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Abstract

We present an object motion detection system using backscattered signal strength of passive UHF 

RFID tags as a sensor for providing information on the movement and identity of work objects

—important cues for activity recognition. For using the signal strength for accurate detection 

of object movement we propose a novel Markov model with continuous observations, RSSI 

preprocessor, frame-based data segmentation, and motion-transition finder. We use the change of 

backscattered signal strength caused by tag’s relocation to reliably detect movement of tagged 

objects. To maximize the accuracy of movement detection, an HMM-based classifier is designed 

and trained for dynamic settings, and the frequency of transitions between stationary/moving states 

that is characteristic for different object types. We deployed a RFID system in a hospital trauma 

bay and evaluated our approach with data recorded in the trauma room during 28 simulated 

resuscitations performed by trauma teams. Our motion detection system shows 89.5% accuracy in 

this domain.
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1. Introduction

For context-aware systems in indoor work settings, several types of sensors have 

been applied to capture work activities. Passive RFID tags have been used in various 

environments for monitoring object use because of their unique advantages compared to 

other sensors, such as active RFID tags, accelerometers, and computer vision. Passive RFID 

technology provides small tag sizes, suitable for different shapes and sizes of objects in 

work settings. Unlike accelerometers, passive tags operate without batteries and require 

no maintenance, and are cost-effective and readily applicable to most items including 

disposable ones. Computer vision has similar characteristics but raises privacy concerns, 

particularly in hospital settings. Vision is also less sensitive to small and randomly oriented 

objects of various shapes [1]. We focus on motion detection of used objects as a basis for 

activity recognition in indoor work settings. Our target application domain is the fast-paced, 
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high-risk environment of trauma resuscitation. Such environments can benefit from context 

awareness about the currently performed activity. While most active devices and instruments 

in medical settings such as vital sign monitors, pulse oximeters, and anesthesia machines 

provide valuable information with physiological data [2], passive devices and tools, such as 

bag-valve mask (BVM), cervical collar, and CO2 detector, need additional sensors to capture 

information about their use [3]. Detecting the motion and identity of such objects can serve 

as reliable cues about current work activities because most medical objects are uniquely 

associated with different tasks [4].

In this paper, we present a detection system for providing information on moving and 

stationary states of passive medical objects used on a patient bed of a trauma bay using 

passive ultra-high frequency (UHF) RFID technology. Important properties of our system 

are nonintrusive operation and preserving the privacy of medical teams. For the nonintrusive 

and privacy-preserving system, we employ the passive UHF RFID tags, whose working 

range is up to 11 m. This long range allows RFID reader antennas to be mounted onto the 

ceiling above the work are. The maximum range of 11 m is sufficient to interrogate tags 

from the reader antenna on the ceiling since the height of ceiling is typically no > 3 m. To 

detect movement of medical objects, the received signal strength indication (RSSI) of the tag 

is used. RSSI is RFID reader measurement of the power in received radio signals from an 

RFID tag. Since the strength of the received signal varies with the location and orientation 

of the tag [5], RSSI is a good indicator for detecting movement of tagged objects. When 

tag’s location or angle are changed relative to the reader antenna, the tag’s RSSI at the new 

location will be different from that at the previous location.

In developing a practical system, there are substantial challenges involved: (1) RSSI 

measurement tends to be significantly affected by the thermal noise at the reader side which 

results in ambiguous measurement because RSSI directly depends on weak backscattered 

signal power from the tag. The power of the backscattered signal is typically0.1 to 10 mW 

at the reader [6]. (2) Although the distribution of RSSI is often assumed as Gaussian [7,8], 

practically measured RSSI distributions are different from Gaussian due to unpredictable 

indoor propagations including constructive and destructive interference [6]. These varying 

distributions should be addressed in stochastic processing on RSSI. (3) RSSI measurement 

from a fast-moving tag over a short interval yields insufficient information on a moving 

state because the RFID system suffers from severe query-loss [9,10] resulting in lacking 

of the number of data samples to process noisy RSSI. (4) The device diversity in RSSI 

measurement causes extra amplitude in RSSI. Different RFID tags, readers and antennas, 

even from the same vendor, have different characteristics. Calibration of those devices would 

be impractical. Thus the diversity factors in RSSI measurement should be addressed when 

using RSSI from multiple devices. (5) Trauma rooms are crowded with people moving 

around the area of interest, causing interference to radio signals [4] and resulting in noisy 

RSSI.

