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tuning up microbiome analysis to 
monitor WWtps’ biological reactors 
functioning
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Wastewater treatment plants (WWtps) are necessary to protect ecosystems quality and human health. 
Their function relies on the degradation of organic matter and nutrients from a water influent, prior to 
the effluent release into the environment. In this work we studied the bacterial community dynamics 
of a municipal WWTP with a membrane bioreactor through 16S rRNA gene sequencing. The main 
phyla identified in the wastewater were Proteobacteria, Bacteroidetes, Chloroflexi, Planctomycetes 
and Actinobacteria. The WWTP is located in Spain and, like other studied WWTP in temperate climate 
zones, the temperature played a major role in community assembly. Seasonal community succession 
is observed along the two years sampling period, in addition to a continual annual drift in the microbial 
populations. the core community of the WWtp bioreactor was also studied, where a small fraction of 
sequence variants constituted a large fraction of the total abundance. this core microbiome stability 
along the sampling period and the likewise dissimilarity patterns along the temperature gradient makes 
this feature a good candidate for a new process control in WWtps.

Contaminant removal from industrial and urban wastewater is a capital issue for the protection of the natural 
environment and human health. Most Wastewater Treatment Plants (WWTPs) rely on conventional biological 
treatment systems, such as activated sludge processes. In combination with different redox conditions (anaero-
bic, anoxic and aerobic), these biological processes assure the removal of organic matter and nutrients1. As the 
most common biological wastewater treatment application, activated sludges are complex microbial ecosystems 
composed of Bacteria, Archaea, Eukarya and viruses2,3. Recently, Membrane Bioreactor (MBR) technology in 
wastewater treatment has become a common practice globally. This process combines efficient biological degra-
dation by activated sludge with a direct solid-liquid membrane separation, offering several advantages over other 
systems such as a superior effluent quality, high biodegradation capacity and low sludge production4,5. Developed 
activated sludge heavily depends on its microbial populations for the removal of nutrients and organic pollutants 
and hence, the depuration performance of WWTPs. Understanding the composition, structure and functioning 
of these microbial communities is essential for constructing improved wastewater treatment plants6.

Activated sludge bacterial communities have been widely studied either by culture-dependent methods or by 
molecular approaches revealing, on one side a high bacterial diversity, on the other the fact that a small fraction 
of taxa accounted for the majority of total abundance7,8. In previous works, Proteobacteria was the most abundant 
phylum in WWTPs (accounting for 30–80% of the total abundance), followed by Bacteroidetes, Firmicutes and 
Actinobacteria9–13. These communities include taxa involved in different metabolic pathways (nitrogen fixation, 
nitrification, denitrification, sulphur oxidation, etc.); physiological groups like anaerobic, aerobic, phototrophic, 
heterotrophic, etc.; and inter-species relationships systems (i.e. quorum sensing)14. Furthermore, microbial pop-
ulations inhabiting WWTP bioreactors can differ among different stations and over time, and their biodiversity 
is thought to play an important role in enabling and facilitating particular ecosystem functions, such as nutrients 
removal. Predicting the behaviour of particular populations and communities under different situations and 
how these are linked to the performance of a particular ecosystem process, will improve the efficiency of critical 
processes in WWTP communities15.
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WWTP performance should guarantee a certain effluent quality which will vary according to the posterior 
uses of water. Different techniques have been developed to measure activated sludge quality, such as Sludge Biotic 
Index (based on the presence and abundance of certain protists) or the Sludge Index (considering macroscopic 
and microscopic activated sludge features)16–18. A complementary tool to control microbial community and acti-
vated sludge stability based on the bacterial populations is necessary to assess WWTP performance and prevent 
activated sludge disruptions. High-throughput sequencing (HTS) of conserved regions in microbial genomes (i.e. 
bacterial 16S rRNA), are nowadays considered the most reliable and cost-effective method to study the microbial 
composition and ecological dynamics of WWTPs2,19.

