
Ecology and Evolution 2016; 6: 8811–8831	 www.ecolevol.org  |  8811© 2016 The Authors. Ecology and Evolution
published by John Wiley & Sons Ltd.

Received: 6 June 2016  |  Revised: 7 September 2016  |  Accepted: 6 October 2016

DOI: 10.1002/ece3.2580

Abstract
Computational ecology is an emerging interdisciplinary discipline founded mainly on
modeling and simulation methods for studying ecological systems. Among the existing
modeling formalisms, the individual-based modeling is particularly well suited for cap-
turing the complex temporal and spatial dynamics as well as the nonlinearities arising
in ecosystems, communities, or populations due to individual variability. In addition,
being a bottom-up approach, it is useful for providing new insights on the local mecha-
nisms which are generating some observed global dynamics. Of course, no conclusions
about model results could be taken seriously if they are based on a single model exe-
cution and they are not analyzed carefully. Therefore, a sound methodology should
always be used for underpinning the interpretation of model results. The sensitivity
analysis is a methodology for quantitatively assessing the effect of input uncertainty in
the simulation output which should be incorporated compulsorily to every work based
on in-silico experimental setup. In this article, we present R/Repast a GNU R package
for running and analyzing Repast Simphony models accompanied by two worked ex-
amples on how to perform global sensitivity analysis and how to interpret the results.

K E Y W O R D S

computational ecology, individual-based modeling, Repast, sensitivity analysis, systems biology

Departamento de Inteligencia
Artificial, Universidad Politécnica de Madrid,
Boadilla del Monte, Madrid, Spain

Correspondence
Alfonso Rodríguez-Patón, Departamento
de Inteligencia Artificial, Universidad
Politécnica de Madrid, Boadilla del Monte,
Madrid, Spain.
Email: arpaton@fi.upm.es

Funding information
European FP7–ICT–FET EU Research
Project, Grant/Award Number: 612146;
Spanish Government (MINECO), Grant/
Award Number: TIN2012-36992

O R I G I N A L R E S E A R C H

Sensitivity analysis of Repast computational ecology models
with R/Repast

Antonio Prestes García | Alfonso Rodríguez-Patón

1  | INTRODUCTION

The computational ecology is a relatively young field which relies ex-
tensively on mathematical computational methods and models for
studying ecological and evolutionary processes. It is based on the
construction of predictive and explanatory models as well as the
quantitative description and analysis of ecological data (Helly, Case,
Davis, Levin, & Michener, 1995; Petrovskii et al., 2012). The contin-
uous growth of computational power available for and end users,
the existence of tools, and the constant increment of empirical data
available makes viable for many scientists to develop and simulate
tremendously complex models from their desktops. In addition, the
intrinsic characteristics of ecological processes, maxim their temporal
and spatial scale (Dieckmann, Law, & Metz, 2000), converts the task

of carrying out controlled experiments a physical impossibility. Hence,
in most cases, the only feasible alternative is to simulate the process
in order to make experiments spanning the full length of ecological
and evolutionary scales. The computational ecology has its roots from
the successful results achieved from mathematical ecology which has
proven to be an essential tool for understanding the complexities
which arise from ecological interactions.

It is widely accepted that simple models with a small number of
state variables and parameters provide best generalizations than the
complex ones (Evans et al., 2013; Smith, 1974) with a clear distinc-
tion between simulation models and theories as separate entities
handling different kind of problems. It has been recently questioned
the correctness of the idea the simple models lead to generality in
ecology (Evans et al., 2013). We believe that the parsimony principle

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

mailto:arpaton@fi.upm.es
http:/creativecommons.org/licenses/by/3.0/

8812  |     PRESTES GARCÍA and RODRÍGUEZ-PATÓN

must always be taken into account when developing models, but this
has a different meaning depending on the modeling formalism we are
using. Simplicity does not have the same meaning when the referred
modeling formalism is a deterministic ordinary differential equation
(ODE) or when it is applied to agent-based modeling, as long as every
modeling techniques has its own idiosyncrasy and constraints. The
agent-based modeling is a flexible and versatile abstraction where the
whole system under study is described or formalized by its component
units, which facilitates a more natural description of a system and the
comprehension of individual properties leading to the emergent phe-
nomena (Bonabeau, 2002).

The agent-based models (AbM) are much more fine-grained than
their whole-population aggregated counterpart, and as a consequence,
they tend to be more complex requiring more equations, parameters,
and processes in order to represent the same phenomenon. That is,
not intrinsically a problem or a quality but simply a constraint imposed
by the modeling formalism in use, and it is up to the modelers to find
the correct trade-off between the purpose of the model and the level
of details which should be part of the model structure.

The AbM is being established progressively as a mainstream and
valuable tool for modeling complex adaptive systems in many distinct
areas of knowledge, ranging from social science, economics to any fla-
vor of computational and systems science such as biology, ecology,
and so on (Grimm & Railsback, 2005). The reason is, among other
things, the relative ease with which detailed structural information
can be incorporated into a model without the constraints of other
methodologies (Hellweger & Bucci, 2009). Nonetheless, the possibil-
ity of incorporating many details comes with the cost of models with a
high-complexity level, containing many rules and parameters for which
the exact values are, in many cases, hard or impossible to determine
experimentally, that is what is known as parameter uncertainty. When
used in the context of ecological systems, the agent-based modeling
is also known as individual-based modeling (IbM; Grimm & Railsback,
2005).

The distinctive aspect defining what is an IbM is that individuals
are represented by discrete entities and they also have a property
or state variable which are unique in the population being simulated
(Berec, 2002). Hence, IbM is a valuable abstraction for simulating
populations, communities, or ecosystems capturing the individual
variability, randomness, and their complex dynamics. It is a bottom-up
approach where the system under study is modeled using mechanistic
explanations on the interacting system parts (Ferrer, Prats, & López,
2008). Therefore, the global behavior shown by the system as a whole
is an emergent property derived from the local rules defining the indi-
viduals, which is particularly useful for testing different hypothesis or
phenomenological explanations for the individual processes in order
to verify which of them are producing the global observed behavior
(Pascual, 2005). Moreover, differently from aggregate models, it is cus-
tomary that IBM have a large number of state variables and parame-
ters which in most cases are hard or directly impossible to elucidate
experimentally leading to many levels of uncertainty in this kind of
models. In order to tackle with the uncertainty and for making robust
predictions, we have to use a sound methodology for applying what-if

analysis to check how stable are the model outputs when varying the
input parameters (Thiele, Kurth, & Grimm, 2014). There exist a large
set of mathematical tools for analyzing the model output which are
known generically as sensitivity analysis. Normally, applying these
techniques are cumbersome, requiring much effort from modelers,
hindering the throughout analysis of computational models.

According to Thiele et al. (2014) most of the individual-based
models published, it tends to omit the systematic analysis of model
output, mainly because modelers normally do not have the specific
knowledge to implement the required methods. Therefore, it seems to
be clear that the availability of simple and user-friendly tools for exper-
iment design and analysis would greatly help modelers to improve the
formal quality of their models.

In other scientific fields, which are strongly rooted on an exten-
sive experimentalism, it is practically impossible to conduct any kind
of research without a well-designed experimental setup and a further
statistical analysis and hypothesis test. Perhaps the reasons are that
these experimental fields already have a complete and mature toolbox
for design and evaluation of experiments (Little & Hills, 1978; Myers
& Well, 1995), leaving no room for deviation from these standards. On
the other hand, silico-based experiments are still on early stage and
verification and validation procedures are not well established yet. In
addition, the real value of a computational model depends much on
the ability of other researchers to reproduce and enhance the results
elsewhere; in other words, results must be reproducible. Hence, in
order to achieve reproducibility, research methods should be stated
clearly and should preferentially being backed by standard methods
and software tools.

Bearing this in mind, we introduce R/Repast a GNU R package for
running Repast (North et al., 2013) models from GNU R environment
as well as for carrying out global sensitivity analysis on the model
results. In the following sections, we will contextualize the prob-
lem providing a basic background for understanding what is being
addressed in this study and we will also provide a basic description
about the package functionalities. Finally, we will show three worked
examples on how the package can help modelers to make the conclu-
sions drawn from model results much more robust. The first exam-
ple explores the basic aspects of bacterial conjugation process. The
second is an individual-based implementation of the classic preda-
tor–prey model enclosed as part of the standard Repast Simphony
distribution. Finally, the last example was developed ex professo for
this study and it is an instance of common pool problem in the con-
text of two plasmids “sharing” the genes required for the expression
of conjugative system.

2  | BACKGROUND

2.1 | Model development

Model development is an iterative and objective-driven activity, and
the first step required to develop a model is having a clear and ideally
unambiguous statement about the model purpose. Therefore, every
experimental study carried out using modeling and simulation should

     |  8813PRESTES GARCÍA and RODRÍGUEZ-PATÓN

follow the experimental life cycle based on the successive sequence
of four cyclic steps, starting from (1) conjecture, which defines the
model purpose and why the model is being developed; (2) design
phase, where the model is translated to some runnable implementa-
tion; (3) experiment step, which means the execution of model fol-
lowing a well-established plan oriented to confirm or reject the initial
conjecture; and finally, the (4) analysis step, where the data gener-
ated in the previous step is analyzed with a sound methodology which
will generate new insights, uncover model flaws, and iteratively im-
prove the initial conjecture and design (Box & Draper, 1987). A sim-
ple graphical representation of these four iterative steps is shown in
Figure 1.

Part of design phase consist in converting the model equations
and rules to a computer code implementation. Currently, there are
several frameworks available for developing individual-based models.
These frameworks are designed to address some specific require-
ment such as usability (Tisue & Wilensky, 2004), flexibility or scalabil-
ity (Luke, Cioffi-Revilla, Panait, Sullivan, & Balan, 2005; North et al.,
2013), or support to multiple paradigm, such as AnyLogic (Emrich,
Suslov, & Judex, 2007). Certainly, the most widespread framework
in ecological modeling is NetLogo (Tisue & Wilensky, 2004) which is
considered to provide an easier development environment based on
extensions to Logo paradigm especially suited for those which are not
much familiar with modern programming languages. One of the main
drawbacks of NetLogo is the scalability. NetLogo tends to show some
performance issues when simulating a large number of agents. On the
other hand, Repast Symphony framework has a steep learning curve
but provides a fast and flexible java-based environment with many
interesting features for simulating large-scale computational ecology
models. These features include, among others things, the integration
with Weka, exporting the model output to R environment, support for
running distributed batch simulations, and some built-in facilities for
parameter sweeping (North et al., 2013). Finally, Mason is, in some
extent, very similar to Repast but less mature than it is; it has been
designed focusing on providing faster execution speeds (Luke et al.,
2005). Of these frameworks, only AnyLogic provides integrated sen-
sitivity analysis capabilities, whereas the other frameworks NetLogo,
Repast, and Mason, which are all free software, do not have built-in
support to sensitivity analysis.