We developed a detection system tackling the above challenges. To tackle Challenge (1) and 

(2), investigating distributions of RSSI and read rates of multiple tags in the area of interest, 

the patient bed, we designed RSSI preprocessor to reduce the variance of RSSI distribution 

introduced by the thermal noise and indoor propagation and make RSSI distribution closely 
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follow Gaussian. Due to Challenge (3) we focus on the change caused by its relocation, 

rather than information from the moving tag. We introduce frame based segmentation 

of RSSI data to detect RSSI change and use it for observations of the HMM classifier. 

Since the HMM classifier makes movement detection on a frame basis, we develop motion

transition finder to determine the exact movement time within a frame based period. To 

tackle Challenge (4) we create a feature to compensate diversity terms. we use difference 

of RSSI based on a frame basis rather than using absolute RSSI values. By differentiating 

RSSI values of two consecutive frames, common extra amplitude of each frame RSSI 

introduced by diversity factors can be eliminated. To tackle Challenge (5), we develop an 

HMM classifier based on machine learning. In addition to the interference, each of medical 

objects has its own usage and frequency of being used so we use distinct parameters of the 

classifier for each object to train for maximizing the margin between different classes in 

the presence of the interference caused by human moving. Then we develop an augmented 

HMM classifier from the naive one to increase detection performance further. All details are 

elaborated in Section 3.

We make the following contributions: First, we investigate distributions of RSSI in the 

indoor environment and find out that the distributions randomly vary with locations and 

have large variances. We propose RSSI preprocessor that process RSSI to be reliable in 

distinguishing tag’s motion and make accurate approximations to the Gaussian distribution 

for statistical processing. Second, for the detection system we present a novel method of 

constructing Markov models with continuous observations, introducing frame based data 

segmentation and motion-transition finder. The method results in a decrease in detection 

error rate by 10.8% compared to naive HMM. Third, we install a RFID system in a hospital 

trauma bay and evaluate the detection system. This result indicates that the passive UHF 

RFID tag is a new source of providing not only identification of medical objects but also 

information on their movement for context-aware systems in hospital settings. The rest 

of this paper is organized as follows. We review related work in Section 2. In Section 

3, we present effects of Multiple tag interrogation and the design of RSSI preprocessor, 

HMM classifier and motion-transition finder. In Section 4, system hardware, tagged medical 

objects and experimental results are presented. Finally, we discuss the conclusions in Section 

5.

2. Related work

In activity and motion recognition several types of sensor such as vision [11,12], 

accelerometer [13], and RFID tag [2,14] have been used. Although vision-based sensors 

are not intrusive to medical teams and provides rich contextual information, they raise 

privacy concerns in the medical domain of our context [8]. Compared to RFID tags 

whose information is affected by indoor propagation, physical accelerometer data are 

earned directly though hardwire, so accelerometers are not subject to indoor propagation. 

They however requires batteries and circuitry to work with considerable sizes, resulting in 

inapplicable to sensitive and small medical objects. Thus the passive RFID tag is decided to 

use in our system.
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Passive RFID applications using the RSSI ranging have mainly two different approaches, 

received signal strength (RSS) mapping and propagation modeling. In the RSS mapping 

method, reference tags are deployed in the area of interest. As the locations of the reference 

tags are known, k-Nearest Neighbors (kNN) algorithm is used to find the most close location 

for activity and motion recognition. Because reference tags can be placed mostly on the 

floor or walls this method only works for objects in the same plane as in reference tags and 

requires to collect manually the information of a number of reference tags. The other method 

is propagation modeling. This method is based on a propagation function of RSS versus 

distance. The distance between the reader antenna and the tag is determined by comparing 

RSS with the power function of distance. However a study [19] of wave propagation and 

backscatter communication link showed that a simple statistical channel model in general 

does not hold for indoor propagation due to multipath fading. They measured backscatter 

signal of RFID tags using a network analyzer in an office environment. We present the 

process of the raw signals to produce one statistical model.