The seasonality of natural ecosystems such as oceans, freshwater or soils has been widely studied with HTS, 
but little attention has been given to anthropic ecosystems. Indeed, in the activated sludge microbial commu-
nity, seasonal dynamics may affect the performance and stability of organic material and nutrient removal 
(nitrogen and phosphorus) in WWTPs8,20. This aspect should be studied in more detail with the aim of using 
tag-sequencing as routine technology as a means of learning about microbial ecology in WWTPs. Furthermore, 
it is necessary to understand the dynamics of microbial communities and their seasonal variations for predicting 
undesirable changes in the functional diversity of activated sludges, for a better control over operational param-
eters of WWTPs.

In this work, we have studied monthly the microbial community dynamics of the three reactors of a full-scale 
municipal WWTP located in North-East of Spain over a period of 2 years. We have defined the core microbiome 
of this WWTP, its inter-reactor variability and its evolution along time. The results showed a seasonal community 
variation observed in the full bacterial community that does not exist in the core microbiome. The core microbi-
ome preserved a narrower range of stability while displaying the annual drift trend, making it a good candidate to 
be considered as a new WWTP process control indicator.

Results
Bacterial community composition. A total of 66 mixed liquor samples were analysed from a full scale 
MBR-WWTP. Samples were taken monthly along two years in the three compartments of the reactor, allowing the 
evaluation of annual community variability. A total of 3,454,577 good quality 16S rRNA sequences were obtained, 
resulting in 6,245 Amplicon Sequence Variants (ASVs). ASVs methods allow the distinction of sequences differ-
ing by as little as one nucleotide21.

Taxonomic assignation against SILVA (release 132) allowed the identification of 39 phyla. We considered 
as main phyla those whose abundance was higher than 1% on at least one sample (Fig. 1). The average rela-
tive abundances, of sequence reads for the main phyla in all stages were as follows: Proteobacteria (consider-
ing Alpha-, Beta-, Delta- and Gammaproteobacteria) 30.18% ± 3.84%, Bacteroidetes 23.12% ± 5.12%, Chloroflexi 
17.15% ± 3.55%, Planctomycetes 7.53% ± 2.10%, Actinobacteria 7.20% ± 3.25%, Acidobacteria 5.63% ± 1.52%, 
Patescibacteria 1.74% ± 1.17%, Firmicutes 1.66% ± 1.11%, Verrucomicrobia 1.25% ± 0.44%, Nitrospirae 
0.51% ± 0.54%. All those phyla, except Nitrospirae, that is only present in spring and summer samples, tended 
to be persistent over the 2-year sampling period. The phylum Proteobacteria is more abundant in winter and 
spring samples, and is mainly represented by the classes Alpha (8.21% ± 2.49%), Beta- (9.71% ± 3.12%), Delta- 
(2.55% ± 1.06%) and Gammaproteobacteria (9.52% ± 2.21%). However, other phyla like Bacteroidetes, Chloroflexi 
or Planctomycetes were less abundant during these months (p < 0.05). This trend shows a seasonal distribution 
of key phyla in mixed liquors. Average relative abundance of Archaea was 0.25% ± 0.20%, being the phylum 
Euryarchaeota the most abundant (0.21% ± 0.13%), thus, those populations were not considered in subsequent 
analysis.

Figure 1. Mean relative abundance of dominant bacterial phyla with a frequency higher than 1% on at least one 
sample. “Other”, includes phyla of frequency <1%; and “unidentified”, taxonomically unassigned taxa. Sampling 
months are indicated, starting April 2017 and ending March 2019. There was no sampling in August. Phylum 
Proteobacteria is shown subdivided in classes Alpha-, Beta-, Delta- and Gammaproteobacteria.
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Diversity, seasonal dynamics and functional predictions of the wastewater microbiome. To 
understand the annual variations found in the WWTP, the microbial community diversity (alpha diversity) was 
calculated, using the Simpson diversity index (D’). No differences were found in the communities inhabiting each 
compartment of the bioreactor (tested by analysis of similarity, ANOSIM, p = 0.975), so further statistical analysis 
was performed considering the sampling time. September, October and February were the months with lower 
diversity, while April and May were the months with higher diversity (Fig. 2a). Overall, autumn appeared to be 
the season with the lower alpha diversity values, popping a rebound during spring months.