The Repast framework is widely used in many different fields for
building individual-based simulation models of dynamic processes
(Gutfraind et al., 2015; Tack, Logist, Noriega Fernández, & Van Impe,
2015; Watkins, Noble, Foster, Harmsen, & Doncaster, 2015). In addi-
tion, Repast also has a framework for high-performance computing
using the C++ programing language with similar conceptual entities
as those found in Repast—java. Repast also has support for running
GNU R code (Crawley, 2007; R Core Team, 2015) from inside the
user interface, but until now, it has not been feasible to run Repast
models from R environment for controlling model in order to imple-
ment experimental designs, calibration, parameter estimation, and
sensitivity analysis, therefore hindering a throughout and com-
prehensive validation of individual-based models developed using
Repast Simphony.

2.2 | Sensitivity analysis

Because of sensitivity analysis is a broad and complex subject, a
throughout discussion would be lengthy and out of the scope of this
work. Instead, we will try to provide a more amenable and practical ap-
proach keeping the discussion at a general level but rigorous enough
to let the practitioners gain the knowledge required to understand,
apply, and interpret the results. For a more detailed review, please
refer to Saltelli, Tarantola, Campolongo, and Ratto (2004) and Pianosi
et al. (2016). It is interesting to start the discussion providing the exact
meaning of some the many expressions which are used commonly in
the analysis of models. There are several terms used in the context of
sensitivity analysis for which is important to provide the formal mean-
ing. For instance, the jargon of sensitivity analysis includes model cali-
bration and parameter estimation which many times are used as they
were equivalent, even though they are different objectives. Other
terms such as uncertainty analysis, omitted variable bias, objective
function, or cost function are also important part of SA lexicon.

Generally speaking, the objective of SA is to understand the effect
of varying input factors on the model output (Saltelli et al., 2004).
Under this very general statement, we have a wide range of methods
and techniques which are suitable for distinct kinds of models. In order
to improve this definition, it is convenient to provide a more formal
definition to the entity which is the target of SA: the model. Formally
speaking, a model is a functional relation between a number k of input
factor, also called independent or predictor variable and the output
variable, sometimes referred as dependent or response variable (Box &
Draper, 1987) as depicted by the expression η = f(x1, x2, … , xk), being
η is the average value of response variable considering any specific
setting for the input factors xi. Therefore, the value of a single model
run is given by y = f(x1, x2, … , xk) + ϵ, where ε is difference between
the value of y and the expected value E(y) = η. The error ε is conse-
quence of stochasticity introduced by design in the structure of model
to capture the population variability. Finally, recognizing that most
real-world models usually have more than one response variable, the
structure of an individual-based model M can be generalized for n out-
puts as can be seen below

F I G U R E 1   The iterative model development life cycle. This figure
shows the relationship between the modeling phases and their
associated tasks when applied to an individual-based model

8814  |     PRESTES GARCÍA and RODRÍGUEZ-PATÓN

Therefore, being yi some output of model M, the model calibration
process consists in comparing these outputs to some reference values
(Zeigler, Praehofer, & Kim, 2000) which are normally, in the case of
ecological or biological studies, experimental or observed data. The
target of calibration process is minimizing the discrepancies between
simulated and reference values. The function used for computing
how far yi output is from the reference values is known as objective
function or cost function. There are many options for implementing
the objective function and the only requirement is that the return of
objective function should be inversely proportional to the quality of
fit, being zero the return value for the perfect fit. Common implemen-
tations for objective function are based on the definition of acceptable
ranges, least squares, or even a combination of both. For instance, let
yi be the output of some hypothetical model M, assuming this variable
represents the net reproductive rate R0. The reference values Rv for
the output variable must fall between 0.8 and 1.2; hence, any yi value
within this interval is considered to have a perfect fit, bearing this in
mind the cost function could be given by the following expression

That is, what is known as categorical calibration criteria (Thiele et al.,
2014). The main drawback of this approach is that it does not provide
any information about how far is the response value from the reference
value. A better alternative is to apply some distance function d(yi,Ry) to
the output and the reference values, even standalone or in combination
with categorical calibration. The most commonly used metric is some of
the multiple forms of squared deviation, but any distance function can
be alternatively employed as long as two properties hold: d(yi,Ry) = 0 if
xi and Ry are equal and d(yi,Ry) > 0 when xi and Ry are not equal.

While calibration is a general term, meaning fundamentally the
comparison of some value to a reference value, the term parameter
estimation has a more subtle and specific goal. The parameter esti-
mation is normally considered an inverse problem because the objec-
tive is finding the values for the model parameters providing the best
adjustment to the reference values. In other words, knowing the
expected values for response variable, the target is estimating the suit-
able values for the model parameters. Usually, the terminology param-
eter refers to the constants which are part of models with clear distinc-
tion between parameters and independent variables (Beck & Arnold,
1977), for instance, in the growth differential equation shown below

the model parameter would be only the growth rate r and the
independent variable the time, but for the purpose of this study, we
consider indistinctly the model constants and independent variables
as being parameters.

The two main objectives of sensitivity analysis are understanding
how robust are the model results considering the existing uncertain-
ties and quantifying the effect of input factors on the variance of out-
put (Law, 2005; Pianosi et al., 2016; Saltelli et al., 2004). The intrinsic
characteristics of individual-based models which relies on mechanistic
descriptions favors the production of models with many subprocesses,
state variable, and parameters. The design is normally based on incom-
plete knowledge resulting in several levels of uncertainties in the model
parameters, in the model response variables, and in the model structure
itself. The model structure is also related to the identifiability problem
where not all model parameters can be uniquely estimated. The sensi-
tivity analysis can be also used to assess the effect of model structure
on the output considering the alternative model implementations as
being another parameter. This can be useful for analyzing the omitted
variable bias, which basically means that some parameter of model can
be over or underestimated because another important parameter was
not included in the model structure. The sensitivity analysis can be car-
ried out letting the parameters varying over the full range of parameter
space or restricted to a small region close to the average value, respec-
tively, referred as global sensitivity analysis and local sensitivity analy-
sis. Sensitivity analysis can also be performed varying one factor at a
time (OAT) leaving all others fixed or varying all factors at the same time
(AAT). The application of second method is required in order to capture
interaction between parameters and nonlinear effects.

The central point of SA methodology is the estimation of sensitiv-
ity indices or coefficients. The sensitivity coefficients allow the quan-
titative comparison of the contributions from distinct parameters to
the model output. In its classical form (Beck & Arnold, 1977), the sen-
sitivity indices are defined as the first derivative with respect to some
model parameter xi. Considering the general model y = f(X), being X
the parameter vector of size k, the sensitivity index Si is given by

It is also important to take into account that the partial deriva-
tives can have different units, hence can be necessary to scale them
in order to make them comparable. In this approach, input factors are
perturbed one-at-a-time, being that measure of sensitivity suitable for
local SA (Pianosi et al., 2016).

Several methods to estimate sensitivity indices which are adequate
for global sensitivity analysis are available, such as metamodeling
approach (Happe, Kellermann, & Balmann, 2006), correlation-based
methods, regression-based methods, Fourier amplitude sensitivity test
(FAST; Xu & Gertner, 2011), for a more in-depth discussion, please
refer to Thiele et al. (2014), Saltelli et al. (2004), Saltelli (2008), Pianosi
et al. (2016) and Pujol et al. (2015). The Figure 2 shows how the dif-
ferent methods for assessing the importance of input factors in simu-
lation models are related, also including screening techniques (Saltelli,
Andres, & Homma, T. 1995; Bettonvil & Kleijnen, 1996). In this study,
we will focus on those methods based on the variance decomposi-
tion which are suitable for a wide range of situations, including those
which are commonly found in individual-based models, such as non-
linear mappings between input factors and outputs variables (Zhang &

M=

⎧
⎪
⎪
⎨
⎪
⎪
⎩

y1= f1(x1,x2,… ,xk)+ϵ

y2= f2(x1,x2,… ,xk)+ϵ

⋮

yn= fn(x1,x2,… ,xk)+ϵ

C(yi)=

{
0, if 0.8 ≤ yi ≤ 1.2

1, otherwise

dN

dt
= rN,

Si=
∂Y

∂xi

     |  8815PRESTES GARCÍA and RODRÍGUEZ-PATÓN

Rundell, 2006). In addition to first-order effects, the variance decom-
position methods also allow the quantification of second-order effects
sometimes referred as total-order effects. Total-order effect indices
are useful for the assessment of the interaction between factors which
cannot be expressed by a simple linear superposition.

One of main drawbacks for applying variance decomposition
methods on large spatially explicit individual-based models is the
requirement of very high number of model evaluations in order to pro-
duce consistent results (Herman, Kollat, Reed, & Wagener, 2013). An
alternative approach, in those cases where it is impractical or compu-
tationally unfeasible a fully quantitative analysis, is the application of
the Morris screening method. The Morris method delivers qualitative
information allowing to rank the importance of input factors requiring

lees model evaluations, which in some case can one order of magni-
tude be inferior to the Sobol method (Saltelli, 2008).

The Sobol is a method for sensitivity analysis based on the decom-
position of the variance of model output and is particularly suitable for
discovering the effect of high-order interactions between input fac-
tors. The interaction means nonlinearity where the total effect of two
input factors x1 and x2 on the model output Y are not equivalent to the
sum of the individual effects. The general form of sensitivity indices
for Sobol methods is shown in Equations 1 and 2, respectively, the
first-order and total-order indices.

where the terms Vi and V(Y) are, respectively, the variance contribution
attributed to the ith parameter and the total variance. The expression
V(Y)−Vi represents the total variance with exception of the variance
which is generated by the parameter i. The total-order index STi is the
contribution of all input parameters but one, the ith parameter, and
hence estimating the effect of that parameter on the variance reduc-
tion (Saltelli, 2008).

