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Abstract: Background: Type 2 diabetes mellitus and obesity are both related to endothelial dysfunction.
Postprandial lipemia is a cardiovascular risk. Notably, it is known that a high-fat diet may elicit
microvascular dysfunction, even in healthy subjects. Since anti-diabetic drugs have different
mechanisms of action and also distinct vascular benefits, we aimed to compare the results of two
anti-diabetic drugs after the intake of a lipid-rich meal on microcirculation in patients with type
2 diabetes and obesity. In parallel, we also investigated the metabolic profile, oxidative stress,
inflammation, plasma viscosity, and some gastrointestinal peptides. Subjects/Methods: We included
38 drug-naïve patients, all women aged between 19 and 50 years, with BMI ≥ 30 kg/m2. We performed
endothelial measurements and collected samples before (fasting) and after the intake of a lipid-rich
meal at 30, 60, 120, and 180 min. Patients were randomized to metformin or vildagliptin, given orally
just before the meal. Endothelial function was assessed by videocapillaroscopy and laser-Doppler
flowmetry to investigate microvascular reactivity. Besides, we also investigated plasma viscosity,
inflammatory and oxidative stress biomarkers, gastrointestinal peptides, and metabolic profile
in all time points. Results: No differences at baseline were noted between groups. Vildagliptin
increased glucagon-like peptide-1 compared to metformin. Paired comparisons showed that,
during the postprandial period, vildagliptin significantly changed levels of insulin and glucagon-like
peptide-1, and also the dipeptidyl peptidase-4 activity, while metformin had effects on plasma
glucose solely. Metformin use during the test meal promoted an increase in functional capillary
density, while vildagliptin kept non-nutritive microvascular blood flow and vasomotion unchanged.
Conclusions: After the intake of a lipid-rich meal, the use of vildagliptin preserved postprandial
non-nutritive microflow and vasomotion, while metformin increased capillary recruitment, suggesting
protective and different mechanisms of action on microcirculation.
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1. Introduction

The prevalence of obesity has continuously increased over the past decades. In parallel,
cardiovascular diseases and type 2 diabetes have also presented this increment [1]. Endothelial
dysfunction occurs at the early stages of atherosclerosis and is associated with obesity independent
of hyperglycemia [2]. Under physiological conditions, microcirculation is responsible for regulating
tissue perfusion, optimizing oxygen diffusion, nutrient delivery, and cell excreta, with marked
impairments in diabetes [3]. Many mechanisms are involved in this process, including insulin resistance,
inflammation, and oxidative stress. Overexpression of endothelin-1 and reduced bioavailability of
endothelium-derived nitric oxide are both related to hyperglycemia, but also to hyperinsulinemia.
These phenomena lead to impaired microvascular flow velocity, density, and, finally, impaired
tissue perfusion.

Although humans spend more of their day in postprandial periods, clinical studies have
investigated microvascular reactivity predominantly during fasting [4]. There is a consensus that
many chronic health problems, first noted in Western countries but that have progressively flourished
worldwide, relate mainly to dietary habits. Mostly, modern dieting is typically composed of high-calorie
meals, consisting primarily of carbohydrates and fat. However, a lipid-rich diet may cause acute
damage/dysfunction to vascular function, which suggests that atherosclerosis would also occur during
postprandial periods [5]. Previously, we have demonstrated that the intake of a lipid-rich meal induces
postprandial microvascular dysfunction in healthy subjects and patients with obesity [6].

Metformin, a first-choice drug for diabetes, proved beneficial effects on vascular function, oxidative
stress, and low-grade inflammation [7]. Dipeptidyl peptidase-4 (DPP4) inhibitors are widely used for
diabetes. They have incretin mimetic and insulinotropic actions [8], and vildagliptin belongs to this
class of drugs. Metformin and vildagliptin have complementary effects on the treatment of diabetes.
They are usually concomitantly prescribed.

There is a lack of studies aimed at testing the effects of anti-diabetic drugs on postprandial
microvascular reactivity. Possibly, some beneficial effects could be related to inflammation, oxidative
stress, or even incretin mimetic effects. We aimed to compare the effects of vildagliptin and metformin
on postprandial microvascular function in patients with type 2 diabetes and obesity. We hypothesized
that the regulatory mechanisms of microvascular actions of these drugs during the postprandial period
would be related to different mechanistic pathways.