The multidimensional ordination (NMDS) of the sequence data based on Bray-Curtis dissimilarities was used 
to compare the ASV profiles of communities (Supplementary Fig. S1). This analysis revealed seasonal clustering 
of communities, where samples were sorted monthly, from April 2017 (first sample) to March 2019 (last sample), 
showing an annual cycle in both years (Supplementary Fig. S1). Despite that the annual cycle is repeated in both 

Figure 2. Microbial diversity analysis. (a) Simpson diversity index as a measurement of alpha diversity. An 
ANOVA test and a LSD (Least Square Difference) test were conducted (a–c indicate significance groups).  
(b) Redundancy analysis (RDA). Dots and triangles correspond with each sample on the first or second 
sampling year, respectively. Black points stand for the centroid of the first and second sampling year. Colour 
is indicative of the temperature gradient, and lines show the physical-chemical factors constrained into the 
ordination. (c) pairs between predicted functional groups (Supplementary Table S2), and physical-chemical 
factors. Dark blue indicates stronger positive correlations and dark red stronger negative correlations. Asterisks 
denote the significance levels (***p < 0.001, **p < 0.01 and *p < 0.05). P values were adjusted for multiple 
testing using the Bonferroni correction.
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sampling years, permutational multivariate analysis of variance (PERMANOVA) test showed significant differ-
ences between them in terms of community structure (p = 0.001). PERMANOVA tests were also used to study 
the effect of physical-chemical parameters on the bacterial community, identifying the temperature of the biore-
actor as the principal factor impacting microbial populations (R2 = 0.162, p = 0.001). The significant parameters 
(p < 0.01), along with temperature, explained a 54.95% of the variation observed between samples. Figure 2b 
shows a redundancy analysis (RDA) where some constrained features (influent biochemical oxygen demand-I.
BOD) contributes to the first component in the same direction than temperature, as the most relevant variable, 
and some others (pH, effluent ammonia concentration-E.NH4-N, and hydraulic retention time-HRT) contributes 
in an opposite direction in shaping bacterial communities composition.

Through a functional prediction based on 16S rRNA sequences, it is possible to estimate functional traits 
of the bacterial population in the wastewater. We analysed correlations of 57 environmental functions from 5 
pathways (involved in nitrogen and phosphorous metabolism, biodegradation and quorum sensing) and the 
wastewater physical-chemical factors (Fig. 2c). The temperature was significantly correlated with the presence of 
quorum sensing related genes (p < 0.001) and inversely correlated with denitrification (p < 0.01). Nitrification 
was significantly correlated with chemical oxygen demand (COD) in the effluent (p < 0.01) and its reduction 
(inversely, p < 0.001).

Wastewater core bacterial community. The core bacterial community was defined based on the high 
occurrence frequency of the ASVs. About 0.88% of total ASVs (55 ASVs) were present in 100% of the acti-
vated sludge samples and constituted a core that accounted for 36.5 ± 5.2% of the sequence reads. Most of the 
core community members belonged to Alpha-, Beta- and Gammaproteobacteria classes; and Bacteroidetes and 
Chloroflexi phyla (Fig. 3a). Spearman’s rank correlation coefficient revealed that changes of activated sludge com-
munity composition, at the family level, were significantly correlated with physical-chemical parameters. Out of 
the 30 families that form the core microbiome, 12 were significantly correlated (adjusted p < 0.05) to at least one 
physical-chemical parameter (Fig. 3b). Ammonia removal is correlated with Pirellulaceae and Fimbriimonadaceae 
families (p < 0.001), while temperature of the bioreactor is inversely correlated with Burkholderiaceae, 
Hyphomonadaceae, Ruminococcaceae, Chitinophagaceae and Rhodanobacteraceae families (p < 0.05).

