformatics 25, 684–686.

48. Hsu, S.-D., Lin, F.M., Wu, W.Y., Liang, C., Huang, W.C., Chan, W.L., Tsai,

W.T., Chen, G.Z., Lee, C.J., Chiu, C.M., et al. (2011). miRTarBase: a data-

base curates experimentally validated microRNA/target interactions.

Nucleic Acids Res. 39, D163–D169.

49. Duan, Q., Reid, S.P., Clark, N.R., Wang, Z., Fernandez, N.F., Rouillard,

A.D., Readhead, B., Tritsch, S.R., Hodos, R., Hafner, M., et al. (2016).

L1000CDS 2: LINCS L1000 characteristic direction signatures search en-

gine. NPJ Syst. Biol. Appl. 2, 1–12.

50. Wang, Z., Lachmann, A., Keenan, A.B., and Ma’ayan, A. (2018).

L1000FWD: fireworks visualization of drug-induced transcriptomic signa-

tures. Bioinformatics 34, 2150–2152.

51. Keenan, A.B., Jenkins, S.L., Jagodnik, K.M., Koplev, S., He, E., Torre, D.,

Wang, Z., Dohlman, A.B., Silverstein, M.C., Lachmann, A., et al. (2018).

The library of integrated network-based cellular signatures NIH program:

system-level cataloging of human cells response to perturbations. Cell

Syst. 6, 13–24.

52. Subramanian, A., Narayan, R., Corsello, S.M., Peck, D.D., Natoli, T.E., Lu,

X., Gould, J., Davis, J.F., Tubelli, A.A., Asiedu, J.K., et al. (2017). A next

generation connectivity map: L1000 platform and the first 1,000,000 pro-

files. Cell 171, 1437–1452.e17.

53. Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., Wang, X.,

Bodeau, J., Tuch, B.B., Siddiqui, A., et al. (2009). mRNA-Seq whole-tran-

scriptome analysis of a single cell. Nat. Methods 6, 377–382.

54. Edgar, R., Domrachev, M., and Lash, A.E. (2002). Gene Expression

Omnibus: NCBI gene expression and hybridization array data repository.

Nucleic Acids Res. 30, 207–210.

55. Islam, S., Ziesel, A., Joost, S., La Manno, G., Zajac, P., Kasper, M., et al.

(2014). Quantitative single-cell RNA-seq with unique molecular identifiers.

Nature methods 11, 163.

56. S Team (2020). scQC: Performs single-cell data quality control. CRAN

https://rdrr.io/cran/scTenifoldNet/man/scQC.html.

57. Zheng, G.X., Terry, J.M., Belgrader, P., Ryvkin, P., Bent, Z.W., Wilson, R.,

Ziraldo, S.B., Wheeler, T.D., McDermott, G.P., Zhu, J., et al. (2017).

Massively parallel digital transcriptional profiling of single cells. Nat.

Commun. 8, 1–12.

58. Weinreb, C., Wolock, S., Tusi, B.K., Socolovsky, M., and Klein, A.M.

(2018). Fundamental limits on dynamic inference from single-cell snap-

shots. Proc. Natl. Acad. Sci. U S A 115, E2467–E2476.

59. Butler, A., Hoffman, P., Smibert, P., Papalexi, E., and Satija, R. (2018).

Integrating single-cell transcriptomic data across different conditions,

technologies, and species. Nat. Biotechnol. 36, 411–420.

60. Van Dijk, D., Sharma, R., Nainys, J., Yim, K., Kathail, P., Carr, A.J.,

Burdziak, C., Moon, K.R., Chaffer, C.L., Pattabiraman, D., et al. (2018).

Recovering gene interactions from single-cell data using data diffusion.

Cell 174, 716–729.e27.
12 Patterns 2, 100213, March 12, 2021
61. Traag, V.A., Waltman, L., and van Eck, N.J. (2019). From Louvain to

Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 1–12.

62. Haghverdi, L., Battner, M., Wolf, F.A., Buettner, F., and Theis, F.J. (2016).

Diffusion pseudotime robustly reconstructs lineage branching. Nat.

Methods 13, 845.

63. Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M.,

Lennon, N.J., Livak, K.J., Mikkelsen, T.S., and Rinn, J.L. (2014). The dy-

namics and regulators of cell fate decisions are revealed by pseudotem-

poral ordering of single cells. Nat. Biotechnol. 32, 381.

64. Tran, T.N., and Bader, G. (2020). Tempora: cell trajectory inference using

time-series single-cell RNA sequencing data. PLoS Comput. Biol. 16,

e1008205.

65. Domanskyi, S., Hakansson, A., Bertus, T., Paternostro, G., and

Piermarocchi, C. (2021). Digital Cell Sorter (DCS): a cell type identification,

anomaly detection, and Hopfield landscapes toolkit for single-cell tran-

scriptomics. PeerJ 9, e10670.

66. Rouillard, A.D., Gunderson, G.W., Fernandez, N.F., Wang, Z., Monteiro,

C.D., McDermott, M.G., et al. (2016). The harmonizome: a collection of

processed datasets gathered to serve and mine knowledge about genes

and proteins. Database 2016.

67. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,

O., et al. (2011). Scikit-learn: Machine learning in Python. the Journal of

machine Learning research 12, 2825–2830.