In hospital settings for context-aware systems, some of studies used passive RFID tags to 

detect the presence of medical staff and objects [2], phase of surgical operation [15], nursing 

activity [16], and clinical intervention [14] but they detect only the presence of tags in their 

applications without detecting the movement of objects. When it comes to distinguishing if 

objects are used or not, there is no way to detect it. There are some studies on detecting 

the movement of RFID tagged objects. A study [5] uses sliding windows and sample mean 

comparison with tag’s read rates instead of RSSI. With experimental scenarios they shows, 

an accuracy of 94% for stationary objects without human presence and moving around 

the area of interest but the algorithm works poorly for moving objects showing 40–65% 

accuracy. Another study [8] uses a sliding window, a basic HMM and data interpolation and 

achieves an accuracy of 80% with people moving around the area of interest.

To increase the accuracy for crowded surroundings, we propose a novel method of 

constructing Markov model classifier with continuous observations (RSSI) that can be 

trained for surroundings. Instead of using sliding window, we develop motion-transition 

finder for exact detection time and frame based data segmentation to provide un-correlated 

observations to the HMM classifier. To statically deal with continuous observations and 

reduce the variances of noisy RSSI, we investigate distributions, read rates, query missing 

rates of RSSI and then develop RSSI preprocessor. Our approach achieves an accuracy of 

89.5% with four people moving from actual medical activities. Novel designs of HMM 

classifier and RSSI preprocessor maximizes the system accuracy in dynamic settings with 

human moving and improves by about 10.8% in crowded settings compared to a naive 

HMM.

3. Building the motion detection system

Our motion detection system is based on an HMM classifier that makes the classification of 

the tagged object states as “moving” or “stationary” with RSSI from a tag. Our method for 

motion detection relies on detecting the change of RSSI due to object relocation. To use the 

RSSI data for accurate detection of tagged-object movement, we first investigate the effects 

of multiple-tags interrogation and query-missing rate with respect to RSSI read rates and 
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distributions of measured RSSI data for statistical processing. We then construct Markov 

models with continuous observations including RSSI preprocessor, frame-based RSSI data 

segmentation and motion-transition finder.

3.1. Effects of varying tag-set size on RSSI read rates

We studied the effects of different tag-set sizes on read rates and query-missing rates (Eq. 

1) because we are tracking multiple objects in the area of interest simultaneously. We used 

an Alien Technology reader that provides RSSI in a 16-bit resolution, covering a maximum 

read range of 11 m. Based on observations of our target domain (trauma resuscitation), we 

found that up to ten tagged objects can be used simultaneously in the work area (patient 

bed). Many more tagged objects may be present in the room, but are normally kept outside 

of the work area to avoid clutter. Therefore, relatively a small number of objects are within 

the coverage of antennas focused on the work area. EPC Class-1 Generation-2 standard [17] 

supports a multi-access method for multiple-tags interrogation using a variation of slotted 

Aloha protocol [18]. The read rate is the number of tag interrogations per second. Queries 

might be missed because of collisions when multiple tags respond simultaneously and errors 

in wireless backscatter communication.

Query−missing rate = The number of missing responds from the tag
The number of Query trials by the reader (1)

We dispersed a set of tags randomly in the area of interest (around 2 m from the reader 

antenna), aligned tag antennas parallel to the reader antenna to maximize the read rate, 

and left the tags stationary. The reader was commanded 1000 times to interrogate all tags 

within the range. As the tag-set size increased, the total number of reads per second initially 

increased, but then decreased around the tag-set size of 30, while the read rate per single 

tag monotonously decreased (Fig. 1). We observed a decrease from 30.8 interrogations per 

second with a single tag to 14.2 per second with 10 tags. Query-missing rates for tagset sizes 

up to 10 tags appeared not to depend on the tag-set size and remained below 3% (see Fig. 

1, units on the right side of the chart). Reading rates for larger tag-set sizes, with 50, 100 or 

more tags, are very low, but as noted earlier, such large tag-sets usually do not appear within 

the work area. This results show that how many RSSI data can be obtained with varying 

tag-set size in a fixed time period.

