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Abstract: New pyridine, pyrazoloyridine, and furopyridine derivatives substituted with naphthyl
and thienyl moieties were designed and synthesized starting from 6-(naphthalen-2-yl)-2-oxo-4-
(thiophen-2-yl)-1,2-dihydropyridine-3-carbonitrile (1). The chloro, methoxy, cholroacetoxy, imida-
zolyl, azide, and arylamino derivatives were prepared to obtain the pyridine-−C2 functionalized
derivatives. The derived pyrazolpyridine-N-glycosides were synthesized via heterocyclization of the
C2-thioxopyridine derivative followed by glycosylation using glucose and galactose. The furopy-
ridine derivative 14 and the tricyclic pyrido[3′,2′:4,5]furo[3,2-d]pyrimidine 15 were prepared via
heterocyclization of the ester derivative followed by a reaction with formamide. The newly synthe-
sized compounds were evaluated for their ability to in vitro inhibit the CDK2 enzyme. In addition,
the cytotoxicity of the compounds was tested against four different human cancer cell lines (HCT-116,
MCF-7, HepG2, and A549). The CDK2/cyclin A2 enzyme inhibitory results revealed that pyridone 1,
2-chloro-6-(naphthalen-2-yl)-4-(thiophen-2-yl)nicotinonitrile (4), 6-(naphthalen-2-yl)-4-(thiophen-2-
yl)-1H-pyrazolo[3,4-b]pyridin-3-amine (8), S-(3-cyano-6-(naphthaen-2-yl)-4-(thiophen-2-yl)pyridin-
2-yl) 2-chloroethanethioate (11), and ethyl 3-amino-6-(naphthalen-2-yl)-4-(thiophen-2-yl)furo[2,3-
b]pyridine-2-carboxylate (14) are among the most active inhibitors with IC50 values of 0.57, 0.24,
0.65, 0.50, and 0.93 µM, respectively, compared to roscovitine (IC50 0.394 µM). Most compounds
showed significant inhibition on different human cancer cell lines (HCT-116, MCF-7, HepG2, and
A549) with IC50 ranges of 31.3–49.0, 19.3–55.5, 22.7–44.8, and 36.8–70.7 µM, respectively compared to
doxorubicin (IC50 40.0, 64.8, 24.7 and 58.1 µM, respectively). Furthermore, a molecular docking study
suggests that most of the target compounds have a similar binding mode as a reference compound in
the active site of the CDK2 enzyme. The structural requirements controlling the CDK2 inhibitory
activity were determined through the generation of a statistically significant 2D-QSAR model.

Keywords: pyridine; imidazole; pyrazolo[3,4-b]pyridine; anticancer; HepG2; docking; CDK2

1. Introduction

The cyclin-dependent kinases (CDK) (a serine/threonine kinase family) [1] are respon-
sible for the initiation and the succession of each cell cycle phase; CDK2 activity is required
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for progression through G1 to the S phase [2]. The activity of members of the CDK family
is corrupted in many tumor cells where they are essential for the phosphorylation of key
components for cell proliferation [3,4]. CDK2 has an important catalytic role in the complex
of cyclin-dependent protein kinase; its activity is essential for cell cycle progress [5]. The
cyclin protein family modulates CDK activities throughout the cell cycle where specific ac-
tivating phosphorylation for CDK apoenzymes is required through CDK-activating kinase,
which is a CDK complex, and also, complex formation with cyclins is needed for optimum
kinase activity [5,6]. CDK2 is associated mainly with the regulatory subunits including
either cyclin A or E with overexpression in human cancer as in ovarian, breast, endometrial,
lung and thyroid carcinomas, osteosarcoma, and melanoma [7]. The activation of the CDK2
through cyclin A is claimed to be an essential step through the progression from the S
phase, and this makes CDK2 the principal target for most inhibitory drugs [3–6].

Heterocyclic ring systems have emerged as powerful scaffolds for many biological
evaluations [8] and play an important role in the design and discovery of new physi-
ological/pharmacologically active molecules [9]. The incorporation of more than one
heterocyclic core in one hybrid structure, known as molecular hybridization, gained consid-
erable interest in the design and synthesis of bioactive compounds [10–12]. The pyridine
core is found in a variety of biologically active compounds possessing a broad spectrum of
bioactivities [13,14]. The pyrazolo[3,4-b]pyridine framework is a promising heterocyclic
scaffold that has gained renewed interest displaying a broad spectrum of biological activi-
ties such as antitumor inhibiting CDK2 [15–19] and glycogen synthase kinase-3 (GSK-3)
inhibitors [20]. In addition, pyrazolo [3,4-b]pyridine derivatives represent important
building blocks in both natural and synthetic bioactive compounds [21]. Moreover, fused
heterocyclic-containing pyrazolopyridine systems have been described as associated with
several biological and medicinal activities [22–25]. Oxygen heterocycles exhibit diverse
biological and pharmacological activities due to the similarities with many natural and
synthetic molecules [26]. Figure 1 illustrates some important pyrazolopyridine-based com-
pounds with potent activities for CDK2 enzyme [27,28] and its bicyclic congener Roscovitine,
which is a CDK2 inhibitor undergoing clinical trials to treat cancers [29].
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Figure 1. Roscovitine, (pyridin-3-yl)-1H-indazole and imidazolyl-1H-indazole derivatives with
potent inhibition activity for CDK2.

Furo[2,3-b]pyridine/pyrido[30,20:4,5]furo[3,2-d]pyrimidine with different substitu-
tions has gained renewed interest as a template for drug discovery. Furo[2,3-b]pyridine
derivatives also demonstrated in vitro activity for tubulin polymerization [30] as well as
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Lck [31] and Akt [32] kinase inhibitors. Imidazole and thiophene-containing compounds
showed various bioactivities, the most important of which is anticancer [33–35]. On the
other hand, glycoside and their analogs have been revealed as an important bioactive
group of compounds with anticancer, antiviral, and antimicrobial activity. The therapeutic
importance of this scaffold motivated us to develop selective procedures for the synthesis
of new derivatives of pyridine incorporating pyrazolyl, imidazolyl, thienyl, and glycosyl
moieties in which substituents could be arranged in a pharmacophoric pattern to display
high order of anticancer activity [36–43].

