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Intra-tumoral hypoxia and immunity are highly correlated
with prognosis of tumor patients. Nonetheless, no studies
have reported a systematic analysis of the relationship between
hypoxia response and immunity in bladder cancer (BLCA). In
this study, we comprehensively evaluated the hypoxia response
patterns and their association with genomic and clinicopatho-
logical characteristics of 1,343 BLCA patients using unsuper-
vised consensus clustering. Five hypoxia response patterns
were defined, and the HPXscore was constructed using least ab-
solute shrinkage and selection operator (LASSO)-Cox regres-
sion algorithms to represent the individual hypoxia response
pattern. The low HPXscore group was characterized by im-
mune activation and high DNA damage repair, which was
referred to the immune-inflamed phenotype. However, activa-
tion of stromal-related pathways was observed in the high
HPXscore group, which is recognized as T cell suppressive
andmore likely to be an immune-excluded phenotype. Further-
more, the HPXscore was an independent prognostic factor and
could act as a good predictor for immunotherapeutic outcomes
in BLCA. Thus, depicting a comprehensive landscape of the
hypoxia characteristics may therefore help us to interpret the
underlying mechanism of immune escape and shed light on
the clinical application of hypoxia modification and immune
checkpoints targeting immunotherapies for BLCA.
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INTRODUCTION
Bladder cancer (BLCA) is the 10th most common cancer with an esti-
mated 549,000 new cases and 200,000 deaths in 2018 around the
world.1 BLCA is divided into non-muscle-invasive BLCA (NMIBC)
and muscle-invasive BLCA (MIBC) with different histology. Since
Morales et al.2 first reported that bacillus Calmette-Guérin (BCG) is
effective in the treatment of NMIBC, it was approved as a first-line
immunotherapeutic drug for NMIBC, indicating that BLCA was an
immunogenic malignancy. However, not all NMIBC patients respond
to BCG, and ~50% of non-responders will recur or progress to MIBC,
with a 5-year survival rate of <50%. Moreover, MIBC is such a com-
plex disease that the current staging and grading system could not
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guide the precision treatment efficiently, especially for immune
checkpoints targeting immunotherapy treatment.3

However, many non-invasive biomarkers, such as UroVysion fluores-
cent in situ hybridization (FISH), Immunocyt, and nuclear matrix
protein 22 (NMP-22), have been described and approved by the US
Food and Drug Administration (FDA). However, low sensitivity
and specificity hamper their ways to act as routine adjuncts or re-
placements for cystoscopy.4 As a result, clinicians decided the treat-
ment methodmostly based on tumor stage, rather than on the biology
andmolecular characteristic of the disease. Recently, due to the devel-
opment of biological or bioinformatics technology, our understand-
ing of the underlying mechanism of the occurrence and development
of BLCA has progressed. A comprehensive multi-platform genomic
characterization by The Cancer Genome Atlas (TCGA) network
and other independent cohorts have identified many distinct molec-
ular subtypes, which are closer to the native biology of BLCA. Five
classification systems have been widely accepted and described.5–9

Although each group established their classification system based
on special criteria and algorithms, each molecular subtype did have
a unique characteristic or overlap between one another. All of this
indicated that BLCA is a more extremely complex disease than
what we previously recognized.

The tumor microenvironment (TME) is a complex system that con-
tains numerous cell types and the factors they secrete. They cooperate
with each other to generate a chronic inflammatory, immunosuppres-
sive, and pro-tumoral environment, which is very important for tu-
mor development and progression.10,11 Hypoxia is characterized by
lack of O2 in an atmosphere where tissues are inadequately
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oxygenated.12 In such a microenvironment, hypoxia acted as an
essential metabolic element to shape cellular plasticity and tumor het-
erogeneity.13 The rapid proliferation of tumor and dysregulated for-
mation of the vasculature result in heterogeneously distributed areas
of low oxygen pressure, inducing hypoxic stress. Under a hypoxic
microenvironment, cells can adapt by regulating the hypoxia-induc-
ible factor (HIF) family. HIFs are dimeric proteins consisting of an
O2-sensitive a subunit (HIF-1a, HIF-2a, or HIF-3a) and a scaffold
b subunit (HIF-2b).14 Under hypoxic stress, HIF dimers stabilize
and translocate into the nucleus to induce the transcription and acti-
vation of numerous genes in regulating a variety of biological pro-
cesses, including angiogenesis, proliferation, differentiation, and
metabolism, among others. Many studies have reported that hypoxia
is a trigger for cancer invasion and metastasis through activation of
the hypoxia/HIF-1a cascade pathway.15,16 Moreover, the adaptability
to hypoxia allows for maintenance of cancer stem cells (CSCs) and
survival of tumor. Moreover, chemotherapy-, radiotherapy-, or
even immunotherapy-sensitive cancer cells might be transferred to
resistant ones with long-term exposure to hypoxia.17,18 Recent ad-
vances in immune checkpoint inhibitors (ICIs) have largely improved
the prognosis of patients with advanced malignancy, such as
non-small cell lung cancer (NSCLC), melanoma, and BLCA.19–21

However, the high rate of non-responders also reminds us that the
mechanism of immune escape is only partially understood. Hypoxia
not only induces transcription factors or target genes to inhibit T cell
proliferation and deactivate effector cytokine production directly,22–
24 but it also induces upregulation of co-inhibitory receptors,
recruitment/conversion of immunosuppressive cell populations,
and reconstruction of TME stroma to suppress immune system acti-
vation indirectly.25–27

In present study, we comprehensively evaluated the hypoxia charac-
teristics and identified five hypoxia-response patterns (HPXclusters)
with distinct survival advantage, TME immune cell infiltration, clin-
icopathological and genomic features by integrating 1,343 BLCA pa-
tients. As a result, we established a hypoxia phenotype-related gene
signature (HPXscore), which is a set of scoring systems to quantify
the hypoxia response pattern in individuals. The HPXscore was found
to be a robust independent prognostic factor and predictive
biomarker for the clinical response to ICIs in BLCA.

RESULTS
Characterization of hypoxia response patterns in BLCA

The construction scheme of hypoxia response patterns and hypoxia
phenotype-related gene signature is shown in Figure 1A. We used
the ConsensusClusterPlus package to select the optimal cluster
numbers and found that there exist five distinct hypoxia response pat-
terns in the meta-BLCA cohort (GEO: GSE13507, GSE32548,
GSE62254, GSE32894, and GSE48075), as well as TCGA-BLCA
cohort, including 165 cases in pattern A, 197 cases in pattern B,
235 cases in pattern C, 143 cases in pattern D, and 255 cases in
pattern E, which were termed as HPXclusterA–HPXclusterE, respec-
tively (Figure 1B). Unsupervised hierarchical clustering showed that
the hypoxia response-related genes were differentially expressed
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among HPXclusterA–HPXclusterE in the meta-BLCA cohort (Fig-
ures 1C, S1A–S1C, and S2A–S2C). Furthermore, Kaplan-Meier sur-
vival curves demonstrated that prognoses of patients are significantly
different among five HPXclusters (log-rank test, p = 0.0133; Figures
1D and S3) and that HPXclusterD exhibited a particularly prominent
survival advantage compared with other patterns.