2. Subjects and Methods

This study is a short-term randomized trial testing vildagliptin and metformin during the
postprandial period in recently diagnosed type 2 diabetic drug-naïve patients with obesity. To minimize
sex differences in vascular reactivity, we recruited only women. All patients were being followed
in the Obesity Unit of the Policlínica Piquet Carneiro at the State University of Rio de Janeiro,
a multidisciplinary outpatient care unit. This trial was conducted according to guidelines set out in
the Declaration of Helsinki, approved by the local Research Ethical Committee (COEP: 0.87.3.2012),
and registered in clinicaltrials.gov (NCT01827280).

During the first visit, the study was explained, and all patients gave us written informed consent.
A clinical exam was performed, aiming to evaluate the inclusion and exclusion criteria. We selected
only women aged 19–50 years old, with body mass index (BMI) ≥ 30 kg/m2, and an abdominal
circumference ≥ 80 cm. We also asked about concomitant drugs in use. Besides the inclusion criteria
mentioned above, these patients should be drug-näive, which means they were not allowed to be on
the use of any drugs for the treatment of hyperglycemia. Blood samples were collected to determine
whether they had or did not have the diagnosis of type 2 diabetes. They underwent a 75-g oral
anhydrous glucose tolerance test (fasting and 2 h). Type 2 diabetes was diagnosed with a fasting
plasma glucose (PG) ≥ 126 mg/dl and or post-load PG ≥ 200 mg/dl [9]. Those that were asymptomatic
repeated PG and the diagnosis was made after another fasting PG ≥ 126 mg/dl.

clinicaltrials.gov
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Exclusion criteria were: uncontrolled hypertension, pregnancy, significant illnesses, previous
myocardial infarction or angina pectoris, postmenopausal status, hematological diseases, triglycerides
≥ 400 mg/dl, smoking, known diagnosis of diabetes on use of antihyperglycemic drugs, and also
aspirin, hormonal contraceptives, anticoagulants or statins, and a significant weight loss (≥5%) during
the last six months. During the trial, no change in antihypertensive drugs or dosages was allowed.

We interviewed and selected 246 women. Forty patients met all criteria and were included.
After inclusion, two patients (one in each group) were excluded due to: non-compliance (n = 1) and
significant weight loss (n = 1) before the first test meal.

2.1. Study Design

After fulfilling the eligibility criteria, another visit was appointed to assess microvascular reactivity
at the Laboratory of Clinical and Experimental Research on Vascular Biology (BioVasc) at the Biomedical
Center on the University Campus. We advised patients not to exercise on the day before the test-meal
and also not eat anything far from their habitual dieting. Nutritive and non-nutritive microvascular
reactivity was tested at the following time points: fasting, and 30, 60, 120, and 180 min after the intake
of a lipid-rich meal without the ingestion of any drug. Then, patients were randomized 1:1 to use
metformin (1700 mg/day) or vildagliptin (100 mg/day) for 30 days. A random numerical sequence
was electronically built and resulted in an aleatory numerical sequence. Independently, it always
considered the final proportion of 1:1 of patients receiving metformin or vildagliptin. Anyone involved
in the study participated in randomization, which was performed by an outer member from the trial.

After 30 days of using the pills, another appointment was scheduled to perform the second test.
This test followed precisely the same procedure as the first one, but according to the patient’s group,
a pill of metformin (850 mg) or vildagliptin (50 mg) was ingested just before meal intake.

We opted for this design to minimize the antihyperglycemic effects of the drugs tested since
all patients had a recent diagnosis of diabetes and were all drug-naïve. Accordingly, while the first
test was performed without any medication, the second was on the use of metformin or vildagliptin.
Since we have diagnosed diabetes, we chose to keep patients on drug use before the second test.

2.2. Anthropometric, Clinical, and Laboratory Measurements

The same trained examiner collected anthropometric measurements in duplicate: the waist at
its smallest point with the abdomen relaxed and weight using a digital scale (Filizola, São Paulo, SP,
Brazil). BMI is the weight (kg) divided by the square of height (m). Blood pressure was measured twice
in the supine position with a 5-min interval (multiparameter patient monitor, Lifewindow LW6000;
Digicare Biomedical Technology, West Palm Beach, FL, USA).