2. Results and Discussion
2.1. Chemistry

The ease synthesis and high biological activity of the starting 6-(naphthalen-2-yl)-2-
oxo-4-(thiophen-2-yl)-1,2-dihydropyridine-3-carbonitrile (1) prompted us to prepare some
of its derivatives starting from available and inexpensive compounds. The reaction of
compound 1 with chloroacetyl choloride yielded 3-cyano-6-(naphthalen-2-yl)-4-(thiophen-
2-yl)pyridin-2-yl-2-chloroacetate (2) via substitution reaction in 84% yield. The structure of
compound 2 was elucidated based on elemental and spectral analyses. The IR spectrum
of 2 revealed strong absorption bands at ν 2216 and 1697 cm−1 for CN and CO groups,
respectively. The 1H-NMR of the same compound showed signals at δ 4.40 ppm referring to
CH2Cl in addition to the signals of the aromatic protons. The formation of imidazolthione
3 was obtained through the heterocyclization of compound 2 by reaction with thiourea in
DMF. Its IR spectrum showed the disappearance of the absorption band at ν 1697 cm−1 of
the carbonyl group and the appearance of the characteristic bands at ν 3424 and 1260 cm−1

due to NH and C=S groups, respectively. The 1H-NMR spectrum of compound 3 exhibited
very distinct singlet signals resonating at δ 4.13 (imidazole-H) and δ 12.98 (exchangeable
NH) confirmed the successful formation of 3. 13C-NMR spectrum of compound 3 showed
signals at δ 49.6, 168.1, and 188.4 ppm for imidazoles-C and C=S groups, respectively
beside the aromatic carbons at their specific regions (see supplementary materials).

Compound 4 [44] underwent different substitution reactions. First, compound 4 was
allowed to react with sodium methoxide in methanol to give 2-methoxy-6-(naphthalen-
2-yl)-4-(thiophen-2-yl)nicotinonitrile (5) in 75% yield. Its 1H-NMR revealed a signal at δ
4.16 ppm due to methoxy protons. In addition, compound 4 was reacted with aniline to
give 6-(naphthalen-2-yl)-2-(phenylamino)-4-(thiophen-2-yl)nicotinonitrile (6). IR spectrum
of 6 revealed the presence of a strong absorption band at ν 3428 cm−1 due to the NH group,
and also, it appeared as a strong signal at δ 9.80 ppm in the 1H-NMR spectrum (Scheme 1).

On the other hand, pyridine-2(1H) thione derivative 7 [45] was reacted with hydrazine
hydrate in ethanol under reflux conditions to afford 3-amino-1H-pyrazolo[3,4-b]pyridine
derivatives (8) in a good yield. The IR spectrum of 8 revealed bands at ν 3375–3228 cm−1

referred to NH2 and NH groups. The 1H-NMR exhibited a singlet signal at δ 6.45 ppm
referring to the exchangeable NH2 protons and also a singlet signal at δ 11.65 ppm corre-
sponding to the exchangeable NH proton. 13C-NMR spectra agreed with such investigation
and confirmed their structures, which showed that C-pyrazoles have been revealed at δ
90.2, 151.3, and 152.2 ppm.

Compound 8 was further reacted with the monosaccharides such as d-glucose or
d-galactose as six-carbon sugars in ethanol, and a few drops of glacial acetic acid afforded
compounds 9 and 10, respectively, which have been shown to incorporate sugar moieties in
the cyclic form. Their IR spectra showed strong and broad absorption bands characterizing
the polyhydroxy chain and NH groups in the range ν 3520–3390 cm−1. The 1H-NMR
spectra of the same compounds showed signals for NH (D2O exchangeable) and OH
groups at their specific regions (see supplementary materials).
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The reaction proceeds according to the proposed mechanism [43].
In addition, compound 11 was synthesized by stirring compound 7 with chloroacetyl

chloride in acetone and anhydrous potassium carbonate at room temperature. The IR
spectrum of 11 showed the appearance of CH aliphatic, C=O and CN, bands at ν 2921,
1698, and 1590 cm−1, respectively. The 1H-NMR spectrum of 11 showed a sharp singlet
signal at δ 4.30 ppm belonging to the CH2Cl protons beside the singlet signal at δ 8.19 ppm
for pyridine proton, thus confirming the formation of compound 11. The azido compound
12 was produced when compound 11 was stirred at room temperature with sodium azide
in N, N-dimethyl formamide. The IR spectrum of compound 12 revealed strong absorption
bands assigning the N3 at ν 2366 cm−1. The 1H-NMR spectra of that compound showed
a characteristic singlet signal for CH2N3 at δ 2.42 ppm in addition to aromatic protons.
13C-NMR spectra of compound 12 revealed signals at δ 65.1 and 191.0 ppm attributed
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to CN3 and CO groups respectively beside the aromatic carbons at their specific region
(Scheme 2).
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Scheme 2. Synthesis of pyrazolopyridine-N-glycosides (9 and 10) and pyridinyl-2- azidoethanethioate derivative 12. Scheme 2. Synthesis of pyrazolopyridine-N-glycosides (9 and 10) and pyridinyl-2- azidoethanethioate derivative 12.