The total variance V(Y) for a model with n input parameters can be
expressed as shown in Equation 3 as long as the orthogonality of input
factors precondition holds.

being V(Y) the total variance from model output and the compo-
nents Vi, Vij, and Vijk, respectively, the variance contribution from the
parameter i, the variance contribution form input parameters i and j,
and the variance contribution form input parameters i, j, and k. Finally,
the component V12…n expresses the interactions from all parameters
present in the model.

The application of Sobol method, as have been mentioned, can be
computationally expensive and sometimes could be useful to reduce
the problem dimensionality filtering only the most significant param-
eters or even simplifying the model structure considering only the
parameters accounting for the most of the variability in the model
output. It can be accomplished using the Morris screening method to
rank the importance of input parameters. The Morris method is an OAT
method, meaning that it changes just one factor keeping all other input
parameters fixed. The input factors are allowed to vary in discrete levels
within the relevant parameter range (Morris, 1991). The method is con-
sidered to be more effective when the number of most significant input
parameters are a small subset of model parameters (Saltelli et al., 2004).

The original work of Morris (1991) defines two metrics for ranking
input factors which are depicted by μ and σ values.1 Further, another
metric termed μ∗ has been suggested by Campolongo, Cariboni, and
Saltelli (2007) which use absolute values in order to handle effects of
distinct signs canceling each other. These metrics for ranking input
factors are calculated from what has been termed elementary effects.
Therefore, considering a model with k input parameters and being

(1)Si=
Vi

V(Y)
,

(2)STi=1−
V(Y)−Vi

V(Y)
,

(3)V(Y)=
∑

i

Vi+
∑

i< j

Vij+
∑

i< j< k

Vijk+⋯+V12…n,

F I G U R E 2   The different types of sensitivity analysis and their
associated methodologies and techniques

Sensitivity
Analysis

Local
Sensitivity
Analysis

Global
Sensitivity
Analysis Regression-

based
methods

PartialRank
Correlation
Coefficient

Standardized
Rank

Correlation
Coefficient

Variance
decomposition

Fourier

FANOVA
Sobol

Screening

Morris
Elementary

Effects

Iterated
Fractional
Factorial
Designs

Sequantial
Bifurcation

8816  |     PRESTES GARCÍA and RODRÍGUEZ-PATÓN

 = (x1,x2,… ,xk) any value from the region of experimentation Ω, the
elementary effects are calculated according to the Equation 4.

The region of experimentation Ω is a grid defined by the number
of k input factors and by the p discrete levels for every parameter. The
recommendations for the values of p and Δ are, respectively, that the
first should be an even number of levels and the second calculated by
the expression Δ = p/(2(p−1)) (Morris, 1991; Saltelli et al., 2004). The
value of Δ has important implications in the model analysis. It has been
shown that in some situations, choosing an alternative value calcu-
lated as Δ = 1/(p−1) can detect nonmonotonic behaviors such that the
suggested standard calculations are not able to capture otherwise (van
Houwelingen, Boshuizen, & Capannesi, 2011).

The metrics of Morris method are calculated over the Fi and Gi dis-
tributions for every input parameter. These distributions are generated
taking random samples of  from Ω for calculating the elementary
effects, and the only difference between them is that Gi uses the abso-
lute values of elementary effects |eei()| as described in Campolongo
et al. (2007) and Saltelli (2008). The estimation of Morris metrics are
carried out by taking r samples from Fi and Gi distributions according
to the Equations 5–7.

These three metrics can be used to extract valuable information
about the model behavior, in addition to ranking the input factors. For
instance, a low value of μ and a high value of μ∗, points that the input
factor under scrutiny, possibly has a nonlinear behavior having differ-
ent signs in function of the system trajectory (Saltelli et al., 2004). A
high value of μ indicates that the input has a monotonic effect on the
model output.

The sensitivity analysis methods require significant samples from
input space in order to provide reliable results. It is customary to
choose between some experimental design (Hicks, 1993) for gen-
erating the collection of input parameters needed by evaluating the
model and allocating the variance contribution of every model param-
eter. The most generally applied sampling schemas are based on ran-
dom sampling, full factorial designs, or Latin hypercube sampling.

3  | OVERVIEW OF R/REPAST PACKAGE

In the previous sections, we had seen some fundamental ideas on
model building and the role occupied by sensitivity analysis methods

in the iterative modeling life cycle. We have also introduced the basic
principles of sensitivity analysis focusing on two main techniques
namely the Morris Elementary Effects Screening (Morris, 1991) and
the Sobol GSA method for variance decomposition (Saltelli, 2008).
Both methods have a wide range of applicability, making them suit-
able for their use in the analysis of individual-based models. These
methods require the model to be evaluated many times with a differ-
ent set of input parameters, making completely impractical undertak-
ing a manual analysis introducing individual parameters manually on
a graphical user interface. The Repast is an extremely flexible frame-
work for object-oriented development of AbM using Java language,
but it lacks model analysis tools. On the other hand, the GNU R is a
superb open-source tool for data analysis with a vast and active com-
munity developing and adding new methods to the core R system.
Bearing this in mind, we introduce our package R/Repast which bring
together the best of both worlds. Roughly speaking, the R/Repast
package have two main objectives: (1) Provide an interface for run-
ning Repast models from R and gathering the simulation data gen-
erated and (2) automating the application of sensitivity analysis and
simple model calibration methods to the Repast models. The R/Repast
is an open-source project delivered under the MIT license system. The
package provides a powerful and simple R Application Programming
Interface (API) which reduces the code required for running the most
commonly used experimental methods suitable for. The software and
the user manual can be downloaded from CRAN website and the com-
plete project source code from GitHub repository. Both are available,
respectively, from the following URLs:

•	 https://cran.r-project.org/web/packages/rrepast/
•	 https://github.com/antonio-pgarcia/RRepast

3.1 | Design

The R/Repast was intended primarily for invoking Repast Simphony
models from inside GNU R environment. Additionally, the package
contains more high-level and value-added features for experimen-
tal design and experiment analysis to address the specific need of
individual-based models. The underlying implementation idea is
to provide a set of turnkey features for facilitating the task of ap-
plying the sensitivity analysis to models. Functionally, the package
consists of four modules which interoperate together for instanti-
ate and running the Repast code inside R. These four components
are (1) the Repast Integration Broker, (2) the Repast Integration
Engine, (3) The R Integration wrapper, and finally, (4) the R API for
Experiment design. A schematic view of package architecture is
shown in Figure 3.

The R/Repast integration broker and the R/Repast engine are both
written in java code and are required for instantiating and loading the
Repast Simphony model in batch mode. The R/Repast engine contains
also the required hooks for transferring the model output data from
Java to R environment. The engine can transfer data from aggregated
dataset defined by the modeler on the Repast model. An aggregated

(4)eei() =
y(x1,… ,xi−1,xi+Δ,xi+1,… ,xk)−y()

Δ
.

(5)μ=

r∑

i=1

eei()

r
,

(6)μ∗ =

r∑

i=1

|eei()|
r

,

(7)σ=

√√√√
r∑

i=1

(eei()−μ)2

r
.

https://cran.r-project.org/web/packages/rrepast/
https://github.com/antonio-pgarcia/RRepast

     |  8817PRESTES GARCÍA and RODRÍGUEZ-PATÓN

dataset is a Repast Simphony entity used to collect data about the
simulation model agents which can be used for plotting or saving the
model output data to a file using a file sink. A File Sink is Repast com-
ponent for saving simulation data to a file. The aggregated datasets
use some kind of aggregate operation, such as counting, averaging,
summing, or any other used defined aggregate operation (North et al.,
2013; North et al., 2005). The R integration wrapper is the R code
for linking together the R and Repast subsystems. This module con-
sist of several wrapping functions for encapsulating the Java code calls
implemented using the rJava package (Urbanek, 2016). These func-
tions are prefixed with the [Engine] keyword and, although exported in
the R/Repast package, they are not intended for general use.

3.2 | The R/Repast R API

The module entitled R/Repast R API is the primary entry point for the
user-defined code and relies on the subsystems mentioned previously
for providing three group of functionalities for facilitating modelers
to analyze the simulation output. These group functionalities are the
following:

•	 Execution and control of Repast Simphony code.
•	 Basic functions for experimental design.
•	 High-level functions for a complete experiment in one call.

The functionalities on the first group are those required for the basic
interface between Repast and R system, such as instantiating and run-
ning a Repast Simphony model, retrieving the declared model param-
eters, getting their default values, setting parameter values as well as
running basic experimental designs and saving simulation data. The list
of these functions are shown in Table 1.

The second group of methods within R/Repast R API contains
the functionalities required for setting up and applying a complete

F I G U R E 3   The R/Repast general architecture. The scheme shows
in the left box the R environment and the associated components
of R/Repast. The right box represents the Repast Simphony model
running within a Java Virtual Machine as well as the R/Repast
integration broker component

R/Repast
Engine

R/Repast
Integration Broker

JVMR

R Integration
Wrapper

R/Repast
R API

Y = f(X)

User defined Repast
Model

User-defined R code
running Y = f(X)

T A B L E 1   The basic R/Repast Application Programming Interface
functions. These functions are used for loading and modifying the
default parameters defined for model and also for running the
simulation

Function name Description

Model (d, t, o, l) This function creates an object instance
for linking the Repast model to an R
object. The required parameters are the
directory where the model has been
installed (d), the duration of simulation in
Repast ticks (t), the name of any
aggregated dataset of model for draining
data generated by the model simulation
(o), and a Boolean flag (l) which tells the
function to call the Load method. The
default value is FALSE

Load (m) This function loads the Repast scenario
from model's directory. The only
required parameter (m) is an instance of
Repast Model created with previous
function

Run (m, r, s) The purpose of this function is to execute
a single round of simulation using just
one parameter set. The parameters for
this function are a model instance (m),
the number of repetitions (r), and a
collection of random seeds (s) to be used
for each one of the repetitions. The only
required parameter is the model
instance, created with the Model()
function. The default value for r is one

RunExperiment (m, r, d, F) Execute a complete experimental setup
for different sets of parameters. The
parameters required are a model
instance (m), the number of replications
(r), the experimental design (d), and
finally a user-provided calibration
function (F). The experimental design
parameter is an R data frame containing
a complete set of model's parameter per
row. The function returns a list with
three data frame elements: the paramset,
the output, and dataset which holds,
respectively, all simulated input
parameters, the result of user provide
calibration function, and the complete
dataset produced during the experiment
execution

GetSimulationParameters
(m)

Returns the complete list of parameters
declared by the model. The parameter
(m) is an instance of Repast model
generated with Model() call described
previously

SetSimulationParameters
(m, p)

Modify several parameters at once

SaveSimulationData (t, e) Exports the results of Run or
RunExperiment to a csv or excel files.
The parameters t and e are, respectively,
the format of exported data (xls or csv)
and the experiment results returned by
RunExperiment()

8818  |     PRESTES GARCÍA and RODRÍGUEZ-PATÓN

experimental design to a Repast simulation model. The group include
functions for adding the input factors and the relevant input range
which the modeler wants to evaluate. The group also have func-
tions for generating the experiment inputs using different sampling
approaches. It is not required to add as input factors all declared model
parameters, the modeler can just evaluate a small subset keeping
the other factors fixed. The functions of this group are presented in
Table 2.