3.2. RSSI preprocessor

Because RSSI is an observation of our classifier system, a statistical model of RSSI is 

required to attain emission probabilities of a number of the different observations. Another 

required property of RSSI preprocessor is to reduce the distribution of noisy RSSI to 

provide more accurate information on RSSI to the classifier. We first investigated the 

distributions and variances of measured RSSI data and then designed RSSI preprocessor. 

RSSI is a power-strength measurement of the received radio signal from a tag at the 

receiver device. Indoor radio propagation does not fit one statistical model and RF signal 

distributions at different locations are essentially unpredictable [19]. RSSI also relies on 

the weak backscattered signal power that is easily affected by the thermal noise at the 

receiver side and interfered by surroundings such as furniture and human. As a result, 
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the distribution of practically measured RSSI values has a considerably large variance 

[7,20], which results in inherently low accuracies for RSSI-based classifications [21,22]. 

Fig. 2 shows distributions of RSSI values at different locations in the area of interest. 

Those distributions are widely different and relatively large. With Gaussian distribution 

approximation, the standard deviations varied between 9.6% and 21.0% of the mean, and the 

average of their standard deviations was 15.8% of the mean.

In practice, two sets of RSSI data taken at two adjacent locations largely overlap because 

of noisy RSSI characteristics. When mapping RSSI values with respect to tag’s location, 

such overlap results in detection errors and inability to distinguish the differences in RSSI. 

Fig. 3(a) shows two measured RSSI data distributions, each averaged over 18 locations. 

The first distribution is from 18 locations (some of which shown in Fig. 2), and the second 

distribution is from adjacent 18 locations that are each 5 cm apart from the original 18 

locations. The overlapped area is 38%, which will be the error rate of distinguishing RSSI 

values from two location.

To minimize variances of measured RSSI distributions and to obtain a unique distribution, 

we applied the Central Limit Theorem (CLT) as a RSSI preprocessor. The CLT allows 

obtaining accurate approximations to the Gaussian distribution associated with sums of 

random variables [23]. As the sample size N increases (typically N ≥ 30), the distribution 

of the sample averages, x, converges to the normal distribution with μx = μx, σx
2 = 1

N σx2 [24]: 

where x1, …, xN are random variable samples with mean μx and variance σx2. Another 

property of the sample average x is to reduce the variance by a factor of N. With increasing 

sample size N the RSSI variance decreases at a rate of 1/N [23]. However the sample size N 
needs to be balanced because short RSSI transitions from fast movements might be averaged 

out. We found that the minimum required distance for detecting object’s motion is 5 cm by 

observing trauma resuscitations which is our application domain. With setting a condition 

that the overlap of processed RSSI distributions at two 5-cm-apart locations is close to 

zero (< 1%) we determined that the minimum sample size N equals 110 by calculating the 

overlap with processed RSSI. Fig. 3(b) shows that the overlapped processed RSSI values are 

0.88% with the sample size 110. The smallest read rate for the tag-set size up to 10 is 14 

reads/s (Fig. 1), so approximately 8 s are needed to read at least 110 samples. Therefore, we 

used an 8-s window for RSSI preprocessor. In the cases of fewer than 10 tags in the range 

there should be > 110 samples in an 8-s window and this will results in smaller overlap 

areas than that from 110 samples. Fig. 4 shows the processed RSSI distributions with the 

sample size of 110. Unlike the measured RSSI distributions (Fig. 2), the processed RSSI 

distributions at all locations make very close approximations to the Gaussian distribution, 

because of the CLT. The standard deviations of the estimated RSSI data are between 0.8% 

and 5.8% of the mean, an average of 2.3%. The estimator reduces the standard deviation of 

measured RSSI to 14.6%.

x = 1
N ∑i = 1

N xi (2)
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The variance of processed RSSI is reduced to 14.6% of the variance of measured RSSI and 

the distribution of processed RSSI is Gaussian. We used processed RSSI for our detection 

system as an input.