The ester 13 was refluxed with sodium ethoxide to give ethyl 3-amino-6-(naphthalen-
2-yl)-4-(thiophen-2-yl)furo[2,3-b]pyridine-2-carboxylate (14). This compound might be
subjected to further structural modification. The formation of the furan ring with two func-
tionalities (the amino and the carboethoxy groups) resulted, whose further modifications
could provide the opportunity for new cyclization processes. The IR spectrum of 14 showed
absorptions bands at ν 3437 cm−1 referring to the NH2 group and a strong absorption band
at ν 1739 cm−1 referring to the ester carbonyl group. The 1H-NMR spectrum exhibited a
singlet signal of the amino group at δ 5.61 ppm, in addition to triplet and quartet signals at δ
1.2 and 4.3 ppm for CH3 and CH2 groups. Compound 14 was condensed with electrophiles
namely, formamide, to afford the pyridofuropyrimidine 15. The chemical structure of 15
was elucidated by its correct elemental analysis and spectral data. Its IR spectrum showed
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absorption bands at ν 3419 and 1662 cm−1 for the imino (NH) and the amidic carbonyl
group (C=O). The 1H-NMR spectrum revealed singlet signals at δ 8.26 and 8.34 ppm for
pyridine and pyrimidine protons, multiplet signals in the range of δ 7.24–8.11 ppm for
aryl protons, and a single signal at δ 11.18 corresponding to the imine proton NH (D2O
exchangeable) (Scheme 3).
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2.2. Biological Evaluation
2.2.1. CDK2/Cyclin A2 Activity

The in vitro CDK2/cyclin A2 assays of the newly synthesized compounds 1–5, 7, 8,
11, 13, and 14 were carried out using Promega Kinase-Glo Plus luminescence kinase kit. It
measures kinase activity by quantitating the amount of ATP remaining in solution following
a kinase reaction. The luminescent signal from the assay is correlated with the amount of
ATP present and is inversely correlated with the amount of kinase activity. The percent
inhibition of the tested compounds against CDK2/cyclin A2 protein kinase was compared
to reference kinase inhibitor roscovitine at a single concentration of 10 µM. The computer
software Graphpad Prism was used for analyzing the luminescence data. The difference
between luminescence intensities in the absence of CDK2/cyclin A2 protein kinase (Lut)
and in the presence of kinase (Luc) was defined as 100% activity (Lut − Luc). Using
luminescence signal (Lu) in the presence of the compound, the percentage of activity was
calculated as: % activity = {(Lut − Lu)/(Lut − Luc)} × 100%, where Lu = the luminescence
intensity in the presence of the compound. The percentage of inhibition was calculated as:
% inhibition = 100 (%) − % activities [46].

The IC50 results of the target compounds are presented in Table 1. All the new
compounds revealed a potent inhibitory effect against CDK2/cyclin A2 protein kinase with
an IC50 values ranging from 3.52 to 0.24 µM compared to roscovitine reference compound
of IC50 0.39µM. Amongst them, compound 4 revealed the highest IC50 of 0.24 µM more
potent than roscovitine, while compounds 1, 8, 11, and 14 showed good inhibitory activities
comparable to the reference compound with IC50 0.57, 0.65, 0.50, and 0.93 µM, respectively.
Moreover compounds 2, 3, 5, 7, and 13 revealed promising activity with IC50 values ranging
1.01–4.45 µM.
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Table 1. The IC50 results of the target compounds against CDK2 enzyme.

Entry Name Results CDK2
IC50 (µM) ± SD

1 1 0.57 ± 0.1

2 2 1.789 ± 0.1

3 3 1.008 ± 0.1

4 4 0.236 ± 0.1

5 5 3.527 ± 0.2

6 7 1.268 ± 0.1

7 8 0.651 ± 0.1

8 11 0.504 ± 0.1

9 13 4.45 ± 0.2

10 14 0.928 ± 0.1

11 Roscovitine 0.394 ± 0.1

2.2.2. In Vitro Cytotoxicity Activity

In this study, ten compounds were examined in vitro for their activities against HCT-
116, MCF-7, HepG2, and A549 human cancer cells using the MTT assay. The percentages
of intact cells were calculated and compared to those of the control. The activities of
these compounds against the four cell lines were compared to the activity of doxorubicin
as well. All compounds suppressed the four human cells in a dose-dependent manner
(Figures 2–5). In order to study the efficacy of the synthesized compounds, a comparison of
the cytotoxic effect of each compound has been related to the cytotoxicity of the reference
drug as follows.
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In case of HCT-116 human colorectal carcinoma cells, both Figure 2 and Table 2 show
that six compounds (14, 11, 13, 8, 5, and 7 respectively) have insignificantly more potent
anticancer activities; compound 1 has equipotent anticancer effect to doxorubicin; three
compounds (2, 4 and 3, respectively) exert a smaller anticancer effect compared to that
of doxorubicin.

Table 2. The cytotoxic activities of the compounds against the four cancer cell lines using the
MTT assay.

Compound Code
IC50 (µM) ± SD

HCT-116 MCF-7 HepG2 A549

1 39.1 ± 4.2 47.0 ± 4.5 27.9 ± 3.1 60.6 ± 4.8

2 43.5 ± 4.5 21.3 ± 3.1 29.4 ± 3.5 70.7 ± 4.1

3 49.0 ± 5.1 37.3 ± 4.1 44.8 ± 4.1 57.4 ± 4.5

4 45.9 ± 4.1 46.2 ± 4.1 42.9 ± 3.9 67.2 ± 5.1

5 33.8 ± 3.5 55.5 ± 4.5 27.2 ± 3.1 47.6 ± 4.5

7 37.8 ± 3.9 27.4 ± 2.4 22.7 ± 2.9 36.8 ± 4.1

8 33.7 ± 3.3 19.3 ± 2.1 29.1 ± 3.5 43.8 ± 4.1

11 31.7 ± 3.5 46.4 ± 4.3 27.6 ± 3.3 56.9 ± 4.6

13 32.4 ± 3.1 37.6 ± 3.5 30.2 ± 3.7 45.9 ± 4.3

14 31.3 ± 3.3 26.1 ± 3.9 27.9 ± 3.5 56.5 ± 4.8

Doxorubicin 40.0 ± 3.9 64.8 ± 4.1 24.7 ± 3.2 58.1 ± 4.1
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However, all the screened compounds (1–5, 7, 8, 11, 13, and 14) showed higher
inhibitory activity compared to doxorubicin (IC50 = 64.8 µM) against MCF-7 (Figure 3 and
Table 2).