Finally, the third group contains the “Easy” API functions. These
functions are intended to provide a complete method implementa-
tion which is accessible using just one R function call. The user has
to provide the directory location where the Repast model is installed,
the objective function, and the parameters relevant to the specific
method. The currently available Easy API methods are presented in
Table 3. The objective function is a user-defined R function over the
model output for calculating and returning a cost metric for the sim-
ulation outputs of interest. The return of objective functions is the
target for the application of the analysis method.

3.3 | The objective function interface

The last piece of R/Repast architecture is the definition of the objec-
tive function which actually allows the flexible definition of the model
analysis target decoupling it from the Repast dataset output. As we
have mentioned previously, any model is a functional relationship be-
tween a vector of input parameters X and a scalar dependent variable
y and expressed as y = f(X). On the other hand, usually the dataset
collected from Repast model execution will be a time series where
the aggregated measure will be collected at fixed intervals. Therefore,
some transformation must be applied in order to obtain a value con-
sistent with the functional definition. In addition, even though the
value returned from the Repast model was a scalar one, it would add
much more maintainable and flexible to act upon it directly from R
without making changes in the Repast code. The objective function is
also necessary for calibrating, where the output values are compared
to some reference data or even for more complex tasks, such as tun-
ing oscillations in the population output. It is also the place for normal-
izing he model outputs. The objective function is a required parameter
for all methods presented here.

The specification of R/Repast requires the objective function hav-
ing two input parameters. The first input parameter for the objective
function is the input parameter set used for executing the Repast
model, the second parameter is the results generated by executing
the model and corresponding to and aggregated dataset in the Repast
model. The objective function must return one or more scalar values
grouped using the cbind() (Crawley, 2007) R function. The complete
function signature is shown in Figure 4.

4  | EXAMPLES OVERVIEW

In the next sections, we will provide examples on how the R/Repast
can help modelers on the analysis of their simulation models. Three

T A B L E 2   The experimental setup Application Programming
Interface functions. These functions are used for experimental
design, parameter calibration, and sensitivity analysis

Function name Description

AddFactor (f, l, k, b, u) Creates the parameter collection for
the experimental setup. The
function requires the data frame (f)
where parameter will be added, if
this parameter is not provided, a
new data frame will be created. The
second parameter (l) is the random
function used internally, the default
value is runif which will be the valid
choice in many cases, the next
parameter (k) is the name of factor,
the value provided must match
some parameter defined in the
repast model. The following two
parameters (b), (u) are the lower and
the upper range, respectively. The
function returns the updated (f) data
frame with the new parameter

AoE.RandomSampling (n, f) Also known as Monte Carlo
sampling, generate an experimental
design based on making random
samplings of parameter space. The
function takes two parameters, the
sample size (n) and the factor (f)
data frame created using
AddFactor(). The function returns
the design matrix for the provided
parameters

AoE.LatinHypercube (n, f) Generates an experimental design
using the Latin Hypercube stratified
sampling technique which is a more
efficient sampling scheme, in terms
of model evaluations, than the pure
random sampling. The parameters
(n, f) and return values are the same
already described for the function
AoE.RandomSampling()

AoE.FullFactorial (n, f) Creates a factorial design where the
effects of all independent variables
of model are studied simultaneously,
which implies many more model
evaluations. The parameters (n, f)
and return values are the same
already described for the function
AoE.RandomSampling()

BuildParameterSet (d, p) Constructs the data frame required
for executing RunExperiment().
The function takes two param-
eters: the design matrix (d) created
with one of previous functions and
the declared parameters (p)
defined in the Repast Model with
the default values retrieved using
the function
GetSimulationParameters(). The
functions return a data frame with
varying and fixed parameters for
the experimental setup of choice

     |  8819PRESTES GARCÍA and RODRÍGUEZ-PATÓN

examples will be used for illustrating the application of some pack-
age's functionalities and what kind of information these functions can
offer about the simulation outputs. For clarifying what every model
does, a summary version of Overview, Design concepts, and Detail
(ODD) will be given for facilitating a general idea about these mod-
els. The ODD is a protocol (Grimm et al., 2006, 2010) which has been
proposed as a standard way to specify and describe individual-based
models. A brief description on the model structure and parameters
will be given in order to allow the readers to understand the kind of
questions the model is intended to answer and how R/Repast can be
used for analyzing the model outputs. The last section for each model
under the title of Model analysis is not part of ODD protocol, but it is
included to show the results of running the R/Repast model analysis
methods.

The first model used as example here is a spatially explicit individ-
ual-based representation of bacterial conjugation using BactoSIM for
simulating the plasmid spread on a surface-attached bacterial colony
(Prestes García & Rodríguez-Patón, 2015a, 2015b). The example will
be used for showing the application of Easy.Stability method for find-
ing the number of replications of simulation experiments required for
obtaining consistent outputs. The second example is a Repast imple-
mentation of the omnipresent predator–prey model describing the
interaction between two species. This one is part of examples coming
along the standard Repast distribution and will be used for showing
the application of Easy.Morris function. Finally, the third example is
an instance of the common pool problem in the context of bacterial
conjugation. This model was developed exclusively for this study. This
model will be used for exemplifying the use of Easy.Sobol method. The
complete sources for all projects are available, respectively, in the fol-
lowing locations:

•	 BactoSIM: https://github.com/antonio-pgarcia/haldane
•	 Predator-Prey: The sources come with the Repast distribution.
•	 T4SS Common Pool: https://github.com/antonio-pgarcia/PoolT4SS

For convenience, in order to facilitate the experiments shown in this
article being reproduced elsewhere, we also provide the prebuilt install-
ers for the three projects mentioned previously. The installers can be
downloaded from URL shown below:

•	 BactoSIM: http://goo.gl/YYIt1o
•	 Predator-Prey: http://goo.gl/cJ5z2r
•	 T4SS Common Pool: http://goo.gl/zq4LH0

In order to reproduce the examples shown in the next sections, it is
required a computer with a Java JVM and GNU R installed. The examples
have been produced and tested on a windows box with java 1.8 and
GNU R 3.3.1. If these preconditions are met, just proceed to download
and install the examples and the R/Repast package. The installation of
R/Repast is carried out using the install command install.packages (“rre-
past”) on the R environment. Once the previous steps have been com-
pleted, just copy and paste the examples shown in this article, taking

T A B L E 3   The easy Application Programming Interface functions.
These functions are the preferred entry point for the eventual users.
These “Easy” functions lump together a complete experiment task in
just one call, reducing the number of lines of code required

Function name Description

Easy.Stability (d,
o, t, f, s, r, v, F)

Evaluate the behavior of model output in order to
determine the minimum required number of
replication of the chosen experimental setup.
The function accept the following parameters:
the model installation directory (d), the
aggregated data source defined within the
Repast model (o), the simulation time in Repast
ticks (t) which default value is 300 ticks, the
input factors to be sampled (f) created with the
previously mentioned function AddFactor(), the
number of parameter samples (s), the desired
number of replications to be tried (r) being the
default value 100, the output variables of
interest which will be checked for their stability
and convergence of the coefficient of variation
(v); if this parameter is left empty, all output
variables are checked and finally the user
provided calibration function (F) for determining
the best input parameter combination

Easy.Morris (d,
o, t, f, p, s, r, F)

This function performs all required tasks for
carrying out the method of Morris for screening.
The parameters are practically the same as
described for the previous function with
exception of parameters (p) and (s) which are,
respectively, the levels of input factors and the
number of sampling points of Morris method
(Pujol et al., 2015)

Easy.Sobol (d, o,
t, f, n, r, F)

Encapsulate all required steps for performing
sensitivity analysis using Sobol method. The
method of Sobol is a global sensitivity analysis
technique based on the decomposition of output
variance (Pujol et al., 2015; Saltelli et al., 2004).
The parameter semantics are the same already
described: the model installation directory (d),
the aggregated data source defined within the
Repast model (o), the simulation time in Repast
ticks (t) , the input factors to be sampled (f), the
sample size (n), the desired number of replica-
tions (r), and calibration function (F)

Easy.Calibration
(d, o, t, f, n, r, F)

This function estimates the best set of input
parameters or factors, performing a set of model
executions in order to sample the calibration
function. The objective of this function is to
minimize the output of calibration function
provided by the user

Easy.Setup (d, l) The parameters (d) and (l) are, respectively, the
directory where repast model is installed and the
location of R/Repast deployment directory. If
omitted, it assumes as the default value, the
directory where the Repast model is installed.
The function is required for automatically
making the changes in the model configuration
for adding the integration code, for deploying
the Java jar files with the integration code, and
for preparing the deployment directory. That
directory will hold the JVM logs and the saved
model output datasets

https://github.com/antonio-pgarcia/haldane
https://github.com/antonio-pgarcia/PoolT4SS
http://goo.gl/YYIt1o
http://goo.gl/cJ5z2r
http://goo.gl/zq4LH0

8820  |     PRESTES GARCÍA and RODRÍGUEZ-PATÓN

care of changing the references to the model installation directory to the
directories where the models have been installed locally.