2.3. Lipid-Rich Meal

This meal consisted of foods rich in total fat, especially saturated fat, based on whole milk with
chocolate, bread croissant-type with butter, cheddar cheese, and salami, with the following amounts:
whole milk (200 mL), chocolate (10 g), margarine (20 g), croissant (1 unit), cheddar cheese (60 g),
and salami (31 g). This meal had 564.6 kcal, with 28.9%, 20.7%, and 69.7% of carbohydrates, proteins,
and total fat. Saturated fat represented 21.9 g of the total fat. We have previously validated this meal
as a challenge to microvascular function, even in healthy subjects [6].

2.4. Microvascular Reactivity and Vasomotion

After a 12-h fast, patients were accommodated in a room with a temperature at 22◦ ± 1◦C for
30 min before the beginning of the test. They were comfortably seated in a chair with the left arm
put at the heart level and had the arm blood pressure measurement carried out in this position.
The forearm and hand (dorsal part up) were put to rest on a cushion, and the 3rd finger was placed
on a pedestal-mounted in the X-Y status of a Leica DM/LM microscope (Leica, Wetzlar, Germany).
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The top of this finger was gently immobilized by a clip to avoid minimum movements. Experiments
were carried out with the continuous recording of temperature from the finger skin.

Videocapillaroscopy at baseline and after 4 min ischemia assessed the nutritive skin
microcirculation. It was performed at the dorsum of the third finger and analyzed according to our
standardized well-validated methodology previously described [10]. The same observer performed
and read the exam, but was blinded to the patient’s group. Functional capillary density (FCD) at
baseline and during post-occlusive reactive hyperemia (FCD during PORH) was assessed, which,
respectively, represent the number of capillaries/mm2 with blood flow at baseline and after ischemia
with 250×magnification. We employed this technique five times (before (fasting) and at 30, 60, 120,
and 180 min after lipid-rich meal intake).

We also assessed non-nutritive skin microflow and microvascular vasomotion by laser-Doppler
flowmetry (LDF; Perimed AB, Stockholm, Sweden). These measures were continuously made by
a probe positioned at the dorsal side of the left wrist. Absolute amplitude variations within each
frequency band were analyzed, as well as their normalized values, which are the interval of mean
amplitude divided by the total spectrum mean amplitude [11]. We used Perisoft software (PSW version
2.50, Perimed AB, Stockholm, Sweden) for data analysis and fast Fourier transform to determine the
contribution of different vasomotion frequency components to signal variability. We have assumed five
frequency intervals, as previously defined, in the spectrum between 0.01 and 1.6 Hz: (a) endothelial
(0.01–0.02 Hz); (b) neurogenic (0.02–0.06 Hz); (c) myogenic (0.06–0.15 Hz); (d) respiratory (0.15–0.4 Hz);
and (e) cardiogenic (0.4–1.6 Hz) activities [12].

2.5. Plasma Viscosity

Plasma viscosity was assessed at all-time points above described and according to a previously
validated protocol [13]. Immediately after blood collection, 5 mL of blood was centrifuged for
5 min at 1500/g. The supernatant was collected, and 0.5 mL was used to test plasma viscosity (ηp),
which was assessed with a cone-in-plate viscosimeter (DV-II+ PRODigital, Brookfield Engineering
Labs, Middleboro, MA, USA) at 230 s−1 shear rates at 37 ◦C. Results were expressed as mPascal ×
sec (mPa.s).

2.6. Biomarkers of Low-Grade Inflammation, Oxidative Stress, and Gastrointestinal Peptides

All assays were performed according to manufacturer protocols in the BioVasc or in
the Lipids Laboratory at Biomedical Center. Plasma levels endothelin-1 were evaluated by
Quantikine®Endothelin-1 ELISA kits (R&D Systems, Minneapolis, MN, USA). For the determination
of serum levels of oxidized low-density lipoprotein (LDL), we used the Mercodia ELISA kit (Mercodia,
Uppsala, Sweden). The intra- and interassay precisions were <10%.

Active glucagon like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) were
quantified by sandwich high-sensitivity ELISA chemiluminescent assay (Merck-Millipore, Billerica,
MO, USA). Multiplexing analysis determined levels of insulin and glucagon by Magnetic Milliplex®

MAP kits (EMD Millipore, Billerica, MA, USA). All intra- and interassay precisions were <10% and
<20%, respectively.