TME immune cell infiltration in distinct hypoxia response

patterns

In order to find the association between TME and hypoxia response
patterns, the relative amount of TME infiltration immune cells
was calculated via a single-sample gene set enrichment analysis
(ssGSEA) algorithm. Cluster heatmap analysis revealed that distinct
HPXclusters exhibited distinct TME immune cell infiltration as fol-
lows (Figure 2A; Table S1): HPXclusterA was characterized by high
TME immune cell infiltration with significant increases in the infiltra-
tion of activated B cells, B cells, mast cells, eosinophils, dendritic cells
(DCs), and immature DCs; HPXclusterB was relatively less infiltrated
but displayed a similar distribution to that of HPXclusterA; HPXclus-
terC featured low TME immune cell infiltration and only showed high
infiltration of T central memory cells, T helper cells, and CD56bright

natural killer cells; HPXclusterD was remarkably rich in effector
TME immune cells infiltration, including activated CD4 cells, CD8
cells, DCs, and cytotoxic cells, but regulatory T (Treg) cells were
also high infiltrated in this phenotype. Pearson correlation analysis
indicated that Treg cells were significantly positively correlated with
almost all immune cells, indicating the existence of a feedback loop
regulation system within TME in BLCA (Figure S4). When effector
TME immune cells were strikingly infiltrated, Treg cells would
respond to them by increasing their amount to counter this phenom-
enon; HPXclusterE only infiltrated with activated CD4 T cells and
type 2 T helper cells and exhibited remarkable decreases in other
TME immune cell types.

Characteristics of the biological process in distinct hypoxia

response patterns

We explored the biological process among five distinct patterns by
performing ssGSEA for Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways. As shown in Figures 2B, S5A–S5D, and Table
S2, HPXclusterA was markedly activated in stromal and carcinogenic
pathways such as the transforming growth factor (TGF)-b signaling
pathway, WNT signaling pathway, and NOTCH signaling pathways;
HPXclusterB displayed the similar trend with HPXclusterA, but it
was less enriched in pathways in carcinogenic gene sets. HPXclusterC
presented pathway enrichment associated with pathways in cancers,
including the mTOR and TP53 signaling pathways, whereas
HPXclusterD was annotated with pathways associated with immune
activation, including the activation of antigen processing and presen-
tation, the chemokine signaling pathway, cytokine-cytokine receptor
interaction, natural killer cell-mediated cytotoxicity, and so on;
HPXclusterE was prominently related to DNA damage repair-related
pathways but was robustly negatively correlated with the immune
activation biological process. However, we noticed that HPXclusterA
was highly infiltrated with immune cells, but patients with this



Figure 1. Consensus clustering of hypoxia response-related genes in bladder cancer

(A) Overview of study design. (B) Consensus matrices of patients in the meta-BLCA cohort (GEO: GSE13507, GSE32548, GSE32894, GSE48075, and TCGA-BLCA) for k =

2–5 using 1,000 iterations of unsupervised consensus clustering method (K-means) to ensure the clustering stability. (C) Hierarchical clustering of hypoxia response-related

genes in meta-BLCA cohorts. Hierarchical clustering was performed with Euclidean distance and Ward linkage. The HPXclusters and BLCA cohorts are shown as patient

annotations. Rows represented hypoxia response-related genes, and columns represented BLCA samples. Red represents high expression and blue represents low

expression of each gene. (D) Survival analyses for the distinct hypoxia response patterns in the meta-BLCA cohort using Kaplan-Meier curves. The HPXclusterE showed

significantly better OS than all other hypoxia response patterns (log-rank test, p = 0.0133).
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phenotype did not show a matching survival advantage. Previous
studies demonstrated that the TME immune cell infiltration pattern
was divided into immune-desert, excluded, and inflamed phenotypes.
The tumors with an immune-excluded phenotype were characterized
by infiltration of abundant immune cells in the stroma surrounding
the core tumor niche rather than penetrating their parenchyma,
which was considered cytotoxic T cell suppressive.28 Thus, we in-
ferred that the stromal signaling pathway activation in patients with
HPXclusterA might inhibit the anti-tumor effect of high effector im-
mune cell infiltration. Then, ssGSEA of specific gene sets subse-
quently demonstrated that stromal-relevant signatures, including
angiogenesis, epithelial-mesenchymal transition (EMT), and pan-
fibroblast TGF-b response pathways, were significantly enhanced in
HPXclusterA, which again confirmed our speculation (Figure 2C; Ta-
ble S3). Moreover, we also found that HPXclusterD was remarkably
enriched in CD8 T effector cells, antigen-processing machinery,
and immune checkpoint signatures, but it was deactivated in the
TGF-b/EMT signaling pathway (Figure 2C). Furthermore, we noticed
a phenomenon that patients with HPXclusterD were highly infiltrated
with activated DCs, DCs, and plasmacytoid DCs, but they showed a
decrease in infiltration of immature DCs. DCs acted as a bridge con-
necting innate and adaptive immunity via antigen presentation and
activation of naive T cells, which from another view answers the ques-
tion of why HPXclusterD was highly activated in cellular immunity.29

Then, we found that the expression levels of major histocompatibility
complex (MHC) molecules, costimulatory molecules, and adhesion
molecules, which were responsible for DC activation, were compre-
hensively elevated in HPXclusterD (Figure 2D). Then, we curated
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Figure 2. TME immune cell infiltration and biological process characteristics in distinct hypoxia response patterns

(A) Hierarchical clustering of TME infiltration immune cells for 995 patients in the meta-BLCA cohort. Rows represent relative amount of each immune cell, and columns

represent BLCA samples. Red represents relative upregulated and blue represents relative downregulated of each immune cell. The HPXclusters and BLCA cohorts are

shown as patient annotations. (B) ssGSEA showed the relative activity of biological pathways in distinct hypoxia response patterns in the meta-BLCA cohort. The heatmap

was used to visualize indicated biological processes, including immune activation, antigen processing, mismatch repair, and pathway in cancers, etc. Red represents that the

pathways were relatively activated and blue represents that the pathways were relatively suppressed in each sample. The HPXclusters and BLCA cohorts were used as

sample annotations. (C) Difference in the enrichment of indicated signatures to represent specific biological processes including stromal-activation-relevant signatures,

mismatch repair-relevant signatures, and immune activation-relevant signatures among five distinct hypoxia response patterns in the meta-BLCA cohort. (D) Differences in

the expression levels of MHC molecules, costimulatory molecules, and adhesion molecules among five distinct hypoxia response patterns in the meta-BLCA cohort. In (C)

and (D), the upper and lower ends of the boxes represent the interquartile range of values. The lines in the boxes represent the median value and the black dots show outliers.

The statistical difference among five distinct hypoxia response patterns was tested by a one-way ANOVA test. ****p < 0.0001.
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Figure 3. Characterization of hypoxia response patterns in TCGA-BLCA cohort

(A) Kaplan-Meier survival curves show the difference in prognosis advantage among five distinct hypoxia response patterns in TCGA-BLCA cohort (log-rank test, p = 0.015).

(B) Hierarchical clustering of TME infiltration immune cells for 403 patients among five distinct hypoxia response patterns in TCGA-BLCA cohort. Rows represent relative

amount of each immune cell, and columns represent BLCA samples. Red represents relatively upregulated and blue represents relatively downregulated of each immune

cell. The HPXscore level, HPXclusters, TMB level, vital status, AJCC pathologic tumor stage, additional treatment outcome, primary therapy outcome, tumor status, histology

subtype, APOBEC mutation load, and mutation in indicated genes were used as sample annotations. (C) Difference in the expression of MHC molecules, costimulatory

(legend continued on next page)
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the markers representative of the major signaling pathways in im-
mune phenotypes as follows: immune activation: CD8A, CXCL10,
CXCL9, GZMA, GZMB, IFNG, PRF1, TBX2, and TNF; immune
checkpoints: CD80, CD86, cytotoxic T lymphocyte-associated pro-
tein 4 (CTLA-4), IDO1, LAG3, programmed death-1 (PD-1), pro-
grammed death-ligand 1 (PD-L1), PD-L2, TIGIT, and TIM-3; and
TGF-b/EMT signaling pathway: ACTA2, COL4A1, PDGFRA,
SMAD9, TGFB2, TGFBR2, TWIST1, VIM, and ZEB1. The results
demonstrated a similar trend to the biological process and pathway
enrichment among different patterns measured by ssGSEA (Fig-
ure S6A–S6C). Thus, we found that five hypoxia response patterns
had a very differential characteristic of TME immune cells infiltration
phenotype that HPXclusterA/B was featured by highly immune cell
infiltration and stromal activation and more likely to be an im-
mune-excluded phenotype; HPXclusterD was characterized by full
immune activation with infiltration with effector immune cells and
would be recognized as an immune-inflamed phenotype, whereas
HPXclusterC/E was suspected as an immune-desert phenotype, char-
acterized by the suppression of immunity.