5  | EXAMPLE 1: BACTOSIM

Normally, one of the advantages of using individual-based models for
biological or ecological processes is the possibility of incorporating
variability at an individual level. Therefore, unlike deterministic model,
in order to get trustworthy results, the simulation must be repeated a
number N of times to achieve stable value on the output variance. The
objective of the first example is to show the application of a simple
method for finding the minimal number of replications of a simulation
model which is required for the variance of response variables become
stable, converging to a common value. A straightforward way to de-
termine the output stability has been suggested in Thiele et al. (2014)
and Lorscheid, Heine, and Meyer (2012) and consists in to compute
the coefficient of variation2 of the output of interest with and increas-
ing number of repetitions while keeping the input parameters fixed.
The number of replications for which the values of coefficient of vari-
ation stop to vary is the minimum number of repetitions necessary for
getting robust results. In R/Repast, we have implemented that method
which is accessible through the Easy.Stability API call.

For this example, the BactoSIM (Prestes García & Rodríguez-
Patón, 2015a, 2015b) model will be used. This is an individual-based
model of bacterial conjugation process. The bacterial conjugation is
a form of lateral genetic transfer which occur naturally in bacterial
colonies (Arutyunov & Frost, 2013). The conjugation consists in the
transference of a conjugative plasmid from a donor cell to a recipient
cell. The plasmids are small circular DNA sequences which replicates
independently from the main chromosome of their hosts (Bergstrom,
Lipsitch, & Levin, 2000). The conjugation is considered one the causes
of the rapid evolution and adaptation of bacterial colonies and the
spread of antibiotic resistance (Chen, Christie, & Dubnau, 2005; Slater,
Bailey, Tett, & Turner, 2008). The BactoSIM model is currently being
used for an evaluation of the main factors governing the plasmid
dispersion. A preliminary evaluation has shown that the point in the
cell cycle is the principal factor responsible for the global dynamics
of plasmid infective dispersion (Prestes García & Rodríguez-Patón,
2015a, 2015b) which is consistent with some observations (Seoane
et al., 2011) taken from individual bacterial cells.

5.1 | Model description

The model description follows the ODD protocol for describing
individual-based models (Grimm et al., 2006, 2010). The model is
implemented in java language using Repast Simphony agent-based
simulation framework (North et al., 2013).

5.1.1 | Purpose

The objective of this model is the assessment of the best strategy for
modeling and implementing the conjugation rule which provides the
best fit to experimental data and better captures the most plausible
process structure.

5.1.2 | Entities, state variables, and scales

The model comprises two entity types, namely the bacterial indi-
viduals or agents and environment. The environment contains the
rate limiting number of nutrient particles required for the cell me-
tabolism and growth. All agents evolve in a computational domain
defined by a 1000 × 1000 μm squared lattice divided in 106 cells of
1 × 1 μm representing a real surface of 1 mm2. In this model, the
agents representing bacterial cells are defined individually by two
main state variables, namely the plasmid infection state and the t0.
The plasmid infection states are  = R,D, T and the respective tran-
sition function for conjugative plasmids, δ is shown in Equation 8.
For the oriT construction only, the first transition rule applies as
transconjugant cells are sterile. The t0 is the time of cell birth or the
time of the last cellular division, and it is employed in the estimation
of agent doubling time used in the division decision rule. The T4SS
pili is also taken into account and the agents have a state variable
representing the number of pilus already expressed and available in
cell surface.

Finally, the environment will hold the initial nutrient concen-
tration for every lattice cell. In the model initialization, a fixed
amount of substrate particles will be distributed evenly over all lattice
sites.

5.1.3 | Process overview and scheduling

The dynamics of bacterial conjugation is modeled as the execution
of following set of cellular processes: the cellular division, the T4SS
pili expression, the shoving relaxing which avoid bacterial cells to
overlap and allow a more realistic colony growth, and the conjuga-
tion process. The state variable update is asynchronous. The order of
execution of this process is shuffled to avoid any bias due to a purely
sequential execution of model rule base, see Figure 5. The conjuga-
tion process is modeled in three different ways with respect to the
time when conjugation event is most prone to happen, and the results
are compared. Thus, the conjugation is defined by two variables: the
value of intrinsic conjugation rate (γ0), which determines how many

(8)δ=

{
(D,R)→ (D, T)

(T,R)→ (T, T)

F I G U R E 4   The skeleton of objective function. The function has two parameters and must return a one or more scalar values

     |  8821PRESTES GARCÍA and RODRÍGUEZ-PATÓN

transfers should be performed by a single bacterial cell, and the cell
cycle point, which defines the time when the conjugative events are
likely to occur.

The model input and initialization requires the parameters shown
in Table 4. The costT4SS is the total cost of pili expression. The cost
applied for a single pilus expression is costT4SS/param(maxpili).

F I G U R E 5   The flow diagram showing
the overview on how bacterial process
are scheduled in the BactoSIM simulation
model

8822  |     PRESTES GARCÍA and RODRÍGUEZ-PATÓN

The param(maxpili) is actually a constant having the value of 5 for
Escherichia coli. The cellCycle parameter indicates two things: the type
of modeling rule and its parameter. A value of −1 set the model to
conjugate as soon an infected cell finds a susceptible one. Setting the
parameter to 0 will randomize the conjugation time between t0 and G.
Finally, using a value >0 indicates the specific point in the cell cycle
for conjugation. A polynomial equation is fitted to the experimental
data where the dependent variable represents the conjugation rate T/
(T + R). Setting isConjugative flag to false creates a simulation where
the transconjugant cells are sterile; in other words, they are unable
to conjugate. The equation is used only for comparing the quality of
simulation output.

5.1.4 | Design concepts

Basic Principles: Three models differing in the way the conjugation
rule is implemented and their results compared to the available
experimental data. The best strategy can be used to build
models which could serve as a predictive tool for synthetic
biology and to explore some aspects which are hard to observe
directly in experimental studies of plasmid spread. The key
points of this model lies on the idea of the existence of a
local or intrinsic conjugation rate, which has been termed γ0.
This intrinsic rate stands for the number of plasmid transfer
events, or conjugations on a cell life-cycle basis. In addition,
the global infective wave speed depends directly from the
specific point in the bacterial cell cycle when conjugative event
is triggered.

Emergence: The model intends to find out what will be the global out-
come arising as function of local rules defining the evolution of the

bacterial cells and their interaction with adjacent neighbors. With
this objective, the model incorporates the most significant aspects
of the spatial structure and the behavior of the cellular processes
that are related to the conjugation. Specifically, the values of the
generation time of donor and transconjugant cells are one of the
emergent properties depending from the metabolic penalizations
applied both for conjugation event and for the expression of T4SS
genes.

Adaptation: All agents adapt their growth according to the local avail-
ability of nutrient and space.

Fitness: It is considered implicitly to the extent that plasmid-free indi-
viduals will present a better adaptation in terms of growth rate than
plasmid bearing cells.

Prediction: The model is intended to provide prediction regarding the
range of possible values for the number of plasmid transfer events
per cell cycle and the cell-cycle point when conjugative transfer is
most likely to happen.

Sensing: All process defined over the agents implicitly sense the local
environment and the close neighborhood for their decisions.

Interaction: Bacterial cells interact with their nearby individuals for nu-
trient access, cellular division, mate pair formation, and plasmid
transfer.

Stochasticity: Stochasticity is introduced at individual level for all cel-
lular process sampling a normal deviate and fitting the value to cor-
responding process.

Collectives: No collectives are taken into account in this model.
Observation: The output target variables will be saved at intervals of

1 min of simulated time.

5.1.5 | Initialization

The simulation model is initialized with a population of plasmid-free
(R) and plasmid-bearing (D) cells according to input parameters. The
agents are placed randomly within a circular surface centered over the
lattice central position. The radius of circle where agents are placed is
calculated as function of N0 in order to be consistent to the desired
initial cell density (Zhong, Droesch, Fox, Top, & Krone, 2012). The
simulation environment is also initialized with a number of nutrient
particles in order to support the half of the estimated number of cel-
lular divisions, and the rationale behind it is to capture the intercellular
competition for nutrient access.

5.2 | Model analysis

The objective of stability analysis is to find the minimum number
of experimental setup replications required for achieving reliable
results. Thereby, the model output response is evaluated for an in-
creasing number of repetitions allowing the evaluation of the con-
vergence for output variance of simulation outputs. The complete
listing for carrying out the stability check for the BactoSIM model
is shown in Figure 6. As can be observed, the complete implemen-
tation of model analysis encompasses five steps. These steps are

T A B L E 4   The complete list of model initialization parameters

Parameter Unit Description

G Minutes Average doubling time for
plasmid-free cells

cellCycle % of G The percentage of cellular
cycle for conjugation

costConjugation % of G The penalization due to a
conjugative event

costT4SS % of G The Pilus expression cost

γ0 Conjugations/
cell

Upper limit for conjugations
performed by an agent

isConjugative True|false Defines a conjugative or a
mobilizable plasmid

isRepressed True|false The T4SS expression state for
the plasmid

N0 Cells/ml Initial population expressed in
cells/ml

donorRatio % of N0 The initial density of donor
cells (D)

Equation N/A An equation for experimental
data

     |  8823PRESTES GARCÍA and RODRÍGUEZ-PATÓN

conserved for all high-level functions available in R/Repast pack-
age. The step 0 clean all existing R objects, loads the R/repast
package, and set the random seed for the analysis. The step 1 is
the definition of the objective function which can be any user-pro-
vided function following the R/Repast API specification. It is not
strictly necessary for the Easy.Stability as the coefficient of varia-
tion is calculated for the model output variables. In this example,
the objective function is basically the comparison of simulated data
and experimental data using the normalized root-mean-square
error API call AoE.NRMSD. The step 2 adds the model input factors
for which the importance on the model output will be assessed and
their biologically relevant range of variation. It is necessary to add
at least one parameter which will be varied, while all other model
parameters are kept fixed using the default value or with a value
previously set using the R/Repast API SetSimulationParameter. The
purpose of step 3 is to configure automatically the Repast model
with the integration broker and for initializing the integration di-
rectory. Finally, the step 4 is where the analysis method is invoked;
all analysis methods will return a list holding three objects, namely
the experiment, the object, and the charts. The experiment contains
simulation parameters and results, the object is method specific,
and finally, the charts are pregenerated graphs for the method
results.3

The method will generate automatically one chart for each
model output.4 One of the output chart of model is shown in
Figure 7 for the variable named X.Simulated. As can be observed,
the coefficient of variation of these variable decreases as the sam-
ple size increases. The variation starts to become acceptable with
a sample size of 25, and approximately with sample size of 50, we
can see that coefficient of variation become stable. Therefore, we
can feel relatively confident with or model results with a number
of replications >25. Of course, it is important to take into account
the computation cost of our model in order to select a value for the
number of repetitions.