DPP4 activity was determined by glycyl-prolyl-paranitroanilide (Gly-Pro-pNA, Sigma-Aldrich,
Saint Louis, MO, USA) as a chromogenic substrate. After an incubation period, the activity of DPP4
was determined by comparing the optical density of each sample with the optical density derived from
the p-nitroaniline standard curve generated by data analysis software (KC Junior, Bio Tek, Winooski,
VT, USA). Results are expressed as µM of p-nitroaniline/mL/min. The sensitivity of this method was
0.1 µM/mL/min, and the intra-assay precision was <3%.

Ultrasensitive C-reactive protein (CRP) was tested by the automated analyzer A25 BioSystems®

(Biosystems SA, Barcelona, Spain) and was measured by turbidimetry using the high-sensitivity latex
method. PG, total cholesterol (TC), high-density lipoprotein cholesterol (HDL-c), and triglycerides (TG)
were automated evaluated (A25 BioSystems®, Biosystems SA, Barcelona, Spain) spectrophotometrically
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by glucose oxidase/peroxidase, cholesterol oxidase/peroxidase, direct detergent, and glycerol
3-phosphate/peroxidase, respectively. LDLc was calculated using the Friedewald equation [14].

2.7. Statistics

We used GraphPad Prism® 5 (GraphPad Software Inc., San Diego, CA, USA) for statistical
analysis. The Gaussian distribution was checked. Data are expressed as mean ± SD. We employed
the unpaired t-test and U test according to data distribution to compare groups. The behavior of gut
peptides and metabolic profile during postprandial states are distinct from what we expect to occur in
microvascular tissue, since periods of intervals between one measure to the other let microcirculation
return to its resting state. Therefore, to optimize and standardize data obtained during fasting plus
the postprandial period, we performed individual regression equations for modeling the relationship
between independent (time) and dependent variables (e.g., components of microvascular function).
A regression line was obtained, and the intercept was the point where it crosses the axis of the dependent
variable. Intercepts were compared between groups. We used the G*Power 3.1.9.2 (Universit ät Kiel,
Germany) to calculate the sample size of 17 patients/group. We expected a dropout rate of 20% and
a total of 40 patients (FCD during PORH for group 1 and 2, respectively, of 22.8 and 32.6 cap/mm2;
SD within each of 8.0 cap/mm2 according to Buss el al. [11]; effect size of 1.251; α probability error of
0.05; and a power of 0.95). A p-value < 0.05 was considered statistically significant.

3. Results

Thirty-eight patients aged 39.4 ± 6.5 years with BMI 37.3 ± 5.0 kg/m2 completed the study.
At baseline, groups were the same concerning clinic-anthropometric and laboratory data (Table 1).
They also had the same plasma viscosity, respectively, for vildagliptin and metformin groups (1.9 ±
0.1 vs. 1.8 ± 0.1 at 30 mPa.s, p = 0.36, and 1.8 ± 0.1 vs. 1.8 ± 0.1 at 50 mPa.s, p = 0.41). Additionally,
considering the intercepts derived from the regression lines obtained during the test meal, groups did
not have any significant differences between them at baseline (Table 2). This comparison between
groups at the second test meal demonstrated that GLP-1intercept was different, possibly due to changes
in the vildagliptin group (Table 2). Besides this difference in GLP-1intercept in paired comparison in
the vildagliptin group, insulinintercept and DPP4 activityintercept also changed. Vildagliptin use did not
alter PGintercept, while metformin influenced only PGintercept results without any other paired effects
(Table 2). No significant differences in plasma viscosityintercept were noted.

Table 1. Comparisons between vildagliptin and metformin groups on the clinic-anthropometric and
laboratory variables at baseline.

Vildagliptin
(n = 19)

Metformin
(n = 19) p-Value

Clinic-anthropometric aspects

Age (years) 39.0 ± 5.3 39.8 ± 7.7 0.44

Weight (kg) 94.0 ± 14.0 99.5 ± 16.1 0.31

BMI (Kg/m2) 36.0 ± 3.0 38.5 ± 6.1 0.25

Waist Circumference (cm) 105.6 ± 10.5 106.55 ± 12.0 0.51

Hip Circumference (cm) 116.1 ± 9.0 122.7 ± 11.9 0.09

WHR 0.91 ± 0.05 0.88 ± 0.07 0.57

Systolic BP (mmHg) 131.5 ± 20.9 134.6 ± 27.2 0.75

Diastolic BP (mmHg) 84.0 ± 13.4 83.0 ± 13.1 0.97

Mean BP (mmHg) 100.0 ± 15.6 100.2 ± 17.2 0.86

Fat mass (%) 39.5 ± 3.9 41.1 ± 4.2 0.29
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Table 1. Cont.