3.3. Detection system and motion-transition finder

We used non-overlapping segments (“frames”) (Fig. 5) of processed RSSI as the 

observations to an HMM classifier, which makes decisions at each frame-time instant. Then, 

motion-transition finder searches within the selected frame for the exact time of transition 

from stationary to moving state. In contrast to frame-based segmentation, a sliding-window 

method (Fig. 6) can makes decisions at each sample time instant. It, however, shares most 

of the data within the adjacent windows and produces highly correlated information, making 

it hard to distinguish the differences between two consecutive windows. We classify frame

based segments as stationary/moving and use motion-transition finder to detect the exact 

time of the movement.

After an HMM classifier marks each frame with either “moving” or “stationary” state, 

motion-transition finder searches for the exact start and end time of state transition. Fig. 

7 shows a set of frames used by motion-transition finder, with “stationary” frames at the 

start and end of the set, and one or more “moving” frames are in between. We use three 

line segments for curve fitting, because in stationary states the processed RSSI can be fitted 

with a horizontal line, and we observed that state transitions occur linearly between the 

steady states (see examples later in Figs. 11 – 13). The first segment is a horizontal line 

corresponding to the mean value of the first stationary frame. The end line segment is 

also a horizontal line at the mean value of the end stationary frame. The middle segment 

is a line connecting the horizontal lines representing the moving states. From potentially 

many middle segments, we choose the line that fits the best the processed RSSI data. The 

endpoints of this middle segment indicate the exact start and end times (in seconds) of the 

state transition (i.e., the beginning and the end of object movement).

We set the frame size to 2 s, and this size allows detecting any duration of RSSI change 

that remains in the output of the RSSI preprocessor. If the frame size were too large, 

the short durations of RSSI changes would be averaged out. Conversely, if the frame size 

were too small, the detection system would become subject to noise and interference. We 

observed object motion in trauma resuscitations and found that the shortest duration of 

object relocation is 2 s.

3.4. HMM classifier

3.4.1. Naive hidden Markov model (NHMM)—We first designed a NHMM (Fig. 

8(a)) that makes decisions whether the tagged object is moving or stationary and then 

introduced Augmented hidden Markov model (AHMM) and Simplified AHMM (SAHMM). 

Given NHMM, the Viterbi Algorithm [25] is used to find the most likely state sequence 

through the trellis (Fig. 8(b)) by maximizing the probability of the most probable state 

sequence (Eqs. 3–5).

vθ(1) = P ot θ ⋅ πθ(Initialization) (3)
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vθ(t) = vθ(t − 1) ⋅ P ot θ ⋅ ai, θ (4)

q(t) = arg max
θ

vθ(t) (5)

where 1 ≤ t ≤ T, ot = observation, θ, i= {stationary state, moving state}, πθ= initial 

probabilities of θ, ai, θ= probabilities of transitioning from itoθ, and the most likely state 

sequence = q(t).

All the parameters of NHMM are defined and explained as follows.

1) Observations.: Our system is based on RSSI which can vary with diversity of 

transmitted power, reader antenna gain and tag antenna gain associated with device 

hardware. Those devices’ diversity causes extra amplitude values in RSSI measurement. 

By differentiating RSSI values on a frame basis, we eliminate the common extra amplitude 

of each frame RSSI introduced by the diversity. For instance, the difference of sample means 

of RSSI values from a stationary tag tends to be zero regardless of extra RSSI values from 

the device diversity. Thus, we define NHMM observations to be the difference between the 

mean RSSI values of the current frame and the predecessor frame:

ot = mt − mt − 1, t ≥ 2 (6)

where t is the frame based time and mt is the mean of processed RSSI values in frame t.

2) The emission probabilities in the states.: Because processed RSSI is a Gaussian 

random variable, any liner transformation of processed RSSI produces another Gaussian 

random variable. Therefore mt is Gaussian (μmt, σmt), mt – 1 is Gaussian (μmt − 1, σmt − 1), and 

ot is Gaussian(μot = μmt − μmt − 1, σot = σmt + σmt − 1).

Using the Gaussian distribution of the observations the emission probabilities of 

observations in the stationary state and moving state are defined:

An emission probability of observation ot in the stationary state denoted byI(ot|θstationary) 

follows Gaussian(μot = 0, σot = σmt + σmt − 1). In the stationary state, μOt is zero because 

μmt = μmt − 1.