68. Tomczak, K., Czerwinska, P., and Wiznerowicz, M. (2015). The Cancer

Genome Atlas (TCGA): an immeasurable source of knowledge.

Contemp. Oncol. 19, A68.

69. Rouillard, A.D., Gundersen, G.W., Fernandez, N.F., Wang, Z., Monteiro,

C.D., McDermott, M.G., and Ma’ayan, A. (2016). The harmonizome: a

collection of processed datasets gathered to serve and mine knowledge

about genes and proteins. Database (Oxford) 2016, baw100.

70. Kruskal, J.B. (1978). Multidimensional Scaling (SAGE Publications, Inc.).

71. Beeley, C. (2013). Web application development with R using Shiny (Packt

Publishing Ltd).

72. Di Nunzio, G.M., and Vezzani, F. (2018). Using R markdown for replicable

experiments in evidence based medicine. International Conference of the

Cross-Language Evaluation Forum for European Languages (Springer),

pp. 28–39.

73. Bostock, M. (2018). Observable notebooks: a reactive JavaScript environ-

ment. https://observablehq.com/.

74. Bostock, M., Ogievetsky, V., and Heer, J. (2011). D3 data-driven docu-

ments. IEEE Trans. Vis. Comput. Graphics 17, 2301–2309.

75. Ragan-Kelley, B., andWilling, C. (2018). Binder 2.0-Reproducible, interac-

tive, sharable environments for science at scale. Proceedings of the 17th

Python in Science Conference (F. Akici, D. Lippa, D. Niederhut, and M.

Pacer, eds.), pp. 113–120.

http://refhub.elsevier.com/S2666-3899(21)00023-4/sref28
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref28
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref29
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref29
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref29
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref29
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref30
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref30
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref30
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref30
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref31
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref31
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref31
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref32
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref32
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref32
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref32
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref32
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref33
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref33
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref33
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref33
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref34
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref34
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref34
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref35
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref35
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref35
http://refhub.elsevier.com/S2666-3899(21)00023-4/optmqcKk6i008
http://refhub.elsevier.com/S2666-3899(21)00023-4/optmqcKk6i008
http://refhub.elsevier.com/S2666-3899(21)00023-4/optmqcKk6i008
https://rdrr.io/cran/scTenifoldNet/man/scQC.html
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref36
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref36
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref36
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref36
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref37
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref37
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref37
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref38
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref38
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref38
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref39
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref39
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref39
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref39
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref40
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref40
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref41
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref41
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref41
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref42
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref42
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref42
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref42
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref43
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref43
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref43
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref44
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref44
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref44
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref44
http://refhub.elsevier.com/S2666-3899(21)00023-4/optU8qNk4O0nG
http://refhub.elsevier.com/S2666-3899(21)00023-4/optU8qNk4O0nG
http://refhub.elsevier.com/S2666-3899(21)00023-4/optU8qNk4O0nG
http://refhub.elsevier.com/S2666-3899(21)00023-4/optU8qNk4O0nG
http://refhub.elsevier.com/S2666-3899(21)00023-4/optFkTXO28L0G
http://refhub.elsevier.com/S2666-3899(21)00023-4/optFkTXO28L0G
http://refhub.elsevier.com/S2666-3899(21)00023-4/optFkTXO28L0G
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref47
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref47
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref47
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref45
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref45
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref45
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref45
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref48
http://refhub.elsevier.com/S2666-3899(21)00023-4/optJyPLq0ucxn
http://refhub.elsevier.com/S2666-3899(21)00023-4/optJyPLq0ucxn
http://refhub.elsevier.com/S2666-3899(21)00023-4/optWzhHWjHoml
http://refhub.elsevier.com/S2666-3899(21)00023-4/optWzhHWjHoml
http://refhub.elsevier.com/S2666-3899(21)00023-4/optWzhHWjHoml
http://refhub.elsevier.com/S2666-3899(21)00023-4/optWzhHWjHoml
https://observablehq.com/
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref49
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref49
http://refhub.elsevier.com/S2666-3899(21)00023-4/sref49
http://refhub.elsevier.com/S2666-3899(21)00023-4/optIpaVHXid36
http://refhub.elsevier.com/S2666-3899(21)00023-4/optIpaVHXid36
http://refhub.elsevier.com/S2666-3899(21)00023-4/optIpaVHXid36
http://refhub.elsevier.com/S2666-3899(21)00023-4/optIpaVHXid36

	Appyters: Turning Jupyter Notebooks into data-driven web apps
	Introduction
	Results
	Developing an Appyter
	The Appyter Catalog
	Appyter adherence to the FAIR guidelines
	The execution framework
	The initial collection of Appyters in the Appyters Catalog
	The Bulk RNA-Seq Analysis Appyter
	The scRNA-Seq Analysis Appyter
	The Harmonizome-ML Appyter
	The Drugmonizome-ML Appyter
	The Patient Cohorts RNA-Seq Viewer Appyter
	Appyters to extract, transform, and load data for Harmonizome
	Enrichr visualization Appyters
	Set Comparison Appyter
	Other Appyters

	Discussion
	Experimental procedures
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	References