6  | EXAMPLE 2: PREDATOR–PREY

6.1 | Model description

6.1.1 | Purpose

The purpose of Predator–Prey model presented here is to provide
an alternative individual based-model implementation for the clas-
sic ODE model describing the association between two species. The
model will be used to show the application of Morris method for rank-
ing the most important parameters.

F I G U R E 6   The listing for stability of model output method using the Easy.Stability function from R/Repast

FIGURE 7 The stability of model output. It is possible to observe
how, insofar that the number of replications of the experimental
setup increases, the value of the coefficient of variation converges to
a common value

92.5

95.0

97.5

100.0

102.5

0 25 50 75 100

Sample size

R
S

D Group

X.Simulated.

Simulation output stability

8824  |     PRESTES GARCÍA and RODRÍGUEZ-PATÓN

6.1.2 | Entities, state variables, and scales

The model comprises three entities or agent types, the wolves, the
sheep individuals, and the grass. These agents evolve in a computa-
tional domain of a 50 × 50 units with periodic boundaries, represent-
ing a large portion of space. The agents are positioned in a continuous
bidimensional space and are free to move. On the other hand, the
grass agent is placed in a discrete grid.

6.1.3 | Process overview and scheduling

The agents are defined by the execution of a set of processes depicting
the agent movement and search of food source, the consumption of
food, the process incrementing the agent reserves, the reproduction,
and finally, the death process driven by predation or starvation. The
fundamental idea behind the model formulation is that both predator
and prey individuals incrementing their “energy” levels by predation
or by consuming the available grass, respectively. Both agent types
search for their food in the current patch where they are placed. The
agents move a unit of space at time selecting randomly the heading.

The individual-based version of this model is a spatially explicit
representation and have a few parameters more but is still very suc-
cinct. The list of model parameters are shown in Table 5.

The original formulation of Lotka-Volterra consists in a system of
two differential equations with four parameters, namely the predator
and the prey growth rate, the effect of predator on the prey growth,
and finally, the effect of prey on the predator growth as can be seen
in Equation 9.

There is a conceptual correspondence between the predator c2
and prey c1 growth rates with the model parameters wolfreproduce and
sheepreproduce as well as between the parameter wolfgainfromfood
and the constant c4.

6.2 | Model analysis

The implementation code for the Morris screening exercise is shown
in Figure 8 and, as has been mentioned in the previous example, we
have the same sequence of steps, starting with the library loading and
the selection of the random seed. Subsequently, we define the objec-
tive function, which in this case is a very simple one consisting in the
arithmetic average of the population sizes of sheep individuals and
wolves. The next step is the selection of model input factors for the
screening method and providing the range of variation for each them.

(9)

dx

dt
= c1x−c3xy,

dy

dt
=−c2y+c4xy.

T A B L E 5   The input parameter collection for the Repast
implementation of Predator–Prey model

Input parameter Description

initialnumberofwolves The initial population of predators

initialnumberofsheep The initial population of preys

wolfgainfromfood The rate of predator energy is incremented
every time a prey is consumed

wolfreproduce The reproduction rate of predator
individual

sheepgainfromfood The prey rate energy increment for grazing
grass

sheepreproduce The reproduction rate of prey individual

grassregrowthtime The amount of time required for grass
be available again once consumed by a
prey

F I G U R E 8   The listing for Morris screening method using the Easy.Morris function from R/Repast

     |  8825PRESTES GARCÍA and RODRÍGUEZ-PATÓN

Then, the step 3 shows the call to the Easy.Setup function which ini-
tializes the Repast Model with the R/Repast integration code. Finally,
the function Easy.Morris is called and the results are stored in the
variable r. The example uses five levels with 10 sampling points for
Morris method. The results consist of an R list holding the experiment
carried out, the Morris object, and a list with charts generated by the
experiment.5

The Figure 9 presents the μ∗ versus σ chart for both predator and
prey average population sizes. At a first glance, the most important
input factor for both predator and prey populations is the sheep-
gainfromfood. The second most significant for the predator output is
grassregrowthtime. The other parameters are not very significant for
the average of predator individuals. It is also interesting to note that
wolfgainfromfood has very high value of σ which could indicate that
the parameter significance strongly depends on the values of other
parameters. On the other hand, it could mean that the number of sam-
pling points or replications should be increased. The prey output pres-
ents three important parameters, which in order of importance are the
sheepgainfromfood, the sheepreproduce, and grassregrowthtime. These
input parameters also have a high σ values which possibly indicate
some nonlinear effects or that the values of these input factors are
influencing each other. These results can be explained by the depen-
dence of wolf population on the availability of prey. The common
observed pattern in that kind of model is the population of predators
lagging in phase behind the prey population.

The chart of μ versus σ for model output is shown in Figure 10.
It seems to provide very similar results, and the only significant dif-
ference is the contribution of grassregrowthtime. The input param-
eter was considered important by μ versus σ, but here, it has a
negative value. In order to interpret this sensitivity measure, we
must recall that μ∗ takes the absolute values of elementary effects.

Therefore, the elementary effects of grassregrowthtime possibly
has effect of opposite sings depending on the values of that input
parameter.

Finally, we have the Figure 11 showing the chart of μ∗ ver-
sus μ, where the value of both measures can be observed together
allowing the appreciation of the differences of both, which possibly
indicates that the input factors present effects with different signs
which, in other words, means nonlinearity in the model behavior.

7  | EXAMPLE 3: T4SS COMMON POOL

7.1 | Model description

7.1.1 | Purpose

The objective of this model is to explore the conditions where two
plasmids can coexist in a population competing for a common re-
source required for their horizontal transfer. The common resource
is the set of genes required for conjugation because one of the two
plasmid genes has lost these genes.

7.1.2 | Entities, state variables, and scales

The model uses two entity types, namely the agents representing
the bacterial cells and a ValueLayer, which is a Repast specific struc-
ture, for holding the nutrient available for the bacterial growth. The
agents interact and grow in a computational domain of 100 × 100 μm
squared lattice with periodic boundaries representing a total real sur-
face of 0.01 mm2. Despite of being a lattice, the bacterial cells are
positioned and allowed to move in a continuous space system. The
agents are also allowed to overlap to each other. Explicitly, the agents

F I G U R E 9   Results of Morris screening method for predator–prey model. The graph shows the μ∗ and σ sensitivity measures for Predator (a)
and Prey (b) model outputs

20

25

30

35

30 60 90

µ* µ*

σ
criteria Predator

10

20

30

40

0 20 40 60 80

σ

Group
Grass regrowth time
Sheep gain from food
Sheep reproduce
Wolf gain from food
Wolf reproduce

Group
Grass regrowth time
Sheep gain from food
Sheep reproduce
Wolf gain from food
Wolf reproduce

criteria Prey(a) (b)

8826  |     PRESTES GARCÍA and RODRÍGUEZ-PATÓN

are defined by the five state variables: (1) heading, (2) mass, (3) divi-
sion mass, (4) plasmid P1 infection state, and (5) plasmid P1 infection
state. The current position of every bacterial cell in the coordinate
system is available implicitly through a Repast API call.

7.2 | Process overview and scheduling

Every bacterial cell in this model is abstracted as the execution of a
series of successive processes capturing the basic tenets of bacterial

life cycle. These processes are the nutrient uptake, the bacterial cell
growth, the division, and the conjugation. The input parameters re-
quired for initializing the model are shown in Table 6.

7.2.1 | Design concepts

Basic Principles: The plasmid dispersion depends on an intricate
balance between metabolic costs associated to horizontal and

F I G U R E 1 0   Results of Morris screening method for predator–prey model. The graph shows the μ and σ sensitivity measures for Predator (a)
and Prey (b) model outputs

20

25

30

35

−50 0 50 100
µ

σ

Group

criteria Predator

10

20

30

40

0 25 50 75

µ

σ

Group

criteria Prey(a) (b)

Grass regrowth time
Sheep gain from food
Sheep reproduce
Wolf gain fromfood
Wolf reproduce

Grass regrowth time
Sheep gain from food
Sheep reproduce
Wolf gain fromfood
Wolf reproduce

F I G U R E 1 1   Results of Morris screening method for Predator-Prey model. The graph shows the μ∗ and μ sensitivity measures for Predator (a)
and Prey (b) model outputs

−50

0

50

100

30 60 90

µ

Group
Grass regrowth time
Sheep gain from food
Sheep reproduce
Wolf gain from food
Wolf reproduce

criteria Predator

0

25

50

75

0 20 40 60 80

µ*µ*

µ

Group
Grass regrowth time
Sheep gain from food
Sheep reproduce
Wolf gain from food
Wolf reproduce

criteria Prey(a) (b)

     |  8827PRESTES GARCÍA and RODRÍGUEZ-PATÓN

vertical dispersion strategies. The conjugative proficiency requires
the expression of set of transmembrane proteins which are
known collectively as type IV secretion systems (T4SS; Lawley,
Klimke, Gubbins, & Frost, 2003). The presence of conjugative
plasmids and the expression of conjugative machinery are det-
rimental for the host cell fitness (Rozkov et al., 2004), but there
is no consensus on the valid ranges of metabolic costs imposed
by the conjugative process. Therefore, in this model the short-
term dynamics of two plasmid system P1 and P2 is simulated.
The plasmid P1 is a complete conjugative plasmid containing
all genes required for horizontal transfer and the plasmid P2 is
a cheater, which having lost its conjugative genes, depends on
the T4SS system from the plasmid P1. In other words, the
model is used to assess how large should be the cost difference
required for the lack of conjugative apparatus become a true
competitive advantage making P2 dominate over P1.

Emergence: The colony growth pattern, the population distribution,
and the dominance of a plasmid over another on the bacterial pop-
ulation are global properties arising from local properties defining
the agent behavior and the interaction constraints.