The beta diversity of the core community showed a clear clustering and evolution based on the temperature 
of the sample (PERMANOVA test, R2 = 0.176, p = 0.001) (Fig. 3c). As occurred with the beta-diversity of the full 

Figure 3. Composition, functional correlations and multidimensional ordination based on core ASVs 
in the activated sludge samples. (a) Taxonomic composition of core ASVs at phylum level and class level. 
Proteobacteria group is divided in inferior taxonomic levels. (b) Spearman’s rank correlation coefficient between 
core ASVs, at family level assignation, and physical-chemical factors. Only core families and physical-chemical 
parameters with at least one significative correlation are shown. (c) Beta diversity of core community based on a 
non-metric multidimensional scaling analysis (NMDS, stress = 0.152).
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community, PERMANOVA test showed a significant difference between the core microbiome composition the 
two years sampled (R2 = 0.053, p = 0.001).

Indeed, when calculating the distance of each sample to their sampling year centroid (Fig. 4) we observed that 
when the average temperatures rose, these distances also increased. This comparison indicated that the higher 
the temperature the higher the changes in the core bacterial community. Both years presented a similar pattern of 
temperature/community dispersion, making it possible to define a new system stability measure (Supplementary 
Fig. S2).

Discussion
In this work, we studied the bacterial community dynamics of a municipal waste water treatment plant with 
a membrane bioreactor (MBR-WWTP). This bioreactor is functionally divided into three sections, attending 
to their oxygenation conditions (anoxic, oxic-anoxic, anoxic); besides it has a recirculation system connecting 
the third stage with the first. Through 16S rRNA gene sequencing we identified Proteobacteria, Bacteroidetes, 
Chloroflexi, Planctomycetes and Actinobacteria as the main phyla in the bacterial community studied, making 
85.17% ± 2.43% of the total sequence reads. The most common phyla found in WWTPs around the globe are 
Proteobacteria and Bacteroidetes. The two Proteobacteria most common families in the WWTP studied were 
Burkholderiaceae (Betaproteobacteria), that has members known to degrade PCBs22; and Rhodobacteraceae 
(Alphaproteobacteria), involved in sulfur and carbon cycles23. Within Bacteroidetes phyla, the most abundant 
families were Chitinophagaceae, aerobic heterotrophs degraders of organic matter24; and Saprospiraceae which 
includes many bacteria associated with protein hydrolysis and epiphytic bacteria attached on some filamentous 
bacteria (Supplementary Fig. S3)25. In addition, the core bacterial community was determined based on the 
occurrence of sequence variants (ASVs) in the samples. Despite consisting in a relatively low number of ASVs (55 
or 0.88% of the total), these accounted for a 36.5% of the total abundance, implying a hyper-dominance pattern 
similar to that found in a global WWTP core bacterial community study8.

Recent studies suggest that activated sludge microbial communities are shaped by deterministic (environmen-
tal and interspecies relationships) and neutral or stochastic (random events like colonization/extinction causing 
microbial dispersal) factors26,27. In natural aquatic ecosystems, a seasonal succession of the community is nor-
mally found, however, it is not as common to occur in artificial ecosystems28. Interestingly, we have found that in 
activated sludge systems the seasonal dynamics of microbial communities greatly affect the performance and sta-
bility of pollutant removal, and the main deterministic factor for this community dynamic in temperate climatic 
zones is the seasonal temperature fluctuation15,20. In the WWTP studied, samples were significantly different from 
each other, although, the samples of the same month of different years were more similar between them than with 
the other (Supplementary Fig. S1). This suggests a seasonal community succession but continual annual drift to 
the activated sludge at the studied facility, since both sampling years are significantly different (p = 0.001). The 
functional estimation performed in this work suggest a notable impact of temperature in certain bacterial-related 
functions such as a decrease in the presence of genes related with denitrification or a notable increase in those 
genes related with quorum sensing (Fig. 2c). This is of particular interest as quorum sensing regulates different 
metabolic mechanisms and coordinated behaviours at a community level; some of them of particular interest 
in WWTPs such as bacterial granulation and the maintenance of granular structures, or the undesired biofilm 
formation in MBR membranes29,30. This aspect should be studied in more detail for a better understanding of the 
impact of temperature in quorum sensing-mediated metabolisms in WWTPs.