Vildagliptin
(n = 19)

Metformin
(n = 19) p-Value

Clinic-anthropometric aspects

Lean mass (%) 60.4 ± 6.5 59.2 ± 6.1 0.30

Laboratory aspects

Insulin (mIU/l) 1.8 ± 0.9 1.9 ± 1.2 0.75

PG (mg/dl) 200.3 ± 95.1 190.3 ± 74.0 0.88

Post-load PG (mg/dl) 253.4 ± 60.9 255.9 ± 56.9 1.0

HbA1c (%) 8.0 ± 1.8 7.8 ± 2.0 0.64

Total Cholesterol (mg/dl) 183.9 ± 36.7 198.0 ± 37.8 0.18

Triglycerides (mg/dl) 161.0 ± 79.8 141.2 ± 78.7 0.28

HDL-cholesterol (mg/dl) 43.0 ± 8.2 46.7 ± 11.3 0.38

LDL-cholesterol (mg/dl) 108.6 ± 26.3 112.90 ± 25.9 0.13

VLDL-cholesterol (mg/dl) 32.3 ± 16.0 28.3 ± 15.7 0.29

C-Reactive Protein (mg/dl) 1.1 ± 1.4 0.9 ± 0.6 0.94

GIP (pg/mL) 24.3 ± 14.6 20.3 ± 12.3 0.32

GLP-1 (pM/l)) 1.1 ± 1.0 1.0 ± 0.7 0.98

Glucagon (pg/mL) 23.5 ± 20.7 31.5 ± 53.5 0.53

LDLox (U/L) 74.8 ± 31.3 62.1 ± 16.8 0.24

Endothelin-1 (pg/mL) 1.7 ± 0.5 1.6 ± 0.5 0.83

DPP4act (uM/mL/min) 9.4 ± 3.5 9.6 ± 3.7 0.86

Data are expressed as mean ± SD. BMI–body mass index; BP–blood pressure; HbA1c–glycated
hemoglobin; PG–plasma glucose; TC–total cholesterol; TG–triglycerides; HDL–high-density lipoprotein;
LDL–low-density lipoprotein; VLDL–very low-density lipoprotein; GIP–Glucose-dependent insulinotropic peptide;
GLP-1–glucagon-like peptide-1; LDLox–oxidized low-density lipoprotein; DPP4act–Dipeptidyl peptidase-4 activity.

Table 2. Effects of a lipid-rich meal with and without vildagliptin or metformin use on
metabolic and inflammatory biomarkers, gastrointestinal peptides, and plasma viscosity during
the postprandial period.

Vildagliptin
Baseline

Vildagliptin
Post-Treatment

Metformin
Baseline

Metformin
Post-Treatment

PGintercept 226.8 ± 93.0 216.3 ± 109.2 213.8 ± 80.1 175.3 ± 61.7 ***
Insulinintercept 847.8 ± 476.7 1034 ± 636.1 *** 1001 ± 526.2 993.5 ± 415.7

Total Cholesterolintercept 180.3 ± 36.8 177.2 ± 40.4 188.5 ± 35.6 184.7 ± 27.6
Triglyceridesintercept 157.4 ± 75.5 146.2 ± 80.4 135.9 ± 74.4 144.7 ± 67.6

HDL-cholesterolintercept 41.7 ± 8.5 42.9 ± 9.5 44.1 ± 10.9 43.5 ± 9.5
LDL-cholesterolintercept 107 ± 27.0 102.1 ± 22.1 116.8 ± 23.4 112.1 ± 21.7

VLDL-cholesterolintercept 31.0 ± 16.1 26.1 ± 8.9 27.4 ± 15.2 29.3 ± 13.6
GLP-1intercept 2.5 ± 1.9 5.3 ± 4.1 ** 2.1 ± 1.1 2.3 ± 1.7 &&&

Glucagonintercept 15.4 ± 28.4 26.6 ± 25.3 29.0 ± 43.6 28.1 ± 40.4
LDLox intercept 44.6 ± 59.4 72.2 ± 31.0 61.5 ± 17.8 61.4 ± 21.4

Endotelinintercept 1.5 ± 1.3 1.6 ± 0.5 1.6 ± 0.5 1.6 ± 0.6
DPP4 actintercept 10.3 ± 3.4 7.6 ± 3.0 *** 9.6 ± 3.6 9.2 ± 3.7