Meanwhile, only compound 7 has more potent anticancer activity against HepG2 with
IC50 22.7 µM, compared to that of the reference compound (Figure 4 and Table 2).

For A549 human lung cancer cells, seven compounds (7, 8, 13, 5, 14, 11, and 3, respec-
tively) have better anticancer activities; the rest of the compounds have insignificantly less
anticancer activity compared to that of doxorubicin (Figure 5 and Table 2).

2.2.3. Molecular Docking Study

The molecular simulation study was carried out through docking of the target com-
pounds in the binding pocket of the CDK2 enzyme using C-Docker protocol in Discovery
Studio 4.0 Software. In this work, molecular docking study and analysis of the binding
modes for the designed compounds were achieved to interpret the biological results and to
gain further insight into orientations and interactions with the key amino acids. It has been
found that both the X-ray crystallographic enzyme (CDK2) substrate complex with roscovi-
tine (PDB code 2A4L) [47] revealed the formation of the essential two H-bonds with Leu83.
Validation of the C-Docker protocol in this investigation was performed by re-docking of
the co-crystallized lead compound in the CDK2 kinase active site. The calculated RMSD
value (RMSD = 0.46 A◦) indicated the ability of the used docking protocol to retrieve valid
docking poses. The docking of the target compounds under study, into the active site of the
CDK2 enzyme, revealed comparable binding modes to the lead compound. The binding
interactions of the docked compounds together with their binding energies and the key
amino acids involved are presented in Table 3 and Figures 6–11.

By exploring the C-Docker interaction energy and the binding mode of the highly
biologically active compounds 1, 4, 8, 11, and 14, it was found that compounds 1, 4,
11, and 14 conserved the formation of the two H bonds with Leu83 as the reference
compound (roscovitine), while compound 8 showed one H bond with Leu83 and another
additional two H bonds with Asp86 (Figures 7–11). These compounds (1, 4, 8, 11, and
14) exhibited high antitumor activity against cancer cell lines (HCT-116, MCF-7, HepG2,
A549) with high inhibitory activities against the CDK2 enzyme. Whereas compounds
2, 3, 5, 7, and 13 showed low binding energy compared to that of the lead compound
with the formation of only one H bond with Leu83 and compounds 2, 5, and 7 formed
an additional H bond with Lys89. Additional interaction was found between most of the
docked compounds and Lys89, Lys33, Phe82, and Ile10. In addition, an alignment study
was performed for compound 11, which showed good alignment with approximately the
same pharmacophoric elements of the reference compound (roscovitine) (Figure 12). The
alignment study revealed that (i) the purine ring system of the compound roscovitine
was perfectly aligned with the purine 3-cyano pyridine moiety of compound 11, (ii) a
thiocarboxamide side chain superimposed with N-benzyl substituent of roscovitine, and
(iii) additionally, thiophene moiety and naphtyl group were aligned with N-isoprpyl and
N(1-hydroxy-but-2-yl) of roscovitine, respectively.

Correlation between the binding energy and the inhibitory activity of the investigated
molecules showed that the most potent pyridine derivatives 4, 11, and 1 (IC50 values of
0.24 ± 0.01, 0.50 ± 0.03, and 0.57 ± 0.03 µM, respectively) showed the highest binding
energy (Figure 13). Whereas compounds with low IC50 values (high potent) revealed
high binding energy with –ve (high docking score, more stable in binding site), while
compounds with a high IC50 (less potent) revealed low binding energy (less docking score).
This consistent relation resulted in the successful designing of promising analogs with
potent CDK2 inhibitory activity.
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Table 3. Binding energies and distance of docked compounds into the CDK2 active site.

Compounds NO. Binding Energy (K.cal/mol−1) Hydrogen Bonding Interaction with the Key Amino Acids Distance A◦

1 −51.95 1 HBD through NH group with Leu83 2.84
1 HBA through an oxygen atom of the carbonyl group with Leu83 2.51

2 −42.93 1HBA through an oxygen atom of C=O group with Lys89 2.47
1HBA through nitrogen atom of CN group with Leu83 2.91

3 −44.24 1HBA through sulfur atom of thiophene ring with Leu 83 2.79

4 −54.33 2HBA through nitrogen atom of CN group with Leu83 2.53
2.67

5 −41.36 1HBA through nitrogen atom of pyridine with Lys89 3.29
1HBA through nitrogen atom of CN group with Leu83 3.45

7 −46.25 1 HBD through NH group with Leu83 2.84
2 HBA through sulfur atom of thione and CN group with Asp89 2.69

8 −50.9

1HBD through hydrogen atom of NH group of pyrazole ring
with Leu83 2.38

1HBA through nitrogen atom of pyrazole ring with Leu83 2.80
1HBD through hydrogen atom of NH2 group with Glu81 2.85

11 −53.17 1HBA through nitrogen atom of CN group with Leu83 2.54
2HBA 1HBA through an oxygen atom C=O group with Asp86 2.87, 2.95

13 −41.07 1HBA through nitrogen atom of CN group with Leu83 2.94
3.03

14 −49.69 1 HBD through NH2 group with Leu83 2.84
1HBA through oxygen atom of C=O group with Leu83 2.87

Roscovitine −55.75 1HBD through hydrogen atom of NH group with Leu83 2.33
1HBA through nitrogen atom of Imidazole ring with Leu83 2.87
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D-QSAR Studies

Two-dimensional (2D)-QSAR studies were undertaken utilizing Discovery Studio
4.0 Software employing nine bio-active compounds (1–5, 7, 11, 13, and 14) as a training
set, which exhibit variable inhibitory properties against the CDK2 enzyme. The “Create
Multiple Linear Regression Model” protocol was used to generate the 2D-QSAR model
predicting the controlled descriptors as statistically significant. The two descriptors control-
ling the QSAR model are presented in the following equation. Figure 14 shows the QSAR
model plot of correlations representing the observed versus predicted IC50 µM values for
the bio-active training set. The plots are uniformly scattered.