An emission probability of observation ot in the moving state denoted by I(ot|θmoving) 

follows Gaussian (μot = μmt − μmt − 1, σot = σmt + σmt − 1).

The mean and standard deviation in each state are decided and optimized with training data 

sets.

3) Optimality criterion.: The target to detect is whether an object moving. False positive 

error generates false information on the motion of moving while false negative error results 

in losing the motion information. Both types of errors should be minimized. In our context, 
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sizes of the positive (moving) and negative (stationary) classes are different. The number of 

the stationary states overruns the number of the moving states since objects are more likely 

in stationary. We use Matthew’s Correlation Coefficient (MCC) as a optimality criterion for 

our HMM classifier because it works with skewed class imbalance and takes into account 

both false positive and false negative errors [26].

4) Initial and transition probability distributions.: By supervised training, initial and 

transition probabilities are learned from respective frequencies of state transitions from 

training data sets.

3.4.2. Augmented hidden Markov model (AHMM)—With the fact that reducing the 

variance of a RSSI distribution contributes to lowering the overlapping area of distributions 

of different RSSI sets which results in errors (Fig. 3), we design AHMM (Fig. 9) to reduce 

the variance of the observation (Eq. 6) in the stationary states. In a period of frames in which 

the stationary state keeps continuing, each mean of the frame data converges the mean of the 

period data and mt − 1 can be replaced with mt − 1. The observation of continuing stationary 

states is:

ot = mt − mt − 1 (7)

mt − 1 = 1
k ∑i = 0

k − 1m(t − 1) − i (8)

where k is the number of continuing stationary states.

By processing multiple stationary frames, the variance of averaged mt − 1 is reduced, so 

the observation variance in continuing stationary states, σot
2 = σmt

2 + σmt − 1
2  becomes smaller 

than the observation distribution in Eq. 6. By the CLT, upon further increasing k, σmt − 1
2

converges zero, so the observation distribution in continuing stationary states can be reduced 

to σmt2. Fig. 10 shows an experimental result. The stationary state continues, on average, 

variances of mt − 1 are reducing 2 quickly below 0.15 × σmt − 12 at 8th continuing stationary 

state. The used RSSI values are taken ten thousand times from a stationary tag at the nine 

locations (Fig. 2).

Fig. 9 shows the states of AHMM to reduce the observation variance in the stationary states. 

In each stationary state, mt − 1 is updated using Eq. 8 and results in reduced variances of the 

observation.

3.4.3. Simplified AHMM (SAHMM)—The critical impediment in realization of AHMM 

(Fig. 9) is to train a number of states since supervised training is used in our context. To 

yield stable parameters of all the fine stationary states, the training requires much more 

training data and ground truths involving a great amount of fine handwork. Thus, we 

simplify a number of the stationary states of AHMM to a single stationary state for feasible 

training while keep the property of reducing the observation distribution. Thus SAHMM has 
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one stationary state and one moving state as in NHMM but uses the same observations of 

AHMM.

1) Observations.: We use the observations to AHMM defined in Eqs. 7 and 8 from the 

previous section.

As the stationary state continues, mt − 1 can be determined with mt − 1 and mt − 2 that is from 

the previous stationary state, without using all the history of m:

mt − 1 = mt − 2 × (k − 1) + mn − 1 /k (9)

where k is the number of continuing stationary states (Fig. 9).

Thus the observation to SHMM can be realized in a functional form with mt, mt − 1 and 

mt − 2 without using additional memories and further history of data.

2) Emission probabilities of the states.: Emission probabilities I(O|θmoving) and I(O|

θstationary) remain unchanged as in AHMM, while with training data sets, the variance of the 

emission probabilities is trained.

3) Initial and transition probability distributions.: By supervised training, those 

distributions also remain unchanged as in NHMM.