Hypoxia response patterns in the TCGA-BLCA cohort

To further explore the correlation between hypoxia response pheno-
types and clinical traits as well as biological behaviors, we then mainly
focused on TCGA-BLCA cohort, which comprised comprehensive
clinicopathological and molecular parameters. Similar to the meta-
BLCA cohort, unsupervised consensus clustering also identified five
distinct HPXclusters in TCGA-BLCA cohort (Figure S7A). The hyp-
oxia response transcriptional profile was differentially distributed
among five HPXclusters (Figure S7B). Notably, five HPXclusters
showed significantly differences in survival advantage, indicating
that HPXclusterC/E was associated with better prognosis while
HPXclusterA/B was associated with poorer prognosis (log-rank test,
p = 0.015; Figures 3A and S8).

Then, we wanted to figure out whether the survival advantage of
HPXclusterC/E was relevant to clinicopathological characteristics,
such as tumor-lymph node-metastasis (TNM) stage and therapy
outcome. Unfortunately, the results demonstrated that there was no
significant difference in TNM stage and primary therapy outcome
among the five HPXclusters. However, we then found that the pa-
tients with HPXclusterC/E were more likely to be tumor free and
have an additional treatment outcome of complete response (CR)/
partial response (PR) and living status (Figure S9). As the survival
benefits were not correlated with the TNM stage, we inferred that
they might be caused by differences in TME immune cell infiltration.
Therefore, we were surprised to find that HPXclusterE of TCGA-
BLCA cohort exhibited a similar TME immune cell distribution to
molecules, and adhesion molecules among five distinct hypoxia response patterns in T

stromal-relevant signatures, and antigen processing machinery-relevant signatures amo

upper and lower ends of the boxes represent interquartile range of values. The lines in

difference among five distinct hypoxia response patterns was tested by a one-way ANO

enrichment analysis of the DEGs among distinct hypoxia patterns. The length and color d

term, respectively.
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that of HPXclusterD in the meta-BLCA cohort, which was character-
ized by high effector TME immune cell infiltration, including acti-
vated CD4 cells, CD8 cells, DCs, cytotoxic cells, and so on, but
HPXclusterC of TCGA-BLCA cohort was significantly less infiltrated
compared with HPXclusterE (Figure 3B; Table S4). Furthermore,
HPXclusterE also remarkably accumulated with activated DCs,
DCs, and plasmacytoid DCs, but showed a lack of immature DCs,
accompanied by upregulation ofMHCmolecules, costimulatory mol-
ecules, and adhesion molecules (Figure 3C). Moreover, the pathway
annotation revealed that the immune activation and antigen-process-
ing machinery-relevant signatures were significantly enhanced in
HPXclusterE but not in HPXclusterC. HPXclusterA was found to
be enriched in a stromal signaling-relevant signature (Figure 3D; Ta-
ble S5). Then, subsequent ssGSEA of KEGG demonstrated that
HPXclusterE was deactivated in TGF-b, WNT, p53, mTOR, and
PPAR signaling pathways but enriched in DNA damage repair
signaling pathways (Figures S10A–S10C; Table S6). The expression
levels of immune activation, immune checkpoints, and TGF-b/
EMT signaling pathway markers were distributed in the same way
as displayed in the function annotation among the five distinct
HPXclusters (Figures S11A–S11C). In order to further explore the po-
tential biological process of each HPXcluster, differentially expressed
genes (DEGs) were determined by comparing each cluster with others
(Figure S12A; Table S7). Then, the DEGs of each cluster were used to
perform Gene Ontology (GO) enrichment analysis through the clus-
terProfiler package, and the significant changes in GO terms were
summarized (Table S8). Surprisingly, HPXclusterA was enriched in
keratinocyte differentiation and keratinization, which was considered
to be stromal signaling pathway activation; HPXclusterC was signif-
icantly enriched in pathways associated with epithelium develop-
ment, which might be the cause of good prognosis; and HPXclusterE
was strikingly enriched in the pathway related to immune activation
(Figure 3E). All of these findings again suggested that hypoxia plays
an indispensable role in immune regulation within the TME.

Tumor somatic mutation in distinct hypoxia response patterns

We next investigated the distribution differences of somatic alter-
ations among different HPXclusters in BLCA using the packages maf-
tools and complexheatmap. By analyzing the Mutect2 mutation
annotation files of TCGA-BLCA cohort, waterfall plots integrated
with 30 highly variant mutant genes were utilized to show the muta-
tion landscape. As shown in Figure 4A, the mutation rate of the top 30
mutated genes was highest in HPXclusterE, especially for TP53 and
RB1, which was considered to be responsible for the sensitivity of
ICIs in tumor patients (Figure 4A).30,31 Moreover, we found that
HPXclusterE was markedly correlated with a higher tumor mutation
burden (TMB), while HPXclusterB was associated with the lowest
CGA-BLCA cohort. (D) Difference in the enrichment of immune-relevant signatures,

ng five distinct hypoxia response patterns in TCGA-BLCA cohort. In (C) and (D), the

the boxes represent median value, and the black dots show outliers. The statistical

VA test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. (E) Gene Ontology (GO)

epth of the bar represent the number of genes enriched and the p value of each GO



Figure 4. Tumor somatic mutation landscape of distinct hypoxia response patterns in TCGA-BLCA cohort

(A) Distribution of the top 30 variant mutated genes among five distinct hypoxia response patterns for BLCA. The genetic alterations types were indicated in the waterfall plot

annotation. The upper barplots indicated TMB and overall survival (OS) time. The numbers on the left and right bar plots show the mutation frequency of each gene in distinct

hypoxia response patterns. The HPXcluster, TMB, vital status, tumor status, primary therapy outcome, and additional treatment outcome are shown as patient annotations.

(B) Differences in TMB among different hypoxia response patterns. The upper and lower ends of the boxes represent the interquartile range of values. The lines in the boxes

represent the median value. A Kruskal-Wallis test was used to compare the statistical difference between each pattern (p = 0.0039). (C) Differences in the enrichment of

mismatch repair-relevant signatures among five distinct hypoxia response patterns in TCGA-BLCA cohort. The upper and lower ends of the boxes represent the interquartile

range of values. The lines in the boxes represent the median value, and the black dots show outliers. The statistical difference among five distinct hypoxia response patterns

was tested by a one-way ANOVA test. ****p < 0.0001.
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TMB (Figure 4B). Furthermore, the functional annotation of specific
gene sets revealed that the enrichment of mismatch repair signaling
pathway signatures, such as base excision repair, DNA damage repair,
mismatch repair, and nucleotide excision repair, were remarkably
enhanced in HPXclusterE (Figures 4C and S10A; Table S9). All of
these findings indicated that hypoxia response patterns not only
distinguished the TME immune cell infiltration, but they were also
correlated with the mutation landscape, which again underlies the
importance of hypoxia in BLCA development.