Equation:

IC50 = −1.0859 + 1.294 [Dipole_X] + 0.013735 [Jurs_DPSA_1].

Validation of QSAR

Internal and external validation of the determined QSAR equations was performed.
The internal validation was presented in Table 4 including determination of r2 (the coef-
ficient of determination), r2 adj (adjusted for the number of terms in the model), r2 pred
(the prediction), q2 (from a leave-1-out cross-validation), Friedman L.O.F. (the Friedman
lack-of-fit score), and S.O.R. p-value (the p-value for significance of regression). The external
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validation was carried out utilizing compound 8 and two reported compounds V, VI with
similar scaffold (Figure 15) [6,48]. The estimated activity for the external test set was very
close to its observed activity (Table 5), that is, support the established QSAR model in the
present work. In addition, QSAR model_ Applicability showed that all properties and OPS
components are within expected ranges, with Applicability MD value 2.66667, and the
applicability ranging from 0.236031 to 4.45003 for each component of the training set.
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Table 4. The internal validation values for the generated 2D-QSAR equation.

Model r2 r2 (Adj) r2 (Pred) RMS Residual Error Friedman L.O.F. S.O.R. p-Value

IC50 = −1.0859 + 1.294 [Dipole_X]
+ 0.013735 [Jurs_DPSA_1] 0.9179 0.8905 0.8121 0.4811 0.9889 0.0005543
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Table 5. External validation for the established QSAR models.

Compound No. Experimental Activity (IC50/µM) Predicted Activity (IC50/µM)

8 0.651 1.020
V 0.743 0.947
VI 0.139 0.425
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2.2.4. Structure–Activity Relationship (SAR)

Structure–activity relationships among the newly synthesized pyridine derivatives
have been closely investigated. The presence of the thione group in compound 7 with thio-
phene moiety increases antitumor activity against HepG2 and A549. Further investigations
of the biological results concluded that the furopyridine derivative as in compound 14
and incorporating the ester functionality showed superiority in activity over the pyridine
derivatives against a colon cancer cell line.

3. Materials and Methods
3.1. Chemistry

All melting points were measured using a Reichert Thermovar apparatus and are
uncorrected. Yields listed are of isolated compounds. The IR spectra were recorded on a
Perkin-Elmer model 1720 FTIR spectrometer for KBr disc. 1H and 13C-NMR spectra were
recorded on a Bruker AC-300 or DPX-300 spectrometer. Chemical shifts were reported in δ

scale (ppm) relative to TMS as a reference standard and the coupling constants J values are
given in Hz. Mass spectra were recorded on a GC/MS SHIMADZU spectrophotometer.
The progress of the reactions was monitored by TLC using aluminum silica gel plates 60
F245. IR, 1H-NMR, 13C-NMR, GC-MS, and elemental analyses were performed at the Micro
analytical center at the Faculty of science, Cairo University, Cairo, Egypt. Compounds
1 and 13 were prepared according to a previous procedure [44].

3.1.1. 3-Cyano-6-(naphthalen-2-yl)-4-(thiophen-2-yl)pyridin-2-yl 2-chloroacetate (2)

To a solution of compound 1 (3.28 g, 10 mmol) and anhydrous potassium carbonate
(1.38 g, 10 mmol) in dry acetone (30 mL), chloroacetyl chloride (0.79 mL, 10 mmol) was
added drop wise. The reaction mixture was stirred at room temperature for 8 h. The mixture
was poured onto cold water and extracted with ethyl acetate, dried over anhydrous sodium
sulfate, and concentrated under vacuum to give compound 2.

Yellow crystals; Yield: 84%; m.p. 165–166 ◦C; IR (KBr, ν, cm−1): 2974 (aliphatic C–H),
2216 (CN), 1697 (C=O), 1596 (C=N); 1H-NMR (DMSO-d6): δ (ppm) 4.40 (s, 2H, CH2Cl),
6.73–7.98 (m, 10H, Ar-H, thiophene-H), 7.85 (s, 1H, pyridine-H); 13C-NMR: 40.1 (CH2-Cl),
94.0 (pyridine-C3), 114.6 (CN), 120.4 (pyridine-C5), 126.2–138.2 (Ar-C), 149.7 (pyridine-C4),
157.7 (pyridine-C6), 161.9 (pyridine-C2), 165.4 (C=O). Anal. Calc. for C22H13ClN2O2S
(404.87): C, 65.27; H, 3.24; N, 6.92, S, 7.92, Cl, 8.76. Found: C, 65.35; H, 3.40; N, 6.90, S, 7.94,
Cl, 8.77.

3.1.2. 6-(Naphthalen-2-yl)-4-(thiophen-2-yl)-2-((2-thioxo-2,5-dihydro-1H-imidazol-4-
yl)oxy)nicotinonitrile (3)

To a solution of compound 2 (4.06 g, 10 mmol) and anhydrous potassium carbonate
(1.38 g, 10 mmol) in DMF (20 mL), thiourea (0.76 g, 10 mmol) was added, and the reaction
mixture was heated under reflux for 8 h. After cooling, the reaction mixture was poured
onto ice cold water. The formed precipitate was collected by filtration and crystallized from
methanol to give compound 3.