PlasmaViscosity 30mPa.sintercept 1.8 ± 0.1 1.8 ± 0.1 1.9 ± 0.1 1.9 ± 0.2
Plasma Viscosity 50mPa.sintercept 1.8 ± 1.1 1.8 ± 0.1 1.7 ± 0.5 1.8 ± 0.2

Data are expressed as mean ± SD of Variableintercept. * Paired comparisons: ** p < 0.01; *** p < 0.001. & Unpaired
comparisons: &&& p < 0.001. Legends: BMI–body mass index; BP – blood pressure, HbA1c – glycated hemoglobin,
TC–total cholesterol, TG–triglycerides; HDL–high-density lipoprotein cholesterol; LDL–low-density lipoprotein
cholesterol; VLDL–very low-density lipoprotein cholesterol; GLP-1–glucagon-like peptide-1; PG–Plasma glucose;
LDLox–oxidized low density lipoprotein; DPP4act–Dipeptidyl peptidase 4 activity.
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Results on microvascular reactivity are depicted in Tables 3 and 4. Concerning comparisons
between groups on nutritive microvascular reactivity at baseline, any difference was observed, but we
noticed that metformin showed higher FCDintercept during PORH compared to the vildagliptin group
(Table 3). This finding points to beneficial aspects of metformin related to capillary recruitment during
PORH (nutritive microflow) even after the intake of a lipid-rich meal. We also performed a paired
analysis, but no significant changes were observed.

Table 3. Effects of vildagliptin and metformin on postprandial nutritive microvascular reactivity.

Nutritive Microvascular
Reactivity.

Vildagliptin
Baseline

Vildagliptin
Post-Treatment

Metformin
Baseline

Metformin
Post-Treatment

Resting FCDintercept 28.4 ± 13.2 33.4 ± 12.6 36.1 ± 16.2 43.1 ± 14.4

FCD during
PORHintercept

31.1 ± 15.9 29.1 ± 13.8 38.7 ± 19.6 45.1 ± 14.5 &

Data are expressed as mean ± SD. & Unpaired comparison: & p < 0.05, FCD–functional capillary density,
PORH–post-occlusive reactive hyperemic.

Table 4. Effects of vildagliptin and metformin on postprandial non-nutritive microvascular reactivity
and vasomotion.

TIME (min)

Group Baseline 30 60 120 180

Non-nutritive microflow

Mean Value (PU)
post-treatment MET 12[5.9–15.7] 10.2[5.7–12.3] 10.1[5.4–13.2] 10[5.5–11] 10.4[5.6–16]
post-treatment VIL 13.1[8.5–2] 12.3[7.8–18.4] & 12[7.5–18] & 11.4[5.7–18] & 10.9[5.6–17.7]

Mean Total (PU)
post-treatment MET 0.2[0.1–0.3] 0.1[0.1–0.3] 0.1[0.1–0.3] 0.1[0.1–0.2] 0.1[0.1–0.2]
post-treatment VIL 0.1[0.1–0.3] 0.2[0.1–0.3] 0.1[0.1–0.3] 0.1[0.1–0.2] 0.1[0.1–0.2]

Microvascular vasomotion

Total Frequency
interval (Hz)

post-treatment MET 32.4[14.2–65.3] 27.3[12.9–67.2] 25.7[13.0–66.4] 23.3[14.2–39.9] 22.2[15.2–48.6]
post-treatment VIL 29.0[20.6–59.7] 33.1[18.6–54.3] 30.6[19.1–52.5] 30.0[5.5–48.7] 31.3[16.4–50.0] &

Endothelial (Hz)
post-treatment MET 4.2[2.2–7.7] 3.7[2.1–6.4] 3.9[2.5–8.8] 4.1[2.5–7.0] 4.4[1.8–8.6]
post-treatment VIL 4.7[3.1–7.6] 3.9[2.2–10.9] 5.3[2.0–9.0] 4.9[2.6–8.9] 4.8[2.4–7.4]

Sympathetic (Hz)
post-treatment MET 3.8[2.2–4.9] 3.7[2.4–6.1] 3.7[2.3–5.3] 3.73[2.39–5.6] 4.0[2.1–5.5]
post-treatment VIL 3.7[1.8–5.3] 3.9[1.8–6.1] 3.9[1.8–9.4] 4.5[2.1–10.0] 3.9[2.1–8.4]