Figure 4. Mean distance to centroid of bacterial population dissimilarities of samples taken on each sampled 
month, accounting for both sampling years. (a) Mean distances are represented along the sampling months. 
(b) Correlation between mean distances and temperature (r = 0.26, p = 0.04). Each sampling year were 
considered independent, and both centroids were calculated. The colour gradient shows the average monthly 
temperature (°C) on both sampling years. For a desegregate visualization of the two year sampling monitoring 
see Supplementary Fig. S3.
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As we have seen, the deterministic factors present in the studied WWTP greatly affects the bacterial com-
munity structure of its activated sludge (54.95% of the difference is explained by the physical-chemical 
parameters studied), with the temperature of the bioreactor as the main factor. Giving special attention to the 
families that compose the core microbiome, we observed that the ammonia removal is significantly correlated 
with the Fimbriimonadaceae and Pirellulaceae families. Pirellulaceae are ammonia-oxidizing bacteria31, while 
Fimbriimonadaceae belong to the Armatinomonadetes phylum, detected in ANAMMOX (ANaerobic AMMonium 
OXidation) consortia32. The two families aforementioned are positively correlated (p < 0.001, Spearman’s rank 
correlation coefficient = 0.495), implying that the Fimbriimonadaceae family either contains ammonia oxidizing 
taxons or has positive interactions with ammonia oxidizing bacteria, favouring the ammonia oxidizing processes. 
As we can see, bacteria present in the core microbiome are essential in the pollutant removal processes carried 
out in the activated sludge. Further research is necessary to study the biological interactions between both clades.

Nutrient and organic matter removal processes carried out in the activated sludge are based on the activity 
of the studied microorganisms, thus maintaining optimal conditions for their growth and development is neces-
sary for a better process control and management18. The dynamics and organization of microbial communities, 
along with biotic components of the activated sludge, determine its quality and the efficiency of the depuration 
process16. Based on this premise, the operation of the reactor is currently controlled through various indicator 
organisms and various indices to assess the quality of the active sludge. These types of indices offer invaluable 
information about the effluent characteristics and the adequacy of the operational conditions33. Previous studies 
suggest that highly diverse ecosystems are more stable, due to the presence of species able to adapt to a changing 
ecosystem. The maintenance of stable activated sludge ecosystem requires understanding the functional stabil-
ity of the bacterial communities34. These species representing the core microbiome are essential for wastewater 
treatment processes35. In addition, MBR systems, from this work perspective, have additional problems such as 
the biofouling onto filtration membranes, causing failures in the depuration performance. Among other reasons, 
biofouling is caused by quorum sensing-controlled biofilm formation on filtration membranes, so understanding 
keystone species in biofilm formation also represents an interesting topic for future research36. Thus, estimating 
the stability of the mentioned population would indicate a correct system function, so we propose monitoring this 
stability along time as a new control parameter on WWTP functioning. To quantify this stability, we calculated 
the difference between each sample and the centroid of their sampling year. Thus, we observed that in the warmer 
months populations tend to be more dissimilar, returning to baseline differences in the winter months. It is the 
effect we observed of the temperature on the population. Further analyses are needed to implement this moni-
toring measure, such as in the case of a problem detection in the plant checking how it would affect the dissim-
ilarities of the populations. Monitoring with longer time series would help to verify the continued annual drift.