Brown crystals; Yield: 88%; m.p. 172–173 ◦C; IR (KBr, ν, cm−1): 3424 (NH), 2214
(CN), 1647 (C=N), 1260 (C=S); 1H-NMR (DMSO-d6): δ (ppm) 4.13 (s, 2H, imidazole-H),
6.83–8.06 (m, 10H, Ar-H, thiophene-H), 7.82 (s, 1H, pyridine-H), 12.98 (s, 1H, NH, D2O
exchangeable); 13C-NMR: 50.6 (imidazole-C4), 98.2 (pyridine-C3), 104.6 (pyridine-C5), 115.4
(CN), 126.3–139.9 (Ar-C), 145.4 (pyridine-C4), 151.1 (pyridine-C6), 168.1 (imidazole-C5),
170.2 (pyridine-C2), 188.4 (C=S). Anal. Calc. for C23H14N4OS2 (426.51): C, 64.77; H, 3.31; N,
13.14; S, 15.03. Found: C, 64.67; H, 3.30; N, 13.41; S, 15.00.

3.1.3. 2-Methoxy-6-(naphthalen-2-yl)-4-(thiophen-2-yl)nicotinonitrile (5)

A solution of compound 4 (3.46 g, 10 mmol) in methanol (20 mL) and sodium methox-
ide (0.54 g, 10 mmol) was refluxed for 3 h. After cooling, the reaction mixture was poured
onto water, and the solid obtained was crystallized from ethanol to give compound 5.
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Brown crystals; Yield: 75%; m.p. 125–126 ◦C; IR (KBr, ν, cm−1): 2216 (CN), 1652 (C=N);
1H-NMR (DMSO-d6): δ (ppm) 4.16 (s, 3H, OCH3), 7.55–8.06 (m, 10H, Ar-H, thiophene-H),
7.90 (s, 1H, pyridine-H); 13C-NMR: 55.5 (OCH3), 90.3 (pyridine-C3), 110.1 (pyridine-C5),
115.5 (CN), 127.4–139.6 (Ar-C), 149.7 (pyridine-C4), 156.5 (pyridine-C6), 166.2 (pyridine-C2).
Anal. Calc. for C21H14N2OS (342.42): C, 73.66; H, 4.12; N, 8.18; S, 9.36. Found: C, 73.60; H,
4.32; N, 8.18; S, 9.32.

3.1.4. 6-(Naphthalen-2-yl)-2-(phenylamino)-4-(thiophen-2-yl)nicotinonitrile (6)

A mixture of compound 4 (3.46 g, 10 mmol) and aniline (0.9 mL, 10 mmol) in methanol
(20 mL) containing a few drops of pyridine was refluxed for 8 h. The solid obtained after
cooling was poured on ice/water-containing HCl, filtered off, air dried on suction, and
crystallized from acetic acid to give compound 6.

Yellow crystals; Yield: 84%; m.p. 130–131 ◦C; IR (KBr, ν, cm−1): 3428 (NH), 2365 (CN),
1604 (C=N); 1H-NMR (DMSO-d6): δ (ppm) 6.83–7.93 (m, 15H, Ar-H, thiophene-H), 7.81
(s, 1H, pyridine-H), 9.80 (s, 1H, NH, D2O exchangeable); 13C-NMR: 86.3 (pyridine-C3),
109.2 (pyridine-C5), 114.8 (CN), 111.7–138.3 (Ar-C), 148.9 (pyridine-C4), 157.4 (pyridine-C6),
164.7 (pyridine-C2). Anal. Calc. for C26H17N3S (403.50): C, 77.39; H, 4.25; N, 10.41; S, 7.95.
Found: C, 77.45; H, 4.30; N, 10.44; S, 8.00.

3.1.5. 6-(Naphthalen-2-yl)-4-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridin-3-amine (8)

A solution of compound 7 (3.44 g, 10 mmol) and hydrazine hydrate (0.47 mL, 15 mmole)
in absolute ethanol (20 mL) was heated under reflux for 6 h. The reaction mixture was
cooled. The solid that precipitated was filtered off and crystallized from ethyl acetate to
give compound 8.

Brown crystals; Yield: 72%; m.p. 175–176 ◦C; IR (KBr, ν, cm−1): 3375 and 3228 (NH
and NH2), 1629 (C=N); 1H-NMR (DMSO-d6): δ (ppm) 6.45 (s, 2H, NH2, D2O exchangeable),
7.55–8.22 (m, 10H, Ar-H), 8.01 (s, 1H, pyridine-H), 11.65 (s, 1H, NH, D2O exchangeable);
13C-NMR: 90.2 (pyrazole-C4), 123.9 (pyridine-C3), 124.1–135.7 (Ar-C), 151.3 (pyrazole-C5),
152.2 (pyrazole-C3), 156.1 (pyridine-C2). Anal. Calcd for C20H14N4S (342.42): C, 70.15; H,
4.12; N, 16.36. Found: C, 70.30; H, 4.22; N, 16.34.

3.1.6. General Procedure for Preparing Amino Sugar Derivatives 9 and 10

To a solution of compound 8 (3.44 g, 10 mmol) in ethanol (30 mL) and glacial acetic
acid (2 drops), d-glucose or d-galactose was added in water (1 mL). The reaction mixture
was refluxed for 6 h (TLC; methanol/chloroform; 0.5/9.5) and then allowed to cool at room
temperature. The excess ethanol was removed under reduced pressure, and the residue
was treated with diethyl ether (15 mL). The solid that formed was filtered and crystallized
from ethanol to form compounds 9, 10.