Construction of the hypoxia phenotype-related gene signature

Although hypoxia played a key role in shaping different TME land-
scapes, it was not convenient to predict the hypoxia response
pattern in individual, as all of the above analyses were conducted
on the population. Considering the individual heterogeneity and
complexity of hypoxia response patterns, we aimed to construct a
set of a scoring system to quantify the hypoxia response pattern
of the individual in BLCA, which was termed the HPXscore. To de-
pict the hypoxia response patterns through transcriptomic data,
2,257 phenotype-related meta-DEGs were determined by merging
DEGs in each HPXcluster (Figure S12; Table S7). Based on univar-
iate Cox regression analyses, 394 of 2,257 meta-DEGs related with
prognosis were finally defined as hypoxia phenotype-related prog-
nostic candidate genes (Table S10). Then, least absolute shrinkage
and selection operator (LASSO)-Cox regression analyses were per-
formed on those genes for dimension reduction to develop a hypox-
ia phenotype-related gene signature (HPXscore) that could better
represent the hypoxia response pattern. Finally, 12 genes were
enrolled to establish the HPXscore, and their coefficients are shown
in Table S11.
Molecular Therapy: Oncolytics Vol. 22 September 2021 283
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Figure 5. Transcriptome traits and biological

characteristics of hypoxia phenotype-related gene

signature (HPXscore) in TCGA-BLCA cohort

(A) Kaplan-Meier survival curves showed the difference in

prognosis advantage between high and low HPXscore

groups in TCGA-BLCA cohort (log-rank test, p <

0.00001). (B) Distributions of HPXscore in five distinct

hypoxia response patterns. Kruskal-Wallis test was used

to compare the statistical difference between each pattern

(p = 0.0022). (C) Differences in the enrichment of immune

activation-relevant signatures and stromal activation-

relevant signatures between high and low HPXscore

groups in TCGA-BLCA cohort. The upper and lower ends

of the boxes represent the interquartile range of values.

The lines in the boxes represent the median value, and the

black dots show outliers. The statistical difference be-

tween high and low HPXscore groups was tested by a

Student’s t test. *p < 0.05, **p < 0.01, ****p < 0.0001. (D)

Correlation between HPXscore and gene signatures

linked to immune and stromal activation in TCGA-BLCA

cohort. Negative correlation is marked with blue and

positive correlation is marked with red. (E) Differences in

HPXscore between different molecular subtypes in the

Lund classification system. The Kruskal-Wallis test was

used to compare the statistical difference between

different molecular subtypes (p = 5.5e�5). (F) Proportion

of Lund molecular subtypes in high and low HPXscore

groups in TCGA-BLCA cohort. The statistical difference

was measured with a Fisher’s exact test (p = 0.004467).

(G) Alluvial diagram showing the changes of HPXscore,

HPXclusters, TMB, indicated molecular subtypes, and

vital status in TCGA-BLCA cohort. (H) Differences in TMB

between high and low HPXscore groups in TCGA-BLCA

cohort. The TMB was log2 transformed. The statistical

difference was measured with the Wilcoxon test (p =

1.3e�5). (I) Kaplan-Meier survival curves show the differ-

ence in prognosis advantage among four groups stratified

by HPXscore and TMB in TCGA-BLCA cohort (log-rank

test, p < 0.00001). (J) Distribution of top 30 variant

mutated genes between high and lowHPXscore groups in

TCGA-BLCA cohort. The genetic alteration types are

indicated in the waterfall plot annotation. The upper bar

plots indicate TMB and OS time. The numbers on the left

and right bar plots show the mutation frequency of each

gene in distinct hypoxia response patterns. HPXscore,

HPXcluster, TMB, vital status, AJCC pathologic tumor

stage, subtype, tumor status, primary therapy outcome,

and additional treatment outcome are shown as patient

annotations.
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Next, we assigned the patients into low or high HPXscore groups at
the median cut-off to identify the value of the HPXscore in predicting
patients’ outcomes. Kaplan-Meier survival curves indicated that pa-
tients with a low HPXscore demonstrated a prominent survival
benefit (log-rank test, p < 0.00001; Figure 5A), with the 5-year survival
rate twice than that for patients with a high HPXscore (53.2% versus
27.1%). This was also validated in the meta-BLCA cohort (log-rank
test, p = 0.0032; Figure S12B). A Kruskal-Wallis test revealed a signif-
icant difference on HPXscore among HPXclusters that harmful
HPXclusterA showed the highest median score while beneficial
284 Molecular Therapy: Oncolytics Vol. 22 September 2021
HPXclusterE displayed the lowest median score (Kruskal-Wallis
test, p = 0.0022; Figure 5B). Function annotation was performed to
better illustrate the characteristics of the hypoxia phenotype-related
gene signature. The results showed that patients with a low HPXscore
were enriched in the immune activation signature such as CD8 T ef-
fectors and antigen-processing machinery, while patients in the high
HPXscore group were significantly associated with enhanced enrich-
ment of stromal pathways, including angiogenesis, EMT, and
pan-fibroblast TGF-b response pathways (Figure 5C). The Pearson
correlation analyses between the curated signatures and the
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HPXscore also validated our findings (Figure 5D). The above results
strongly suggested that a low HPXscore was significantly associated
with immune activation, whereas a high HPXscore was highly corre-
lated with stromal activation. We next aimed to determine the corre-
lation between HPXscore and clinical traits and molecular subtypes.
We found that patients with a high HPXscore were more likely to
be patients with non-papillary, more advanced American Joint Com-
mittee on Cancer (AJCC) pathologic TNM stage, lympho-vascular
invasion, and lymph node-positive detection, as well as treatment
outcome of stable disease (SD)/progressive disease (PD) and dead sta-
tus. However, the opposite patterns were observed in the low
HPXscore group (Figure 3B; Table S12). A comprehensive molecular
landscape has been constructed for BLCA by TCGA and other
independent groups, which classified BLCA into many different mo-
lecular subtypes. Furthermore, we evaluated the difference of
HPXscore among these molecular subtypes. Surprisingly, we found
that patients with a lowHPXscore accumulated inmolecular subtypes
of luminal, luminal papillary, TCGA I/II, urothelial-like A (UroA),
and genomically unstable (GU), which were related with low malig-
nancy and better survival. However, molecular subtypes with basal,
basal squamous, TP53-like, TCGA III/IV, and basal/SCC-like, which
were characterized by high malignancy and worse prognosis, were
significantly concentrated in the high HPXscore group (Figures 5E,
5F, and S13A–S13F). Then, the distribution changes of molecular
subtypes in individual were visualized with an alluvial diagram
(Figure 5G).

We noticed that patients with GU subtype showed the lowest
HPXscore compared to other molecular subtypes within the Lund
classification system (Kruskal-Wallis test, p = 5.5e�5, Figure 5E).
Additionally, the numbers of patients with the GU subtype were
about double in the low HPXscore group compared with those with
a high HPXscore (Fisher’s exact test, p = 0.004467, Figure 5F). In
the above results, we found that five hypoxia response patterns
were remarkably different in mutated gene distribution and TMB
quantification. Because the GU subtype was characterized by high
mutation frequency, we next analyzed the distribution differences
of somatic mutation between low and high HPXscores in TCGA-
BLCA cohort. We found that PI3KCA, KMT2D, and FGFR3 were
highly mutated in patients with a low HPXscore, but there was no sig-
nificant difference of mutation in TP53 and RB1 between the high and
low HPXscore groups (Figure 5J). APOBEC mutagenesis is reported
to be associated with increased expression of immune signatures,
including the interferon signaling pathway.32 Thus, the APOBECmu-
tation load was strikingly increased in the low HPXscore group when
compared with the high HPXscore group (Figure 3B; Table S12).
Moreover, we found that patients with a low HPXscore were mark-
edly correlated with a higher TMB compared with patients in the
high HPXscore group, indicating that the HPXscore and TMB ex-
hibited a significant negative correlation (Wilcoxon test, p =
1.3e�5, Figure 5H). Clinical trials as well as preclinical studies re-
ported that higher TMB was associated with long-term survival and
durable clinical benefit, especially when treated with ICIs. Next, we
stratified all of the patients into four groups based on the levels of
HPXscore and TMB. Furthermore, Kaplan-Meier survival curves
indicated that patients with a low HPXscore displayed a significant
survival advantage regardless of whether the TMB was high or low
(log-rank test, p < 0.00001, Figure 5I).
The HPXscore can be utilized as an independent prognostic