3.4.4. Overall detection system for crowded indoors scenarios—In this section, 

we show how each component of the detection system works with three experimental 

scenarios (Figs. 11 – 13). Those scenarios consist of the cases of four people moving around, 

one person moving and monotonous increment of RSSI with respect to human interference 

and detectable RSSI changes. Our area of interest is the patient bed in a trauma resuscitation 

room, surrounded by a medical team treating the patient (Fig. 14). In the scenario of four 

people moving around the bed, much bigger ripples in stationary-state RSSI values were 

observed compared to the scenario with one person moving (Fig. 12). NHMM and SAHMM 

were trained using a set of RSSI values from the first scenario (Fig. 11), and applied 

to all three scenarios. Because of the training set with heavy ripples, both SAHMM and 

NHMM might miss small changes in RSSI value (Fig. 13). Due to the reducing-variance 

characteristics of SAHMM, it detects all the movements in Fig. 11 except for the smallest 

movements (Fig. 13). NHMM, however, misses most of the smallest changes (Fig. 13).

4. Evaluation

4.1. System hardware

We installed and used commercial off-the-shelf (COTS) equipment from Alien Technology 

[27] and Confidex which includes two of RFID reader ALR-9900, two circularly polarized 

wide angle antenna ALR-8696-C and two types of passive UHF tags (ALN-9740 and 

Confidex Steelwave Micro II [28]). Fig. 14 shows the layout of the trauma bay with two 

RFID reader antennas and a patient bed. The two reader antennas point to the center of 

the bed from different viewing angles, which is close to perpendicular in three-dimensional 
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space. These two antennas allow to integrate tags at all directions and also use a better RSSI 

set between two antennas for the case that medical staffs might obscure one of the antennas’ 

line-of-sight RFID signals resulting in degrading signal strength and a insufficient data set 

in number. The RFID readers and a desktop computer are connected to a router for TCP/IP 

communication. The reader has a local clock and offers a timestamp with a millisecond 

resolution for each RSSI read. The timestamp is used for the fixed frame in time. Two 

different types of passive UHF tag are used for different materials of medical objects. One 

type is ALN-9740 for non-metallic objects, its dimensions are 98.2×12.3×0.08 mm and the 

read range is up to 11 m. The other type is Confidex Steelwave Micro II for metallic objects 

such as laryngoscope and its dimensions and read range are 38×13×4.5 mm and up to 5 m 

on metal. The communication protocol used between the readers and the passive tags is the 

EPC ClASS-1 Generation-2 standard [17].

4.2. Passive medical objects tagged

Nine passive medical objects are selected and tagged, mostly used on and near to the patient 

bed in resuscitations such as bag valve mask (BVM), collar, laryngoscope, ETtube (ETT), 

Stethoscope, Fluid bag, IV start kit, IV tubing, and thermometer (Fig. 15).

4.3. Data collection and ground truth data

With the deployment of the RFID system, RFID data and surveil-lance video are recorded 

during 28 simulated resuscitations, each about 20 min long. The recorded surveillance 

videos are used to make ground truth data. There are four resuscitation scenarios and 

each one was preformed seven times by different trauma teams. The average number of 

medical staffs moving around the area of interest is four in the resuscitations. The scenarios 

include High-speed motor vehicle collision, pedestrian struck at approx 20 mph, restrained 

passenger in head-on collision and pedestrian struck in a parking lot, involving the nine 

passive medical objects for treatments such as endotracheal intubation, administration of 

fluids and mediations, temperature control and ET-tube insertion.

4.4. Experimental results

From the 28 resuscitations, 20 resuscitations, each five resuscitations from four different 

scenarios, are taken at random and used for training NHMM and SAHMM and 8 

resuscitations are used for evaluations. The results are shown in Fig. 16. Each of tagged 

objects has distinctive usage and moving characteristic so detection accuracies are slightly 

different. RSSI data are extracted according to tag’s ID and the antenna and feed to the 

detection system with distinct parameters. Data from different antennas might produce 

contrastive detections. Then the detection with a higher data rate is taken because better 

signal reception results in higher data rates.

SAHMM shows 10.8% improvement in accuracy on average compared to NHMM. 

The object movement is identified with 89.5% accuracy on average by SAHMM. The 

stethoscope shows the lowest accuracy of 72.4% from the fact that most radio signals from 

the tag are absorbed by human body resulting in low data rates. In general, medical staffs 

carry stethoscopes on the chest or around the neck when not in-use so human body can 
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absorbs both signals from a reader antenna and backscattered signals from a tag attached on 

the stethoscope. This absorbing effect results in missing RSSI reads and a low accuracy.