Myogenic (Hz)
post-treatment MET 2.3[1.6–3.5] 2.3[1.7–3.5] 2.2[1.6–2.9] 2.3[1.6–3.7] 2.2[1.8–3.8]
post-treatment VIL 2.6[1.7–4.1] 2.3[1.7–3.5] 2.2[1.8–3.2] 2.3[1.7–4.2] 2.1[1.7–3.8]

Respiratory (Hz)
post-treatment MET 1.3[1.1–1.5] 1.3[1.1–1.6] 1.3[1.0–1.5] 1.3[1.0–1.5] 1.7[1.0–1.5]
post-treatment VIL 1.2[0.9–1.4] 1.2[0.8–1.5] 1.2[0.8–1.8] 1.1[0.1–1.5] 1.2[0.9–1.5]

Cardiogenic (Hz)
post-treatment MET 0.7[0.5–0.8] 0.7[0.6–0.8] 0.7[0.6–0.8] 0.7[0.6–0.8] 0.7[0.6–0.8]
post-treatment VIL 0.7[0.6–0.8] 0.7[0.6–0.8] 0.7[0.5–1.0] 0.7[0.5–0.8] 0.7[0.5–0.8]

Data are expressed as medians [1st–3rd tertiles]. & Unpaired comparisons: & p < 0.05; PU–Perfusion units; Hz–Hertz;
MET–Metformin group; VIL–Vildagliptin group.

Data on non-nutritive microflow and vasomotion during the test meal are depicted in Table 4.
Baseline comparisons between groups did not show any significant differences. Still, at the second test
meal, vildagliptin showed higher values of microflow during almost all of the tested period (from 30 to
180 min), while it also promoted a higher total frequency interval at the end of the postprandial period
(180 min). These findings point to the beneficial effects of vildagliptin on non-nutritive microflow
and vasomotion. Considering each of the five components of vasomotion separately, we did not
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notice any differences. We additionally investigated paired changes and observed no difference in the
vildagliptin group concerning vasomotion. In contrast, metformin changed it during the postprandial
state, resulting in lower mean values of vasomotion (p < 0.05), which was more relevant at the end
of the postprandial period, as follows: 30 min (11.4[7.8–14.2] vs. 10.2[5.7–12.3] Hz; p = 0.03), 60 min
(11.3[8.1–15.8] vs. 10.1[5.4–13.2] Hz; p = 0.04), and 120 min (10.7[7.4–16.6] vs. 10[5.5–11] Hz; p = 0.04).

4. Discussion

Although the benefits promoted by metformin and DPP4 inhibitors on controlling diabetes are
well-defined, many investigators have also shown the effects of these drugs beyond glycemia [15,16],
especially on endothelial function. Until now, no study compared their impact during the postprandial
period after a lipid-rich meal. In this study, we investigated it and observed that both drugs have some
benefits. Metformin promoted a marked impact on postprandial nutritive microflow, i.e., capillary
recruitment. Vildagliptin showed benefits on postprandial non-nutritive microflow and vasomotion.
To investigate possible mechanistic pathways, we also assessed many biomarkers related to metabolic
profile, gastrointestinal peptides, inflammation, and oxidative stress.

In healthy individuals, the physiological increase of postprandial insulin levels reduces
the endogenous very low-density cholesterol and inhibits lipolysis through activation of the
lipoprotein-lipase. After the intake of a lipid-rich meal, patients with obesity and diabetes present
an exaggerated and prolonged elevation in triglycerides and inflammatory markers [17], reaching a
peak after 4 h that lasts for up to 8 h. This phenomenon may predispose them to alterations on lipid
metabolism with a trend towards the development of atherosclerosis [18] named as dietary lipotoxicity.
Endothelial cells may be particularly susceptible to this damage [19]. Insulin in its physiological
role acts on vascular tissue promoting increments on blood flow and tissue perfusion, expressed by
increased capillary recruitment. In a previous study, we observed the opposite. We compared patients
with obesity and controls and noticed that a lipid-rich meal might cause postprandial microvascular
dysfunction, even in lean controls [6].