factor in BLCA

As the HPXscore was significantly correlated with high malignancy
and played a vital role in BLCA tumorigenesis, we sought to
determine whether the HPXscore was a clinically independent
prognostic factor for BLCA patients through univariate and multi-
variate Cox regression analyses. The HPXscore and TMB, together
with other clinical features, including age, sex, histological subtype,
AJCC pathological T stage, pathological N stage, pathological M
stage, and pathological tumor stage, were enrolled as covariates
to perform the analysis. The results demonstrated that the
HPXscore, TMB, pathological T stage, pathological N stage, and
age were independent factors that could be utilized to predict the
prognosis of BLCA patients (Figures 6A and 6B). By combining
the independent prognostic factors, we constructed a nomogram
that serves as a clinically relevant quantitative method by which
clinicians can predict mortality in BLCA patients (Figure 6C).
Every patient would be assigned a total point value by adding the
points for each prognostic parameter. Higher total points corre-
spond to a worse patient outcome. Furthermore, calibration plots
indicated that the nomogram had a similar performance to that
of an ideal model (Figures 6D and 6E). Decision curve analysis
(DCA) also revealed that the nomogram had high potential clinical
utility (Figures 6F and 6G).
HPXscorewas a predictive biomarker for clinical response to ICI

immunotherapy

Accumulated evidence demonstrates that immunotherapies based on
ICIs have undoubtedly emerged as a major breakthrough in cancer
treatment. As a negative correlated with TMB and was significantly
associated with immune and stromal activation, the role of the
HPXscore in mediating the clinical response to ICI treatment was
indirectly confirmed. We next explored whether the HPXscore could
predict immunotherapeutic benefits in BLCA by using an IMvigor210
(mUC) cohort, which consisted of patients with metastatic urothelial
cancer (mUC) receiving PD-L1 inhibitor with atezolizumab. Kaplan-
Meier survival curves revealed that patients with a low HPXscore ex-
hibited significant clinical benefits and markedly prolonged survival
when compared with the high HPXscore group (log-rank test, p <
0.001, Figure 7A). Surprisingly, function annotation showed that im-
mune activation signatures such as CD8 T effectors, antigen-process-
ing machinery, and immune checkpoints were remarkably enriched
in the low HPXscore group, while stromal signatures including
EMT/TGF-b and WNT/target pathways were highly activated in pa-
tients with a high HPXscore (Figure 7B). Then, the correlation matrix
showed that the HPXscore exhibited a positive correlation with a stro-
mal-relevant signature and negative correlation with an immune acti-
vation-relevant and mismatch repair signature (Figure 7C).
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Figure 6. HPXscore is an independent prognosis factor in the nomogram

(A and B) Forest plot summary of the univariate (A) and multivariable (B) Cox analyses of the HPXscore and clinicopathological characteristics. The results indicate five

independent prognosis factors, including age, pathologic T stage, pathologic N stage, TMB, and HPXscore. The blue diamond squares on the transverse lines represent the

HR, and the black transverse lines represent the 95% confidence interval (CI). The p value and 95% CI for each clinical feature are displayed in detail. (C) Nomograms for

predicting the probability of patient mortality at 3 or 5 year OS based on five independent prognosis factors. **p < 0.01, ***p < 0.001. (D and E) Calibration curves of the

nomogram for predicting the probability of OS at 3 and 5 years. (F and G) Decision curve analyses (DCAs) of the nomograms based on five independent prognosis factors for

3-year and 5-year risk.
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Moreover, a previous study utilizing the IMvigor210 (mUC)
cohort demonstrated that patients within the GU subtype in the
Lund classification system, as well as the II subtype in TCGA
classification system, were more likely to respond to treatment
with ICIs. Our data indicated that that GU subtype and II subtype
showed the lowest HPXscore compared to other molecular
subtypes in each classification system, which is consistent in our
previous findings in TCGA-BLCA cohort (Kruskal-Wallis test,
p = 1.6e�9, Figure 7D, and Kruskal-Wallis test, p = 1.5e�11,
Figure S14B). Moreover, the numbers of the GU subtype in
patients with a low HPXscore group were more than 3-fold those
in the high HPXscore group (Fisher’s exact test, p = 0.005722, Fig-
ure 7E). Additionally, the numbers of the II subtype were more
than twice those in the low HPXscore group when compared
with the high HPXscore group (Fisher’s exact test, p = 0.000404,
Figure S14A). Then, the alluvial diagram was utilized to show
distribution changes of molecular subtypes, vital status, and
overall response in individual in the IMvigor210 (mUC) cohort
(Figure 7F).
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Furthermore, we also found a strikingly negative correlation of TMB
and HPXscore in the IMvigor210 (mUC) cohort (Wilcoxon test, p =
0.0028, Figure 8A, and Fisher’s exact test, p = 0.001859, Figure 8B).
Kaplan-Meier survival curves suggested that a low HPXscore/high
TMB group showed a great survival advantage compared with the
other groups (log-rank test, p < 0.00001, Figure 8C). Next, we found
that immune activation, immune checkpoint, and MHC molecular
relevant genes were highly upregulated, while the TGF-b-EMT
pathway-relevant genes were significantly downregulated in the low
HPXscore group (Figures 8D, 8E, S14D, and S14E). The opposite pat-
terns were seen in the high HPXscore group. Then, the difference of
the immune checkpoint PD-L1 located on tumor cells or immune
cells between the low or high HPXscore groups was measured, as it
was also associated with the clinical response of immunotherapy.
Our data showed that patients with IC2 exhibited the lowest
HPXscore, and there were more patients with the IC2 phenotype in
the low HPXscore group (Figures S14G and S14H). However, we
did not find any difference in TC distribution between high and
low HPXscore levels (Figure S14F).



Figure 7. Characteristics of HPXscore in IMvigor210 (mUC) cohort

(A) Kaplan-Meier survival curves show the difference in prognosis advantage between high and low HPXscore groups in the IMvigor210 (mUC) cohort (log-rank test, p <

0.001). (B) Difference in the enrichment of the indicated gene signature (curated from IMvigor210 [mUC] cohort) between high and low HPXscore groups in the IMvigor210

(mUC) cohort. The upper and lower ends of the boxes represent the interquartile range of values. The lines in the boxes represent median value, and the black dots show

outliers. The statistical difference between high and lowHPXscore groupswas tested by the Student’s t test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. (C) Correlation

between HPXscore and indicated gene signature in IMvigor210 (mUC) cohort. Blue indicates negative correlation and red indicates positive correlation. (D) Differences in