Adaptation: All agents adapt their growth rate, as well as the conjuga-
tion rates, according to the local availability of nutrient.

Fitness: The bacterial cells infected by any plasmid are considered to
behave less efficiently than the plasmid-free cells. The fitness of
plasmid-bearing cells is explicitly specified by the cost input
parameters.

Objectives: No objectives are taken into account in this model.
Prediction: The model will provide predictions on the possible ranges

of plasmid metabolic cost which are favorable to the cheaters plas-
mid strategy.

Sensing: The agents representing the virtual bacterial cells sense the
environment to the extent that the nutrient availability controls the
growth and the conjugation rates.

Interaction: Bacterial cells interact with their nearby individuals for nu-
trient access, cellular division, mate pair formation, and plasmid
transfer.

Stochasticity: Stochasticity is introduced at individual level for all cel-
lular process sampling a normal deviate and fitting the value to cor-
responding process.

Collectives: No collectives are taken into account in this model.
Observation: The model provides two kind of outputs, one is numeric

and contains the total number of bacterial cells which are plasmid
free or are infected by the plasmids P1, P2, or both. These outputs
are generated for every time step. The model also has a 2D view of
colony growth updated every time tick.

7.3 | Model analysis

The global sensitivity analysis using the Sobol variance decom-
position method for the T4SS common pool model is shown in
Figure 12. We can observe the same sequence of steps which has

T A B L E 6   The input parameter collection for the conjugative
plasmid common pool model

Input parameter Description

doublingTime The doubling time of plasmid-free cells

p1P (P(γ0)) The probability of cell conjugate at least one
time

p1Cost The cost imposed by the plasmid P1 including
the metabolic burden required to express the
conjugative apparatus

p2Cost The metabolic cost of plasmid P2

F I G U R E 1 2   The listing for Sobol GSA variance decomposition method using the Easy.Sobol function from R/Repast

8828  |     PRESTES GARCÍA and RODRÍGUEZ-PATÓN

been previously mentioned. The objective function is defined for the
average values of the model outputs named P1, P2, and Both. These
variables are, respectively, the bacterial population size infected by
the P1 plasmid, infected by the cheater plasmid P2, and finally, the
number of individuals infected by both plasmids. The Sobol sensi-
tivity indices will provide the measures of the importance of every
input parameter shown in step 2 of Figure 12 with respect to the
results returned by the objective function, that is to say, the average
population sizes.

The Figure 13 shows the first- and total-order indices for the
model output P1. That output is the average number of bacterial
cells infected just by the plasmid P1. As can be observed, the most
important input parameter is the bacterial cell doubling time fol-
lowed by the probability P(γ0). This is an expected result as the
rule for the conjugative transfer requires the bacterial cells have
achieved a value rounding the 70% of cell mass at division. Other
interesting aspect to note is the negative values of first-order indi-
ces. Obviously, the sensitivity indices should not be negative. This
is a consequence of a small sample size, and to correct the problem,
we must increase it. The other important input factors for the plas-
mid P1 output are, in order of importance, the probability P(γ0), the
cost of plasmid P2, and the cost of plasmid P1, both with similar
sensitivity indices.

The first- and total-order indices for the model output showing
average population size of plasmid P2 can be seen in Figure 14. It is
possible to appreciate again that the sensitivity indices show that the
most important factor is the length of cellular cycle. The reason is sim-
ple, and can be attributed to the fact that plasmid P2 alone is only
transferred vertically and depends on the plasmid P1 for horizontal
transmission, being both aspects related to the cell cycle. Following

in importance the doubling time, we have the cost of plasmid P1, the
cost of plasmid P2, and the probability P(γ0), being the sensitivity index
of P1 cost, noticeably higher than the other two indices. This could
be attributed probably because the plasmid P2 requires a significant
cost difference in order to outcompete the plasmid P1 which transfer
vertically.

Finally, in the Figure 15, we have the sensitivity indices for the out-
put of model accounting for the average population size of bacterial
cells infected by both plasmids. The importance of factors is consistent
with the explanations for the previous sensitivity indices. Again, the
most important model parameter is the doubling time of bacterial cell
followed by the P1 and P2 cost parameters and by the probability P(γ0).

8  | CONCLUSIONS

The ecological modeling is a complex subject which can be normally
perceived as being simpler than it actually is. Specifically, the individ-
ual-based models are subject to many levels of uncertainty, which
means that it is hard to get completely fixed the values of model
inputs, the model structure, and the outputs. Normally, there is no
complete experimental or observational data to construct mechanistic
descriptions of individual, and therefore, many assumptions and sim-
plifications must be made in order to implement a model. The same is
true regarding the input values, which are particularly critical in the
case of the ecology of microorganism, as normally, just very few input
parameters are directly observed and the most of them are estimated
from whole population experiments. Therefore, it is always important
to bearing mind that modeling is an iterative task which must incorpo-
rate compulsorily some what-if analysis of model outputs.

F I G U R E 1 3   Results of Sobol variance decomposition method for T4SS common pool model. The graph shows sensitivity measures
containing the first-order (a) and total-order (b) indices for bacterial population infected by P1 plasmid

0.00

0.25

0.50

0.75

1.00

DoublingTime p1Cost p1P p2Cost

Parameter

Sobol indexes for P1

0.0

0.3

0.6

0.9

DoublingTime p1Cost p1P p2Cost

Parameter

Sobol indexes for P1
S

i S
Ti

(a) (b)

     |  8829PRESTES GARCÍA and RODRÍGUEZ-PATÓN

Several methods exist for assessing the uncertainty and for esti-
mating the relative importance of input parameters in the model out-
put. We have provided here and overview on those methods which
are based on the variance decomposition because they have a wider
application scope and are specifically suitable for their use on individ-
ual-based models. These methods, although conceptually simple, are
computationally intensive and can be somewhat hard to apply because

the required tools are either unavailable or they do not provide an easy
integration pattern. Roughly speaking, the sensitivity analysis methods
require the generation of large sample of the parameter space and the
model evaluation for each of them which, of course, makes the manual
execution an infeasible option.

The in-silico experimentation is becoming a vital tool for under-
standing complex phenomena in a way that cannot be performed

F I G U R E 1 4   Results of Sobol variance decomposition method for T4SS common pool model. The graph shows sensitivity measures
containing the first-order (a) and total-order (b) indices for bacterial population infected by P2 plasmid

0.0

0.4

0.8

DoublingTime p1Cost p1P p2Cost

Parameter

S
i

Sobol indexes for P2

0.0

0.3

0.6

0.9

DoublingTime p1Cost p1P p2Cost

Parameter

S
Ti

Sobol indexes for P2(a) (b)

F I G U R E 1 5   Results of Sobol variance decomposition method for T4SS common pool model. The graph shows sensitivity measures
containing the first-order (a) and total-order (b) indices for bacterial population infected by both P1 and P2 plasmids

0.00

0.25

0.50

0.75

1.00

DoublingTime p1Cost p1P p2Cost

Sobol indexes for Both

0.0

0.3

0.6

0.9

DoublingTime p1Cost p1P p2Cost

Sobol indexes for Both

Parameter

S
i

Parameter

S
Ti

(a) (b)

8830  |     PRESTES GARCÍA and RODRÍGUEZ-PATÓN

without modeling. The effective application of computational ecol-
ogy methods requires a high level of proficiency in many diverse
domains of knowledge which sometimes are neither feasible nor
practical. Therefore, it is indispensable to have a ready-to-use arse-
nal of reusable computational tools for modeling and analysis. In
this study, we have introduced the R/Repast package and showed
how it can help modelers to improve the robustness and quality of
individual-based models results using the functionalities inside the
package for analyzing systematically the model outputs. The pack-
age can save much effort for modelers by providing simple wrap-
pers for complex methods within a simple and consistent API. We
hope that these R/Repast functionalities can facilitate enormously
the systematic analysis of individual-based models implemented in
Repast.

ACKNOWLEDGMENTS

This study was supported by the European FP7–ICT–FET EU research
project: 612146 (PLASWIRES “Plasmids as Wires” project) www.
plaswires.eu and by Spanish Government (MINECO) research grant
TIN2012-36992.

CONFLICT OF INTEREST

None declared.

NOTES
1	Not to be confused with population mean and standard deviation.
2	Also known as relative standard deviation given by CV = σ/μ which provides

a normalized version of the standard deviation expressed relatively to the
output mean.

3	 In the current API version, there is a function for accessing the charts for
the Easy.Stability method, named Easy.getChart(), please refer to the user
manual for the complete syntax.

4	It is possible to limit it passing to the method a subset of model outputs.
5	In order to plot the charts, the user should use a R code for accessing the

chat list members. There are three members, namely mustar, musigma, and
mumu. In order to get the mumu chart for the second objective function
output, we must use the R call: r$charts[2,]$mumu.

REFERENCES

Arutyunov, D., & Frost, L. S. (2013). F conjugation: Back to the beginning.
Plasmid, 70(1), 18–32.

Beck, J. V., & Arnold, K. J. (1977). Parameter estimation in engineering and
science. Wiley series in probability and mathematical statistics. New York,
NY: Wiley.

Berec, L. (2002). Techniques of spatially explicit individual-based models:
Construction, simulation, and mean-field analysis. Ecological Modelling,
150(1–2), 55–81.

Bergstrom, C. T., Lipsitch, M., & Levin, B. R. (2000). Natural selection,
infectious transfer and the existence conditions for bacterial plasmids.
Genetics, 155(4), 1505–1519.

Bettonvil, B., & Kleijnen, J. P. C. (1996). Searching for important factors in
simulation models with many factors: Sequential bifurcation. European
Journal of Operational Research, 96, 180–194.

Bonabeau, E. (2002). Agent-based modeling: Methods and techniques
for simulating human systems. Proceedings of the National Academy of
Sciences of the USA, 99(Suppl. 3), 7280–7287.

Box, G. E. P., & Draper, N. R. (1987). Empirical model-building and response
surfaces (Wiley series in probability and statistics, 1st ed.). New York, NY,
USA: Wiley.

Campolongo, F., Cariboni, J., & Saltelli, A. (2007). An effective screening
design for sensitivity analysis of large models. Environmental Modelling
& Software, 22, 1509–1518.