Dipeptidyl peptidase-4 is expressed on endothelial cells, especially in the microcirculation [20].
Its activity and expression are increased in vitro by high glucose only in microvascular endothelial
cells [21]. This phenomenon provides a rationale for the inhibition of DPP4 to protect the
microcirculation from hyperglycemia. In a recent study, we noted that DPP4 activity was associated
with early markers of endothelial proinflammatory activation and microvascular function [22].
Besides, other data also suggested that DPP4 inhibitors may benefit not only the micro but also
the macrocirculation [23]. Possible benefits may involve GLP-1 as a mediator, which is being viewed
as an endogenous protective factor for the vascular system, especially when it peaks during a meal.

Metformin acts distinctively and possibly exerts its endothelial effects through AMP-activated
protein kinase activation, which leads to phosphorylation of endothelial nitric oxide synthase
resulting in vascular protection [7]. Metformin’s vascular actions also appear to the increase
endothelium-derived hyperpolarizing factor and to reduce the production of derivatives from the
cyclooxygenase pathway [24]. Both processes involve the improvement of endothelial function and
occur predominantly on micro than macrocirculation. Therefore, it is not surprising to detect different
mechanisms of action on postprandial microvascular reactivity according to the particular drug tested.

DPP4 inhibitors and metformin may also influence lipids, but results are inconsistent across
trials [25–27]. An extensive meta-analysis has suggested that DPP4 inhibitors can lower TC and TG,
probably due to effects of the GLP-1 receptor stimulation on cholesterol metabolism [28]. The incretin
effect seems to reduce intestinal lymph flow, triglycerides absorption, and apolipoprotein synthesis,
thus being able to limit the flow of triglycerides to circulation [29]. Studies evaluating incretin levels
on the postprandial period in diabetes show distinct responses depending on fatty acids offered by
the meals. We hypothesize that high levels of saturated fat that we provided to patients could have
limited incretin effects on lipid metabolism since diets rich in monounsaturated fatty acids act as more
potent stimulators on GLP-1 and GIP [30] than the one we have opted to test.
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Although we found an increase in GLP-1 and insulin, as well as an expected reduction in DPP4
activity with vildagliptin, no significant change in plasma glucose was observed, which could not be
explained only by the intrinsic properties of the drug. The extremely short-term use of vildagliptin
possibly influenced the absence of these results, but this finding also reinforces the concept that this
drug acted on microcirculation through other mechanisms. On the counterpart, we could not exclude
the effects of metformin on plasma glucose during the postprandial period as a possible influence on
the observed results on nutritive microflow and vasomotion.

Patients with diabetes and obesity need to ingest adequate amounts of fat and also to follow a
dietary pattern within the nutritional recommendations. In clinical practice, it is widely known that
many of them do not follow these guidelines, especially those without regular follow-up. Unfortunately,
these patients may eat large amounts of fat daily. Intake of fat per meal may vary from 20 to 70 g [31],
which could be associated with atherogenic lesions and be an independent cardiovascular risk
factor [32]. Capillary recruitment is an important phenomenon that will improve tissue perfusion
and gas/nutritive exchanges, as it is directly related to vasomotion and also to tissue nutrition and
glucose metabolism [33]. Gradual deterioration of meal-related capillary recruitment was previously
observed in patients with metabolic syndrome and diabetes [34]. The critical point of this finding
is that this impairment in microvascular function paralleled decrements in insulin sensitivity and
postprandial hyperglycemia. Therefore, possible drugs that interfere with microvascular function
during the postprandial period may benefit glucose control, and this study adds knowledge to the
pathophysiology of microvascular damage in diabetes.

Many biomarkers were tested without significant changes. Metformin improved glucose tolerance,
and this could be related to improved microvascular function during the postprandial period,
while vildagliptin’s effects after the intake of a lipid-rich meal were glucose-independent, with possible
pleiotropic effects on microcirculation.

Our study limitation includes the small sample size, sex bias, and pre-test conditions. We strictly
calculated the sample size concerning the primary endpoint (microvascular reactivity). The other
investigated data, even those reaching statistical significance, should be viewed with caution.
Microvascular changes observed after the use of both drugs were well demonstrated, but a further
study with a bigger sample size is necessary to better determine the consequences of these drugs on
the other tested variables. Additionally, we tested only women, and the results we found are limited to
this group. Although we had advised about dieting and exercise before the test-meal day, we cannot
assure they followed it, but we ensure that all patients did a 12 h fast before the tests.

In conclusion, we observed that vildagliptin and metformin were both able to improve postprandial
microvascular function, probably through distinct mechanisms of action on the microcirculation.
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