HPXscore among different molecular subtypes in the Lund classification system in IMvigor210 (mUC) cohort. The Kruskal-Wallis test was used to compare the statistical

difference between different molecular subtypes (p = 1.6e�9). (E) The proportion of Lund molecular subtypes in high and low HPXscore groups in the IMvigor210 (mUC)

cohort. The statistical difference was measured with the Fisher’s exact test (p = 0.005722). (F) Alluvial diagram showing the changes of HPXscore, TMB, indicated molecular

subtypes, vital status, ICI overall response, and binary response in the IMvigor210 (mUC) cohort.
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We previously found that hypoxia response patterns and HPXscore
played a non-negligible role in shaping the immune TME landscape
based on distinct immune phenotypes. In this study, we validated the
role of the HPXscore in determining different immune phenotypes in
the IMvigor210 (mUC) cohort, which contained complete informa-
tion on immune phenotypes. Interestingly, we found that the patients
with an inflamed phenotype remarkably accumulated in the low
HPXscore group (Fisher’s exact test, p = 0.033555, Figure 8F). Addi-
tionally, a higher HPXscore was strikingly associated with excluded
and immune-desert phenotypes in which ICIs had difficulty exerting
an antitumor effect (Kruskal-Wallis test, p = 0.00072, Figure 8G).
Additionally, patients with a lower HPXscore were more likely to
benefit from ICI immunotherapy (Wilcoxon test, p = 0.00011, Fig-
ure S14I, and Kruskal-Wallis test, p = 0.00028, Figure 8I). In addition,
the proportion of ICI treatment responders was significantly higher in
patients with a low HPXscore compared with patients with a high
HPXscore (Fisher’s exact test, left, p = 0.001091; right, p = 0.00011,
Figure 8H). Furthermore, we evaluated the predictive value of
TMB, which is significantly associated with the efficacy of immuno-
therapy, with receiver operating characteristic (ROC) analysis in the
IMvigor210 (mUC) cohort. However, we did not observe any differ-
ence in predictive advantage of TMB when compared with the
HPXscore. Moreover, combination of TMB with the HPXscore could
dramatically improve the predictive value compared with that of
TMB or the HPXscore alone (Figure 8J). All of the above findings
implied that the quantification of hypoxia response patterns was a
robust biomarker for prognosis and potential predictor for clinical
response in immunotherapy. In summary, our work strongly
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Figure 8. HPXscore was an efficiency tool for

immunotherapy response prediction

(A) Difference in TMB between high and low HPXscore

groups in the IMvigor210 (mUC) cohort. The TMB was

log2 transformed. The statistical difference was measured

with the Wilcoxon test (p = 0.0028). (B) Proportion of TMB

level in high and low HPXscore groups in the IMvigor210

(mUC) cohort. The statistical difference was measured

with a Fisher’s exact test (p = 0.001859). (C) Kaplan-Meier

survival curves show the difference in prognosis advan-

tage among four groups stratified by HPXscore and TMB

in the IMvigor210 (mUC) cohort (log-rank test, p <

0.00001). (D and E) Difference in the expression of im-

mune checkpoints (D) and immune activation-related

genes (E) between high and low HPXscore groups in the

IMvigor210 (mUC) cohort. The upper and lower ends of

the boxes represent interquartile range of values. The lines

in the boxes represent median value, and the black dots

show outliers. The statistical difference between high and

low HPXscore groups was tested by a Student’s t test.

*p < 0.05, **p < 0.01, ***p < 0.001. (F) The proportion of

immune phenotypes between high and low HPXscore

groups in the IMvigor210 (mUC) cohort. The statistical

difference was measured with a Fisher’s exact test (p =

0.033555). (G) Differences in HPXscore between different

immune phenotypes in the IMvigor210 (mUC) cohort. The

Kruskal-Wallis test was used to compare the statistical

difference between different molecular subtypes (p =

0.00072). (H) Proportion of patients with response to ICI

immunotherapy in low or high HPXscore groups in the

IMvigor210 (mUC) cohort. CR, complete response; PR,

partial response; SD, stable disease; PD, progressive

disease. CR/PR was identified as responder, and SD/PD

was identified as non-responder. The statistical difference

was measured with a Fisher’s exact test (left, p =

0.001091; right, p = 0.00317). (I) Differences in HPXscore

between different ICI immunotherapy clinical response

groups. The statistical difference was measured with the

Kruskal-Wallis test (p = 0.00028). (J) Receiver-operating

characteristic (ROC) curves measuring the predictive

value of the HPXscore, TMB, and their combination in the

IMvigor210 (mUC) cohort. The AUC was 0.636, 0.656,

and 0.702 for the HPXscore, TMB, and HPXscore com-

bined with TMB, respectively.
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indicated that hypoxia response patterns were significantly associated
with TME immune phenotypes and that the HPXscore would
contribute to the prediction of response to ICI immunotherapy for
individual.

DISCUSSION
Recently, cancer research has been transferred from only focusing on
the tumor cells to the surroundings of core tumor cells, which is
defined as the TME. The major components within the TME,
including immune cells, stromal cells, as well as the chemokines
and cytokines that they secrete, can collaborate with each other to
exhibit a chronic inflammatory, immunosuppressive, and pro-tu-
moral environment to survive and protect tumors cells under strict
immune surveillance.33
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During cancer development and progression, tumor and TME cells
might be permanently or transiently confronted with hypoxia accord-
ing to a poor blood supply.34 An aberrant vascularization-induced
hypoxic region in tumors could trigger immune tolerance by creating
a hostile hypoxic TME that can hamper antigen-presenting cell
(APC) recognition and dampen the efficacy of effector immune
cell-mediated elimination.18,35 Moreover, tumor cells surrounded
within a hypoxic TME are presumed to represent more aggressive
and drug resistance phenotypes. Hypoxia-induced adaptive responses
could concurrently activate various cellular pathways, resulting in cell
plasticity, functional heterogeneity, immune suppression, and resis-
tance to cytotoxicity.36 In this regard, several essential elements of
the hypoxia response pathway are good candidates for therapeutic
targeting. As most studies only focused on a single hypoxia-related
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gene, such as HIF1a and CA9, in regulating single or several TME cell
types, the comprehensive analyses of hypoxia in mediating the TME
immune cell infiltration are not fully identified. Determining the role
of distinct hypoxia response patterns in the TME immune cell infiltra-
tion will help us to understand the underlying mechanism of the
TME-related immune response and make current immunotherapy
strategies more efficient.

In the present study, five distinct hypoxia response patterns have been
identified through unsupervised consensus clustering. These five pat-
terns exhibited different prognosis, TME immune cell infiltration,
and biological pathway enrichment. In the meta-BLCA cohort,
HPXclusterA was characterized by a high level of TME immune
cell infiltration and activation of stroma-related pathways, and similar
traits could also be seen in HPXclusterB. However, we found that
HPXclusterA and HPXclusterB showed a high level of TME immune
cell infiltration with a poor clinical outcome. It is well documented
that appropriate localization and migration of T cells are essential el-
ements for antitumor immune surveillance. The stromal status, which
is referred to as “loose” or “dense,” might significantly influence the
migration of T cells and restrict them from entering tumor islets.37

Due to the stromal-relevant pathway activation, immune cells cannot
penetrate tumor parenchyma and were retained in the stroma
surrounding core tumor nests in HPXclusterA and HPXclusterB, re-
sulting in mismatched survival advantage, and they more likely cor-
responded to the immune-excluded phenotype. HPXclusterC and
HPXclusterE were both featured with low TME immune cell infiltra-
tion, immunity suppression, and were referred to the immune-desert
phenotype, which was associated with immune tolerance and igno-
rance, as well as lack of activated and priming T cells.38 The im-
mune-excluded and immune-desert phenotypes were regarded as
non-inflamed tumors or immune-suppressed (“cold”) tumors.39

However, high effector TME immune cell infiltration and activation
of adaptive immunity could be found in HPXclusterD, which were
characteristics of immune-inflamed phenotype, also known as a
“hot” tumor.40 Consistent with the above definitions, our subsequent
analyses showed that the angiogenesis, EMT, and pan-fibroblast
TGF-b response pathways, which were responsible for stromal activa-
tion, were remarkably enriched, whereas the CD8 T effector, antigen-
processing machinery, and immune checkpoint signatures, which
were responsible for immune activation, were strikingly suppressed
in HPXclusterA and HPXclusterB. However, the opposite patterns
were observed in HPXclusterD. All of the above findings were also
validated in the independent TCGA-BLCA cohort. With the combi-
nation of the characteristics of TME immune cell infiltration and bio-
logical pathway enrichment, the reliability of hypoxia response pat-
terns in the identification and classification of immune phenotypes
in BLCA was confirmed.