Material and Methods
Site description, samples collection and basic water characterization. Samples were collected over 
a period of two years from a full-scale WWTP with a membrane bioreactor system (MBR) located in Barcelona 
(Spain) and described in previous studies37. The 66 samples were taken monthly and consisted of collected mixed 
liquor from the three functional stages in which the bioreactor was divided (Supplementary Fig. S4). Physical-
chemical parameters were measured in the influent (I.-) and the effluent (E.-) of the WWTP, according to stand-
ard methods: biochemical oxygen demand, BOD (UNE-EN-1899); chemical oxygen demand, COD (ISO-6060); 
ammonia, NH4-N (ISO-7150); total nitrogen, TN (ISO-11905); total phosphorous, TP (ISO-6878) and sus-
pended solids, SS (UNE-EN-872). The removal rate (R.-) was calculated accordingly. Mixed liquor suspended 
solids (MLSS) were measured according to UNE-EN-872 and hydraulic retention time, HRT was also calculated. 
Detailed information concerning plant physical-chemical parameters is summarized in Supplementary Table S1.

DNA extraction and 16S rRNA sequencing. Mixed liquor samples were analysed following a 16S 
metabarcoding strategy. Samples were stored at −80 °C until DNA extraction was performed using DNA 
Power Soil extraction kits. The V4 region of the 16S rRNA gene was amplified by PCR using the primers 515F 
(GTGYCAGCMGCCGCGGTAA) and 806R (GGACTACNVGGGTWTCTAAT). Libraries were prepared fol-
lowing the two-step PCR Illumina® protocol and these were subsequently sequenced on Illumina® MiSeq instru-
ment (Illumina®, San Diego, CA, USA) using 2 × 300 paired-end reads38,39 and then it was analysed by amplifying 
and sequencing the 16S rRNA V4 gene using custom primers40.

Sequence processing. DADA2 algorithm41 implemented in R pipeline42 was used to perform sequence 
analysis, such as denoise, filter, align pairs and filter out chimeras. This algorithm implements an error correction 
model that allows the differentiation of even a single nucleotide21, giving as a final output an amplicon sequence 
variant (ASV) table. A total of 3,454,577 good quality reads were obtained. The taxonomic assignment was per-
formed using the naïve Bayesian classifier implemented in DADA2 using as reference database Silva (release 132), 
with a bootstrap cut-off of 80%43.

Microbial diversity and statistical analysis. Microbial diversity and statistical analysis were performed 
using phyloseq, version 1.26.144 and vegan, version 2.5.545 R packages. Simpson index of diversity46 was calcu-
lated, per sample, as an estimation of community alpha diversity. Beta-diversity (differences between samples) 
was calculated using a Bray-Curtis dissimilarity matrix on Hellinger transformed data47,48 and permutational 
multivariate analysis of variance (PERMANOVA). Redundancy analysis (RDA) was conducted from the dissim-
ilarity matrices to compress dimensionality into two dimensional plots, constraining physical-chemical informa-
tion in the plot.

Predictive functional analysis based on 16S rRNA was performed using an adaptation of the Tax4Fun routine49 
software package. To obtain the proportion of each community containing each specific function, we filtered a 
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total of 57 KEGGs functional orthologues (Supplementary Table S2) within 5 pathways related to nitrogen and 
phosphorous metabolisms, biodegradation and quorum sensing50–52.

We also investigated the core microbial community, defining core community members as the ASVs occur-
ring in the whole dataset, regardless of their abundance. The Bray-Curtis dissimilarity matrix of the core commu-
nity table was computed and the distance of the beta diversity of the samples to their sampling year centroid was 
calculated using betadisper function (vegan package).

Data availability
Raw files are available in the National Center for Biotechnology (NCBI) repository under the project code 
PRJNA588045.
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