3-((β-D-glucopyranosylamino)-6-(naphthalen-2-yl)-4-(thiophen-2-yl)-7,7a-dihydro-
1H-pyrazolo[3,4-b]pyridine (9). Brown powder; Yield: 86%; m.p. 285–286 ◦C; IR (KBr, ν,
cm−1): 3520–3390 (OH), 3419 (NH), 1592 (C=N); 1H-NMR (DMSO-d6): δ (ppm) 3.00–3.04
(m, 2H, H-6‘,6“), 3.59–3.62 (m, 1H, H-5‘), 3.73–3.80 (m, 3H, H-4‘, H-3‘, OH), 4.45–4.47 (m,
1H, OH), 4.73–4.78 (m, 3H, H-2‘, 2OH), 5.85 (d, J = 9.6 Hz, 1H, H-1‘), 6.80–7.80 (m, 10H,
Ar-H), 7.77 (s, 1H, pyridine-H), 10.31, 11.29 (2s, 2H, 2NH, D2O exchangeable); 13C-NMR:
61.6 (C-6‘), 70.7 (C-4‘), 75.2 (C-2‘), 77.2 (C-3‘), 81.5 (C-5‘), 90.2 (pyridine-C3), 92.6 (C-1‘),
121.7 (pyridine-C5), 127.5–141.9 (Ar-C), 144.9 (pyridine-C4), 151.1 (pyridine-C2), 154.0
(pyrazole-C), 155.4 (pyridine-C6). Anal. Calc. for C26H24N4O5S (504.56): C, 61.89; H, 4.79;
N, 11.10. Found: C, 61.94; H, 4.85; N, 11.26.

3-((β-D-galactopyranosylamino)-6-(naphthalen-2-yl)-4-(thiophen-2-yl)-7,7a-dihydro-
1H-pyrazolo[3,4-b]pyridine (10). Yellow powder; Yield: 82%; m.p. 281–282 ◦C; IR (KBr,
ν, cm−1): 3510–3385 (OH), 3475 (NH); 1H-NMR (DMSO-d6): δ (ppm) 3.12–3.13 (m, 2H,
H-6‘,6“), 3.40–3.42 (m, 1H, H-5‘), 3.85–3.89 (m, 3H, H-4‘, H-3‘, OH), 4.39–4.41 (m, 1H, OH),
4.58–4.88 (m, 3H, H-2‘, 2OH), 6.17 (d, J = 9.6 Hz, 1H, H-1‘), 7.11–8.00 (m, 10H, Ar-H),
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7.85 (s, 1H, pyridine-H), 10.45, 11.07 (2s, 2H, 2NH, D2O exchangeable). Anal. Calc. for
C26H24N4O5S (504.56): C, 61.89; H, 4.79; N, 11.10. Found: C, 61.60; H, 5.29; N, 11.0.

3.1.7. S-(3-Cyano-6-(naphthalen-2-yl)-4-(thiophen-2-yl)pyridin-2-yl)2-
chloroethanethioate (11)

To a solution of compound 7 (3.44 g, 10mmol) and anhydrous potassium carbonate
(1.38 g, 10 mmol) in dry acetone (30 mL), chloroacetyl chloride (0.79 mL, 10 mmol) was
added drop wise. The reaction mixture was stirred at room temperature for about 8 h.
Then, the mixture was poured onto water and extracted with ethyl acetate, dried over
anhydrous sodium sulfate, and concentrated under vacuum to give compound 11.

Black powder; Yield: 89%; m.p. 160–161 ◦C; IR (KBr, ν, cm−1): 2921 (aliphatic C–H),
2209 (CN), 1698 (C=O), 1590 (C=N); 1H-NMR (DMSO-d6): δ (ppm) 4.30 (s, 2H, CH2Cl),
7.34–8.31 (m, 10H, Ar-H, thiophene-H), 8.19 (s,1H, pyridine-H); 13C-NMR: 47.0 (CH2-Cl),
98.3 (pyridine-C3), 112.5 (CN), 120.7 (pyridine-C5), 126.1–138.6 (Ar-C), 147.3 (pyridine-C4),
159.5 (pyridine-C6), 184.2 (pyridine-C2), 189.0 (C=O). Anal. Calc. for C22H13ClN2OS2
(420.93): C, 62.78; H, 3.11; N, 6.66; S, 15.23. Found: C, 62.65; H, 3.34; N, 6.50; S, 15.22.

3.1.8. S-(3-Cyano-6-(naphthlean-2-yl)-4-(thiophen-2-yl)pyridin-2-yl)-2-
azidoethanethioate (12)

A mixture of compound 11 (4.22 g, 10 mmol) and sodium azide (0.65 g, 10 mmol) in
DMF (20 mL) was stirred at room temperature for 12 h. The reaction mixture was diluted
with cold water (10 mL) and extracted with chloroform (3 × 10 mL). The combined organic
layer was concentrated to afford compound 12.

Black crystals; Yield: 75%; m.p. 152–153 ◦C; IR (KBr, ν, cm−1): 2972 (aliphatic C–H),
2366 (N3), 2206 (CN), 1676 (C=O); 1H-NMR (DMSO-d6): δ (ppm) 2.42 (s, 2H, CH2N3),
7.01–8.06 (m, 10H, Ar-H, thiophene-H), 7.95 (s,1H, pyridine-H); 13C-NMR: 65.1 (CN3),
101.9 (pyridine-C5), 110.4 (pyridine-C3), 116.0 (CN), 127.4–135.4 (Ar-C), 147,8 (pyridine-C4),
171.0 (pyridine-C6), 191.0 (C=O). Anal. Calc. for C22H13N5OS2 (427.50): C, 61.81; H, 3.07;
N, 16.38; S, 7.74. Found: C, 61.51; H, 3.23; N, 16.40; S, 7.75.

3.1.9. Ethyl-3-amino-6-(naphthalen-2-yl)-4-(thiophen-2-yl)furo[2,3-b]pyridine-2-
carboxylate (14)

Compound 13 (3.28 g, 10 mmol) was heated under reflux in sodium ethoxide solution
(0.02 g atom of sodium in 25 mL of absolute ethanol) for 30 min. After cooling, the solid
product was filtered and recrystallized from ethanol to afford compound 14.