A growing body of evidence suggests that patients with a positive
prognostic value more likely exhibit an immune-inflamed TME, espe-
cially in patients with advanced solid tumors, who will have a durable
response and extended overall survival (OS) when receiving ICI
immunotherapy.38 However, not all patients treated with ICI-based
therapy experience tumor shrinkage, a durable response, or pro-
longed survival. To extend such benefits to more cancer patients, it
is necessary to understand the underlying mechanism of primary or
secondary immune escape in these patients, which disenable the
effector immune cells to eradicate the cancer cells. There are many
factors related to immune escape such as poor TME immune cell infil-
tration into tumor parenchyma, dysregulation between effector im-
mune cells (CD8 T cells) and immunosuppressive factors and cells
(Treg cells) within the TME, downregulation of the MHC on cancer
cells, and lack of strong cancer antigens or epitopes recognized by an-
tigen-processing cells or T cells.41 As our hypoxia response patterns
were able to distinguish the distinct TME immune cell infiltration
and immune phenotypes, we next determined whether our estab-
lished patterns have some relationship with tumor mutation load.
The recognition of neo-antigens induced by somatic nonsynonymous
coding mutations was the main initiator for activation of adaptive im-
munity, and the mutation landscape is regarded as a potential
biomarker for predicting the clinical responses to ICI immunother-
apies.42 Although the detection of overall neo-antigens is difficult,
the TMB, which can be easily obtained and used to assess the neo-
antigen load, has been proven to serve as good indicator for clinical
benefits in predicting the ICI response.43,44 In TCGA-BLCA cohort,
we found that HPXclusterE, which is similar to HPXclusterD in the
meta-BLCA cohort, displayed the highest mutated rate among five
distinct hypoxia response patterns, especially for TP53 and RB1,
which was regarded as a predictor for ICI treatment in some cases.
Moreover, we also found that HPXclusterE was highly enriched in
the mismatch repair signaling pathway, which might be attracted
by high genetic mutation to conduct DNA/RNA repair, resulting in
good prognosis. This may explain why HPXclusterE has a survival
advantage compared with other clusters from another side. Current
studies demonstrate that a high TMB might induce a durable clinical
response to anti-PD-1/PD-L1 immunotherapy. Therefore, the above
results indirectly demonstrate that HPXclusterE might be more sen-
sitive to ICIs and that hypoxia response patterns could be an essential
factor in regulating the clinical response to ICIs.

Furthermore, DEGs between distinct hypoxia response patterns were
reported to be enriched in stromal and immune-related biological
processes. Then, these DEGs were determined to be hypoxia pheno-
type-related genes. Considering individual heterogeneity, we estab-
lished a set scoring system, referring to the hypoxia phenotype-related
gene signature (HPXscore), to evaluate and quantify the hypoxia
response pattern of individual with BLCA. We found that the low
HPXscore group was enriched in immune activation-relevant path-
ways, which referred to an immune-inflamed phenotype, while the
high HPXscore group was enriched in stromal-relevant pathways,
which referred to an immune-excluded and immune-desert pheno-
type. In addition, these results were well validated in the IMvigor210
(mUC) cohort that immune-desert and excluded phenotypes showed
a higher HPXscore, while the immune-inflamed phenotype exhibited
a significantly lower HPXscore. Moreover, HPXclusterE, character-
ized by an immune-inflamed phenotype, showed the lowest
HPXscore with better prognosis, where HPXclusterA showed the
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highest HPXscore with poorer prognosis. All of these findings sug-
gested that the HPXscore is a reliable and robust tool for comprehen-
sive assessment of hypoxia response patterns in individualand could
be used to further identify TME immune cell infiltration and tumor
immune phenotypes. Moreover, patients with a high HPXscore
were more inclined to be associated with high malignancy clinico-
pathological traits and molecular subtypes, while the opposite pat-
terns were observed in the low HPXscore group. In addition, patients
with GU and TCGA II subtypes, which were characterized by im-
mune activation and more sensitivity to ICI immunotherapy, were
strikingly associated with a low HPXscore. Meanwhile, patients
with TCGA III/IV subtypes, which were featured by stromal activa-
tion and were less sensitive to ICI immunotherapy, were significantly
correlated with a high HPXscore.45,46 Previous studies demonstrated
that TGF-b/EMT signaling activation could result in decreased prim-
ing of effector T cells into tumor parenchyma as well as hamper their
cytotoxicity effects.47 Additionally, we found that the ICI immuno-
therapy responders have a lower HPXscore, and patients with a lower
HPXscore were more likely to benefit from ICI treatment. Consistent
with a high mutation load existing in the GU subtype, the HPXscore
was found to significantly negative correlated with TMB in both
TCGA-BLCA and IMvigor210 (mUC) cohorts. We found that a com-
bination of the HPXscore and TMB could dramatically improve pre-
dictive values when compared with the TMB or HPXscore alone.
Furthermore, there was no difference in predictive advantage of
TMB compared with HPXscore. This indicated that the response to
ICI immunotherapy was a complicated process that was associated
with many non-redundant factors, including (1) pre-existing immu-
nity, characterized by antigen processing status and CD8+ T effector
activity; (2) TMB, directly measured by mutational variates, or indi-
rectly reflected in signatures of mismatch repair response; and (3)
TGF-b/EMT signaling in full activation. All of the above results sug-
gested that our hypoxia response patterns and HPXscore, which
might influence these three main factors, would contribute to the pre-
diction of the clinical benefit to ICIs immunotherapy.

In conclusion, the HPXscore was reliable to comprehensively assess
the hypoxia response patterns of individual with BLCA, and it was
associated with clinical, cellular, and molecular features, including
clinical stages, histological subtypes, TME immune cell infiltration,
immune phenotypes, molecular subtypes, genetic variation, and tu-
mor mutation landscape. Moreover, the HPXscore could act as an in-
dependent prognostic factor for BLCA patient prognosis, as well as a
predictive factor for clinical response to ICI immunotherapy. More
importantly, this study has yielded several novel insights for exploita-
tion of hypoxia response signaling pathways for clinical application in
BLCA.

MATERIALS AND METHODS
Data collection and processing

We systematically searched publicly available gene expression data-
sets for BLCA. Samples without complete prognosis information
were removed from further evaluation. In total, 995 samples from
four microarray datasets (GEO: GSE13507, GSE32548, GSE32894,
290 Molecular Therapy: Oncolytics Vol. 22 September 2021
and GSE48075) and one RNA-sequencing dataset (TCGA-BLCA)
were merged as the meta-BLCA cohort in our study. All raw data
and clinical information from microarray datasets were obtained
from the Gene Expression Omnibus (GEO) database (https://www.
ncbi.nlm.nih.gov/geo/). Then, the raw data in the microarray dataset
were processed via robust multi-chip averaging (RMA) algorithm
background correction, log2 transformation, quantile normalization,
and annotation by the package Affy in R.48 When several probes
mapped to a single gene symbol, the highest expressed probe was an-
notated as the gene expression. The level 3 RNA-sequencing data for
fragments per kilobase of transcript per million mapped reads
(FPKM) for gene expression of TCGA-BLCA dataset were down-
loaded from the TCGA Genomic Data Commons (GDC) data portal
(https://portal.gdc.cancer.gov/). The gene expression was annotated
with the highest expression when multiple Ensembl IDs mapped to
a single gene symbol in RNA-sequencing data. Then, FPKM values
were transformed into transcripts per kilobase million (TPM), which
are more similar to gene expression frommicroarrays and more com-
parable between samples.49 The ComBat algorithm of package sva in
R was utilized to reduce the likelihood of batch effects of non-biolog-
ical technical biases from each dataset.50 Clinical data and sample in-
formation for TCGA-BLCA dataset were obtained from UCSC Xena
(https://xenabrowser.net/datapages/?hub=https://tcga.xenahubs.net:443)
or supplemental information from Robertson et al.51 Detailed infor-
mation on clinicopathological characteristics in each dataset can be
found in our previous study52 or in Tables S12 and S13. TCGA-
BLCA somatic mutation data were downloaded from the Genomic
Data Commons (https://portal.gdc.cancer.gov/) using the package
TCGAbiolinks in R.53 The called somatic variants processed with
the MuTect2 algorithm were utilized as the raw mutation count.
The TMB per megabase of each sample was calculated as the total
number of mutations counted in the whole exon territory with 38
Mb according to a previous study.54 Moreover, the IMvigor210
(mUC) dataset from patients with mUC receiving PD-L1 inhibitor
atezolizumab were also enrolled in our study to validate our findings.
The raw transcriptomic and clinical data were retrieved from
the IMvigor210 (mUC) dataset (http://research-pub.gene.com/
IMvigor210CoreBiologies) using the package IMvigor in R.45 The
raw count was also transformed to TPM to represent gene expression
in the IMvigor210 (mUC) dataset, which is more comparable to other
datasets in our study. Detailed clinical information on the IMvigor210
(mUC) dataset can be found in Table S14. Data were analyzed with
the R (version 3.5.2) and R Bioconductor packages.