5. Conclusion

In this paper, we present a detection system for providing information on moving and 

stationary motion of passive medical objects being used in the area of interest using UHF 

RFID technology. The novel methods to achieve a high accuracy are RSSI preprocessor, 

SAHMM classifier, frame based segmentation and motion-transition finder. The RSSI 

preprocessor reduces the variance of RSSI distribution introduced by the thermal noise 

and makes accurate approximations to the Gaussian distribution. To detect tagged object’s 

motion, we use RSSI change of the tag based on its relocation with frame based 

segmentation of RSSI data. The motion-transition finder determines the exact movement 

time within a frame based period. SAHMM is trained for crowded settings with human 

moving and the movement and in-use frequency of each tagged object to maximize its 

detection accuracy tackling environmental interference. Proposed SAHMM increases the 

detection accuracy by 10.8% compared to NHMM. Our system is evaluated with RSSI data 

recorded in an actual trauma bay in simulated resuscitations performed by trauma teams and 

shows 89.5% accuracy with human moving around the area of interest. From this result we 

expect that passive UHF RFID technology can be a method of providing information on 

both the movement and identification of passive medical objects for context-aware systems.
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Fig. 1. 
Read rates and query-missing rates according to the number of tags at around 2 m from the 

reader antenna. Note the read-rate units on the left side and query-missing-rate units on the 

right side of the chart.
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Fig. 2. 
Distributions of measured RSSI at different locations in the area of interest (9 locations 

out of 18 are shown), where each set contains 10,000 samples. The bell curves are fitted 

Gaussian distributions.
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Fig. 3. 
Distributions of measured RSSI and processed RSSI from 18 pairs of locations, shown as 

bell curves. In both charts, the left bell curve shows distribution averaged from 18 locations 

in Fig. 2 and the right curve shows distribution from 18 tandem locations, each 5 cm apart 

from the original. The decision boundary (thick dotted line) is set to be the midpoint of the 

means of two distributions.

(a) The measured RSSI data distributions overlap by 38%.

(b) The distributions of processed RSSI values overlap only by 0.88%.
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Fig. 4. 
Processed RSSI distributions at the locations corresponding to those in Fig. 2 using the 

preprocessor with N = 110. The bell curves are fitted Gaussian distributions.
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Fig. 5. 
Frame based (non-overlapping) segmentation of time series data.
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Fig. 6. 
Sliding window based segmentation of time series data.
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Fig. 7. 
A set of frames for motion-transition finder and a fitting curve.
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Fig. 8. 
(a) State diagram of the Naive hidden Markov model; I(x | θ) is the emission probability 

distribution where o is the observation (Eq. 6). (b) Trellis for the Viterbi Algorithm.
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Fig. 9. 
The state diagram of AHMM.
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Fig. 10. 
The ratio of variance of mt − 1 to mt − 1 as the stationary state continues. RSSI data are taken 

at the same nine locations as in Fig. 2.
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Fig. 11. 
A scenario with random tag movement and four people moving randomly in the area of 

interest, (a) Spiky lines show measured RSSI values, the smooth line shows processed RSSI, 

and rectangular boxes show the exact transition times from motion-transition finder with 

SAHMM outputs; (b) Detection output of ASHMM; (c) Detection output of NHMM at each 

frame instant.

Lee and Marsic Page 24

Sens Biosensing Res. Author manuscript; available in PMC 2018 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 12. 
A scenario with random tag movement and one person moving in the area of interest. Charts 

(a) – (c) have the same meaning as in Fig. 11.
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Fig. 13. 
A scenario with the tag’s rotating to produce small RSSI increments in monotone and one 

person moving in the area of interest. Charts (a) – (c) have the same meaning as in Fig. 11.
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Fig. 14. 
The layout and picture of the trauma bay with two RFID reader antennas and a patient bed.
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Fig. 15. 
The tagged passive medical objects; from upper left, ETT, IV start kit, thermometer and 

stethoscope. From lower left, laryngoscope, collar, IV tubing, fluid bag and BVM.
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Fig. 16. 
Motion detection performance of classifiers. (a) results from SAHMM. (b) results from 

NHMM.
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