Brown powder; Yield: 60%; m.p. 185–186 ◦C; IR (KBr, ν, cm−1): 3437 (NH2), 2921
(aliphatic C–H), 1739 (C=O); 1H-NMR (DMSO-d6): δ (ppm) 1.19–1.23 (t, J = 6.7 Hz, 3H,
CH3), 4.35–4.38 (q, 2H, CH2CH3), 5.61 (s, 2H, NH2), 6.96–8.52 (m, 10H, Ar-H), 8.06 (s, 1H,
pyridine-H); 13C-NMR: 13.6 (CH3), 58.1 (CH2), 105.6 (furan-C3), 116.6 (pyridine-C3), 121.9
(pyridine-C5), 126.4–132.1 (Ar-C), 144.2 (furan-C2), 145.1 (pyridine-C4), 155.1 (pyridine-C6),
159.0 (pyridine-C2), 162.0 (C=O). Anal. Calc. for C24H18N2O3S (414.48): C, 69.55; H, 4.38;
N, 6.76. Found: C, 69.60; H, 4.34; N, 6.90.

3.1.10. 7-(Naphthalen-2-yl)-9-(thiophen-2-yl)pyrido[3′,2′:4,5]furo[3,2-d]pyrimidin-4(3H)-
one (15)

A mixture of compound 14 (3.28 g, 10 mmol) and formamide (20 mL) was heated under
reflux for 5 h. The solid product that formed on cooling was collected and recrystallized
from DMF to give compound 15.

Black powder; Yield: 77%; m.p. 197–198 ◦C; IR (KBr, ν, cm−1): 3419 (NH), 1662 (C=O);
1H-NMR (DMSO-d6): δ (ppm) 7.24–8.11 (m, 10H, Ar-H), 8.26 (s, 1H, pyridine-H), 8.34 (s,
1H, pyrimidine-H), 11.18 (s, 1H, NH); 13C-NMR: 103.4 (furan-C3), 116.2 (pyridine-C3), 122.7
(pyridine-C5), 126.0–140.9 (Ar-C), 144,4 (pyridine-C4), 146.1 (pyrimidine-H), 147.8 (furan-
C2), 157.0 (pyridine-C6), 158.5 (pyridine-C2), 160.8 (C=O). Anal. Calc. for C23H13N3O2S
(395.44): C, 69.86; H, 3.31; N, 10.63. Found: C, 69.67; H, 3.51; N, 10.70.
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3.2. Anti-Cancer Activity
3.2.1. Cell Culture and Maintenance

Dulbecco’s modified Eagle’s medium (DMEM) and fetal bovine serum (FBS) were
purchased from Gibco, Paisley, UK. Dimethyl sulfoxide (DMSO) was of HPLC grade, and
all other reagents and chemicals were of analytical reagent grade.

Cell cultures of HCT-116 (human colorectal carcinoma), MCF-7 (human breast adeno-
carcinoma), HepG2 (human hepatocellular carcinoma), and A549 (human lung carcinoma)
cell lines were purchased from the American Type Culture Collection (Rockville, MD, USA)
and maintained in DMEM medium that was supplemented with 10% heat-inactivated FBS
(fetal bovine serum), 100 U/mL penicillin, and 100 U/mL streptomycin. The cells were
grown at 37 ◦C in a humidified atmosphere of 5% CO2.

3.2.2. Cytotoxicity Measurement

The anticancer activity against HCT-116, HepG2, A549, and MCF-7 human cancer cell
lines was estimated using the 3-[4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bro-
mide (MTT) assay, which is based on the reduction of the tetrazolium salt by mitochondrial
dehydrogenases in viable cells [49–52]. Cells were dispensed in a 96-well sterile microplate
(5 × 104 cells/well) and incubated at 37 ◦C with a series of different concentrations, in
DMSO, of each tested compound or doxorubicin (positive control) for 48 h in a serum-free
medium prior to the MTT assay. After incubation, media were carefully removed, and
40 µL of MTT (2.5 mg/mL) were added to each well and then incubated for an additional
4 h. The purple formazan dye crystals were solubilized by the addition of 200 µL of DMSO.
The absorbance was measured at 570 nm using a Spectra Max Paradigm Multi-Mode
microplate reader. The relative cell viability was expressed as the mean percentage of
viable cells compared to the untreated control cells. All experiments were conducted in trip-
licate and repeated on three different days. All the values were represented as mean ± SD.
IC50s were determined by probit analysis by SPSS Incprobit analysis (IBM Corp., Armonk,
NY, USA).

3.3. In Silico Studies
Molecular Docking Study

Molecular modeling simulation study was performed through docking of the target
compounds in the binding site of CDK2 enzyme using C-Docker protocol in Discovery
Studio 4.0 Software. The X-ray crystal structure of Roscovitine in complex with CDK2
was downloaded from http://www.rscb.org/pdb (accessed on 9 March 2021) (PDB code
2A4L) in PDB format. Computational docking is an automated computer-based algorithm
designed to estimate two main terms [53]. The first is to determine the suitable position and
the orientation of a certain test set molecule’s pose inside the binding site in comparison
to that of the X-ray crystallographic enzyme–substrate complex. The second term is the
calculation of the estimated protein ligand interaction energy, which is known as binding
energy (docking scoring).

4. Conclusions

A new series of substituted pyridine derivatives and its N-glycosides (1–5, 7, 8, 11, 13,
and 14) were designed and synthesized. All compounds exhibited potent CDK2/cyclin A2
inhibitory activity with IC50 values ranging 3.52–0.24 µM compared to roscovitine (IC50
0.394 ± 0.0 µM). Amongst them, compound 4 revealed the highest IC50 of 0.236 µM. Most
of the new compounds exhibited potent antiproliferative activity against HCT-116, MCF-7,
HepG2, and A549 compared to doxorubicin. The results revealed agreement between both
the experimental and estimated data through docking. The most active compounds 1, 4, 8,
11, and 14 showed high docking scores and low binding energy values, and their binding
mode was compatible with the reported binding mode of the reference compound.

http://www.rscb.org/pdb
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