Unsupervised consensus clustering for hypoxia response-

related patterns

The gene set “Reactome cellular response to hypoxia” was down-
loaded from the Molecular Signatures Database (MSigDB) of the
Broad Institute (https://www.gsea-msigdb.org/gsea/msigdb/index.
jsp). The unsupervised consensus clustering method (K-means) for
analysis of hypoxia response-related genes was applied to identify
distinct hypoxia response patterns (HPXcluster) based on Euclidean
distance and Ward’s linkage.55 A consensus clustering algorithm was
utilized to determine the number of clusters in the meta-BLCA cohort

https://www.ncbi.nlm.nih.gov/geo/
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https://portal.gdc.cancer.gov/
https://xenabrowser.net/datapages/?hub=https://tcga.xenahubs.net:443
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and further validated in TCGA-BLCA cohort. This procedure was
performed and repeated 1,000 times to guarantee the stability of clas-
sification using the package ConsensusClusterPlus in R.56

Identification of DEGs between hypoxia response patterns

According to the consensus clustering, we could successfully
classify patients into five distinct hypoxia response patterns based
on the expression of hypoxia response-related genes. DEGs between
each pattern were determined by comparing the indicated pattern
with all other patterns by using the package limma in R,57 which
estimates gene expression changes by implementing an empirical
Bayesian approach. The significance criteria for determining DEGs
were set as a false discovery rate (FDR) < 0.05 and |log2 fold change
(FC)| > 1.0.

Evaluation of infiltrating immune cells in the TME

ssGSEA is a non-parametric and unsupervised algorithm to analyze
the variation in pathway and biological process activity in a single
sample of a gene expression dataset. ssGSEA is focused on gene
sets, which are groups of genes that share common biological func-
tion, chromosomal location, or regulation.58 In this study, we used
the ssGSEA algorithm to evaluate the relative amount of infiltrating
immune cells in the BLCA TME. The marker gene sets for TME
infiltration immune cell types were obtained and merged from the
studies of Bindea et al.59 and Charoentong et al.60 (Table S15).
Both innate immune cells (e.g., DCs, eosinophils, mast cells, macro-
phages, natural killer cells, neutrophils) and adaptive immune cells
(e.g., B cells, T cells, T helper cells, CD8+ T cells, Treg cells, and cyto-
toxic cells) were investigated. The normalized enrichment score
(NES) calculated by ssGSEA was used to represent the relative
amount of each TME infiltrating cell in BLCA. Endothelial cell
and fibroblast infiltration was calculated by using the package
MCPcounter in R.61

Functional and pathway enrichment analyses

Gene-annotation enrichment analyses were used to investigate the
differences in biological processes between distinct hypoxia response
patterns through the package clusterProfiler in R.62 The significant
differential GO terms were defined with a strict cut-off of p < 0.01,
and the top 10 terms were selected to visualize. We performed a
ssGSEA algorithm to identify the difference in biological process be-
tween distinct hypoxia response phenotypes using the GSVA (gene
set variation analysis) package in R.63 The gene sets of
c2.cp.kegg.v6.2.symbols were downloaded from the MSigDB of the
Broad Institute (https://www.gsea-msigdb.org/gsea/msigdb/index.
jsp). In spite of measuring the KEGG signaling pathway, we also
curated a set of gene sets to represent specific biological processes,
which was constructed by Mariathasan et al.,45 including (1) angio-
genesis; (2) antigen processing machinery; (3) base excision repair;
(4) CD8 T effectors; (5) cell cycle; (6) cell cycle regulators; (7) DNA
damage repair 1 and 2; (8) DNA replication; (9) EMT, including
EMT1, EMT2, and EMT3; (10) Fanconi anemia; (11) homologous
recombination; (12) immune checkpoint; (13) mismatch repair;
(14) nucleotide excision repair; (15) pan-fibroblast TGF-b response
signature (pan-F-TBRS); and (16) WNT targets (Table S16).45,46,64

A correlation analysis was further performed to reveal the association
between distinct hypoxia response phenotypes and the above-related
biological pathways signature.
Establishment of hypoxia phenotype-related gene signature

We established a scoring system, termed as hypoxia phenotype-
related gene signature (HPXscore), to evaluate the hypoxia response
pattern of individuals with BLCA. The procedures for establishment
of the HPXscore were as follows: DEGs were identified from different
HPXclusters and merged as the meta-DEGs. The meta-DEGs with
significant prognosis differences were extracted as the candidate
DEGs for further analysis by using univariate Cox regression analysis.
Then, LASSO-Cox regression analysis based on the package glmnet in
R was applied to build an optimal hypoxia phenotype-related gene
signature for BLCA.65 The Cox regression model with LASSO was
used for dimension reduction to reduce noise or redundant genes.
The optimal values of the penalty parameter l were determined
through 10 cross-validations. The HPXscore of our model for each
sample was defined by the relative expression of each hypoxia pheno-
type-related gene and its associated Cox coefficient. The HPXscore =
Pn

i= 1 (coefi � Expri), where Expri is the relative expression of the
gene in the signature for patient i and coefi is the LASSO-Cox coeffi-
cient of gene i.
Statistical analyses

The statistical significance of variables between two groups was
estimated by Student’s t tests or Wilcoxon tests. In addition, for
variables in more than two groups, one-way ANOVA or Kruskal-
Wallis tests were used. The c2 test was applied to analyze correla-
tions between the HPXscore and clinicopathological parameters.
Kaplan-Meier survival curves were generated to calculate survival
rates, and the significant differences between survival curves were
determined with the log-rank test using the package survminer in
R. Correlation coefficients between TME-infiltrating immune cells,
distinct gene sets, and the HPXscore were computed by Pearson and
distance correlation analyses. A two-sided Fisher’s exact test was
used to analyze contingency tables. Univariate and multivariate
Cox proportional hazard models were used to estimate the hazard
ratios (HRs) of variables and determine independent prognostic fac-
tors and were visualized with the package forestplot in R. A nomo-
gram and calibration curves were generated with the packages rms,
nomogramEx, and regplot in R. DCA was performed to determine
whether our established nomogram was suitable for clinical use
according to the suggestion of Iasonos et al.66 A waterfall plot was
used to present the mutation landscape in patients with distinct
hypoxia response phenotypes in TCGA-BLCA cohort via packages
maftools67 and complexheatmap68 in R. The package pROC in R
was used to plot and visualize ROC curves. The area under the curve
(AUC) and confidence intervals were utilized to evaluate the
diagnostic accuracy of TMB, HPXscore, and their combination.
All statistical analyses were performed with R software 3.5.3.
Statistical significance was set at p < 0.05.
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