Chen, I., Christie, P. J., & Dubnau, D. (2005). The ins and outs of DNA trans-
fer in bacteria. Science, 310(5753), 1456–1460.

Crawley, M. J. (2007). The R book (1st ed.). The Atrium, Southern Gate,
Chichester, West Sussex PO19 8SQ, United Kingdom: Wiley.

Dieckmann, U., Law, R., & Metz, J. A. J. (2000). The geometry of ecological
interactions (Vol. 1). Cambridge University Press: New York.

Emrich, Š., Suslov, S., & Judex, F. (2007). Fully agent based modellings of
epidemic spread using Anylogic. Proceeding EUROSIM 2007, Ljubljana,
Slovenia, 2007, pp. 1–7.

Evans, M. R., Grimm, V., Johst, K., Knuuttila, T., Langhe, R., Lessells, C. M., …
Benton, T. G. (2013). Do simple models lead to generality in ecology?
Trends in Ecology & Evolution, 28(10), 578–583.

Ferrer, J., Prats, C., & López, D. (2008). Individual-based modelling: An
essential tool for microbiology. Journal of Biological Physics, 34(1–2),
19–37.

Grimm, V., & Railsback, S. F. (2005). Individual-based modeling and ecology
(Princeton series in theoretical and computational biology). Princeton, NJ:
Princeton University Press.

Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., …
DeAngelis, D. L. (2006). A standard protocol for describing individ-
ual-based and agent-based models. Ecological Modelling, 198(1–2),
115–126.

Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., & Railsback,
S. F. (2010). The ODD protocol: A review and first update. Ecological
Modelling, 221(23), 2760–2768.

Gutfraind, A., Boodram, B., Prachand, N., Hailegiorgis, A., Dahari, H., &
Major, M. E. (2015). Agent-based model forecasts aging of the popula-
tion of people who inject drugs in metropolitan Chicago and changing
prevalence of hepatitis C infections. PLoS One, 10(9), e0137993.

Happe, K., Kellermann, K., & Balmann, A. (2006). Agent-based analysis of
agricultural policies: An illustration of the agriculutural policy simulator
AgriPolis, its adaptation and behavior. Ecology and Society, 11(1), 1–27.

Hellweger, F. L., & Bucci, V. (2009). A bunch of tiny individuals—Individual-
based modeling for microbes. Ecological Modelling, 220(1), 8–22.

Helly, J., Case, T., Davis, F., Levin, S., & Michener, W. (1995). The state of
computational ecology. San Diego, CA: San Diego Super Computer
Center.

Herman, J. D., Kollat, J. B., Reed, P. M., & Wagener, T. (2013). Technical note:
Method of Morris effectively reduces the computational demands of
global sensitivity analysis for distributed watershed models. Hydrology
and Earth System Sciences, 17(7), 2893–2903.

Hicks, C. R. (1993). Fundamental concepts in the design of experiments (4th
ed.). New York: Saunders College Publishing.

van Houwelingen, H. C., Boshuizen, H. C., & Capannesi, M. (2011).
Sensitivity analysis of statetransition models: How to deal with a
large number of inputs. Computers in Biology and Medicine, 41(9),
838–842.

Law, A. M. (2005). How to build valid and credible simulation models. In M.
E. Kuhl, N. M. Steiger, F. B. Armstrong, & J. A. Joines (Eds.), Proceedings
of the 2005 Winter Simulation Conference (pp. 24–32). Orlando, FL.

Lawley, T. D., Klimke, W. A., Gubbins, M. J., & Frost, L. S. (2003). F fac-
tor conjugation is a true type IV secretion system. FEMS Microbiology
Letters, 224(1), 1–15.

Little, T. M. T. M., & Hills, F. J. (1978). Agricultural experimentation: Design
and analysis. New York, NY: Wiley.

http://www.plaswires.eu
http://www.plaswires.eu

     |  8831PRESTES GARCÍA and RODRÍGUEZ-PATÓN

Lorscheid, I., Heine, B.-O., & Meyer, M. (2012). Opening the ‘black box’
of simulations: Increased transparency and effective communication
through the systematic design of experiments. Computational and
Mathematical Organization Theory, 18(1), 22–62.

Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., & Balan, G. C. (2005).
MASON: A multiagent simulation environment. Simulation, 81(7),
517–527.

Morris, M. D. (1991). Factorial sampling plans for preliminary computa-
tional experiments. Technometrics, 33(2), 161–174.

Myers, J. L., & Well, A. D. (1991). Research design & statistical analysis (1st
ed.). Harpercollins College Div: New York, NY.

North, M. J., Howe, T. R., Collier, N. T., & Vos, R. J. (2005). The Repast
Simphony runtime system. In C. Macal, M. North, & D. Sallach (Eds.),
Proceedings of the agent conference on generative social processes, mod-
els, and mechanisms (pp. 151–158). Argonne, IL: Argonne National
Laboratory.

North, M., Collier, N., Ozik, J., Tatara, E., Macal, C., Bragen, M., & Sydelko,
P. (2013). Complex adaptive systems modeling with Repast Simphony.
Complex Adaptive Systems Modeling, 1(1), 1–26.

Pascual, M. (2005). Computational ecology: From the complex to the sim-
ple and back. PLoS Computational Biology, 1(2), e18.

Petrovskii, S., Petrovskaya, N., Hughes, J. D., et al. (2012). Computational
ecology as an emerging science. Interface Focus, 2(2), 241–254.

Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B.,
& Wagener, T. (2016). Sensitivity analysis of environmental models: A
systematic review with practical workflow. Environmental Modelling &
Software, 79, 214–232.

Prestes García, A., & Rodríguez-Patón, A. (2015a). A preliminary assessment
of three strategies for the agent-based modeling of bacterial conjuga-
tion. In R. Overbeek, M. P. Rocha, F. Fdez-Riverola, & J. F. De Paz (Eds.),
9th International Conference on practical applications of computational
biology and bioinformatics, volume 375 of advances in intelligent systems
and computing (pp. 1–9). Salamanca: Springer International Publishing.

Prestes García, A., & Rodríguez-Patón, A. (2015b). BactoSim—An individu-
al-based simulation environment for bacterial conjugation (pp. 275–279).
Salamanca: Springer International Publishing.

Pujol, G., Iooss, B., with contributions from Sebastien Da Veiga, A. J., Fruth,
J., Gilquin, L., Guillaume, J., … Touati, T. (2015). sensitivity: Sensitivity
analysis. R package version 1.11.1.

R Core Team (2015). R: A language and environment for statistical computing.
Vienna, Austria: R Foundation for Statistical Computing.

Rozkov, A., Avignone-Rossa, C. A., Ertl, P. F., Jones, P., O’Kennedy, R. D.,
Smith, J. J., … Bushell, M. E. (2004). Characterization of the meta-
bolic burden on Escherichia coli DH1 cells imposed by the presence
of a plasmid containing a gene therapy sequence. Biotechnology and
Bioengineering, 88(7), 909–915.

Saltelli, A. (2008). Global sensitivity analysis: the primer. Chichester, England:
John Wiley.

Saltelli, A., Tarantola, S., Campolongo, F., & Ratto, M. (2004). Sensitivity anal-
ysis in practice: A guide to assessing scientific models (1st ed.). Chichester.
England: Wiley.

Saltelli, A., Andres, T. H., & Homma, T. (1995). Sensitivity analysis of model
output. Performance of the iterated fractional factorial design method.
Computational Statistics & Data Analysis, 20(4), 387–407. http://doi.
org/10.1016/0167-9473(95)92843-M.

Seoane, J., Yankelevich, T., Dechesne, A., Merkey, B., Sternberg, C., & Smets,
B. F. (2011). An individual-based approach to explain plasmid invasion
in bacterial populations. FEMS Microbiology Ecology, 75(1), 17–27.

Slater, F. R., Bailey, M. J., Tett, A. J., & Turner, S. L. (2008). Progress towards
understanding the fate of plasmids in bacterial communities. FEMS
Microbiology Ecology, 66(1), 3–13.

Smith, J. M. (1974). Models in ecology (revised ed.). London: Cambridge
University Press.

Tack, I. L., Logist, F., Noriega Fernández, E., & Van Impe, J. F. (2015). An
individual-based modeling approach to simulate the effects of cellular
nutrient competition on Escherichia coli K-12 MG1655 colony behavior
and interactions in aerobic structured food systems. Food Microbiology,
45, 179–188.

Thiele, J. C., Kurth, W., & Grimm, V. (2014). Facilitating parameter estimation
and sensitivity analysis of agent-based models: A cookbook using NetLogo
and ‘R’. Journal of Artificial Societies and Social Simulation, 17(3), 1–45.

Tisue, S., & Wilensky, U. (2004). Netlogo: A simple environment for modeling
complexity. International Conference on Complex Systems, Boston (pp.
1–10).

Urbanek, S. (2016). rJava: Low-level R to Java interface. R package version
0.9-8.

Watkins, A., Noble, J., Foster, R., Harmsen, B., & Doncaster, C. (2015). A
spatially explicit agentbased model of the interactions between jaguar
populations and their habitats. Ecological Modelling, 306, 268–277.

Xu, C., & Gertner, G. (2011). Understanding and comparisons of different
sampling approaches for the Fourier Amplitudes Sensitivity Test (FAST).
Computational Statistics & Data Analysis, 55(1), 184–198.

Zeigler, B. P., Praehofer, H., & Kim, T. G. (2000). Theory of modeling and
simulation (2nd ed.). San Diego, CA: Academic Press.

Zhang, Y., & Rundell, A. (2006). Comparative study of parameter sensitivity
analyses of the TCR-activated Erk-MAPK signalling pathway. Systems
Biology, 153(4), 201–211.

Zhong, X., Droesch, J., Fox, R., Top, E. M., & Krone, S. M. (2012). On the
meaning and estimation of plasmid transfer rates for surface-asso-
ciated and well-mixed bacterial populations. Journal of Theoretical
Biology, 294, 144–152.

How to cite this article: Prestes García, A. and Rodríguez-
Patón, A. (2016), Sensitivity analysis of Repast computational
ecology models with R/Repast. Ecology and Evolution, 6:
8811–8831. doi: 10.1002/ece3.2580

http://doi.org/10.1016/0167-9473(95)92843-M
http://doi.org/10.1016/0167-9473(95)92843-M
https://doi.org/10.1002/ece3.2580

