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Abstract
Computational ecology is an emerging interdisciplinary discipline founded mainly on 
modeling and simulation methods for studying ecological systems. Among the existing 
modeling formalisms, the individual-based modeling is particularly well suited for cap-
turing the complex temporal and spatial dynamics as well as the nonlinearities arising 
in ecosystems, communities, or populations due to individual variability. In addition, 
being a bottom-up approach, it is useful for providing new insights on the local mecha-
nisms which are generating some observed global dynamics. Of course, no conclusions 
about model results could be taken seriously if they are based on a single model exe-
cution and they are not analyzed carefully. Therefore, a sound methodology should 
always be used for underpinning the interpretation of model results. The sensitivity 
analysis is a methodology for quantitatively assessing the effect of input uncertainty in 
the simulation output which should be incorporated compulsorily to every work based 
on in-silico experimental setup. In this article, we present R/Repast a GNU R package 
for running and analyzing Repast Simphony models accompanied by two worked ex-
amples on how to perform global sensitivity analysis and how to interpret the results.
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O R I G I N A L  R E S E A R C H

Sensitivity analysis of Repast computational ecology models 
with R/Repast

Antonio Prestes García | Alfonso Rodríguez-Patón

1  | INTRODUCTION

The computational ecology is a relatively young field which relies ex-
tensively on mathematical computational methods and models for 
studying ecological and evolutionary processes. It is based on the 
construction of predictive and explanatory models as well as the 
quantitative description and analysis of ecological data (Helly, Case, 
Davis, Levin, & Michener, 1995; Petrovskii et al., 2012). The contin-
uous growth of computational power available for and end users, 
the existence of tools, and the constant increment of empirical data 
available makes viable for many scientists to develop and simulate 
tremendously complex models from their desktops. In addition, the 
intrinsic characteristics of ecological processes, maxim their temporal 
and spatial scale (Dieckmann, Law, & Metz, 2000), converts the task 

of carrying out controlled experiments a physical impossibility. Hence, 
in most cases, the only feasible alternative is to simulate the process 
in order to make experiments spanning the full length of ecological 
and evolutionary scales. The computational ecology has its roots from 
the successful results achieved from mathematical ecology which has 
proven to be an essential tool for understanding the complexities 
which arise from ecological interactions.

It is widely accepted that simple models with a small number of 
state variables and parameters provide best generalizations than the 
complex ones (Evans et al., 2013; Smith, 1974) with a clear distinc-
tion between simulation models and theories as separate entities 
handling different kind of problems. It has been recently questioned 
the correctness of the idea the simple models lead to generality in 
ecology (Evans et al., 2013). We believe that the parsimony principle 
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must always be taken into account when developing models, but this 
has a different meaning depending on the modeling formalism we are 
using. Simplicity does not have the same meaning when the referred 
modeling formalism is a deterministic ordinary differential equation 
(ODE) or when it is applied to agent-based modeling, as long as every 
modeling techniques has its own idiosyncrasy and constraints. The 
agent-based modeling is a flexible and versatile abstraction where the 
whole system under study is described or formalized by its component 
units, which facilitates a more natural description of a system and the 
comprehension of individual properties leading to the emergent phe-
nomena (Bonabeau, 2002).

The agent-based models (AbM) are much more fine-grained than 
their whole-population aggregated counterpart, and as a consequence, 
they tend to be more complex requiring more equations, parameters, 
and processes in order to represent the same phenomenon. That is, 
not intrinsically a problem or a quality but simply a constraint imposed 
by the modeling formalism in use, and it is up to the modelers to find 
the correct trade-off between the purpose of the model and the level 
of details which should be part of the model structure.

The AbM is being established progressively as a mainstream and 
valuable tool for modeling complex adaptive systems in many distinct 
areas of knowledge, ranging from social science, economics to any fla-
vor of computational and systems science such as biology, ecology, 
and so on (Grimm & Railsback, 2005). The reason is, among other 
things, the relative ease with which detailed structural information 
can be incorporated into a model without the constraints of other 
methodologies (Hellweger & Bucci, 2009). Nonetheless, the possibil-
ity of incorporating many details comes with the cost of models with a 
high-complexity level, containing many rules and parameters for which 
the exact values are, in many cases, hard or impossible to determine 
experimentally, that is what is known as parameter uncertainty. When 
used in the context of ecological systems, the agent-based modeling 
is also known as individual-based modeling (IbM; Grimm & Railsback, 
2005).

The distinctive aspect defining what is an IbM is that individuals 
are represented by discrete entities and they also have a property 
or state variable which are unique in the population being simulated 
(Berec, 2002). Hence, IbM is a valuable abstraction for simulating 
populations, communities, or ecosystems capturing the individual 
variability, randomness, and their complex dynamics. It is a bottom-up 
approach where the system under study is modeled using mechanistic 
explanations on the interacting system parts (Ferrer, Prats, & López, 
2008). Therefore, the global behavior shown by the system as a whole 
is an emergent property derived from the local rules defining the indi-
viduals, which is particularly useful for testing different hypothesis or 
phenomenological explanations for the individual processes in order 
to verify which of them are producing the global observed behavior 
(Pascual, 2005). Moreover, differently from aggregate models, it is cus-
tomary that IBM have a large number of state variables and parame-
ters which in most cases are hard or directly impossible to elucidate 
experimentally leading to many levels of uncertainty in this kind of 
models. In order to tackle with the uncertainty and for making robust 
predictions, we have to use a sound methodology for applying what-if 

analysis to check how stable are the model outputs when varying the 
input parameters (Thiele, Kurth, & Grimm, 2014). There exist a large 
set of mathematical tools for analyzing the model output which are 
known generically as sensitivity analysis. Normally, applying these 
techniques are cumbersome, requiring much effort from modelers, 
hindering the throughout analysis of computational models.

According to Thiele et al. (2014) most of the individual-based 
models published, it tends to omit the systematic analysis of model 
output, mainly because modelers normally do not have the specific 
knowledge to implement the required methods. Therefore, it seems to 
be clear that the availability of simple and user-friendly tools for exper-
iment design and analysis would greatly help modelers to improve the 
formal quality of their models.

In other scientific fields, which are strongly rooted on an exten-
sive experimentalism, it is practically impossible to conduct any kind 
of research without a well-designed experimental setup and a further 
statistical analysis and hypothesis test. Perhaps the reasons are that 
these experimental fields already have a complete and mature toolbox 
for design and evaluation of experiments (Little & Hills, 1978; Myers 
& Well, 1995), leaving no room for deviation from these standards. On 
the other hand, silico-based experiments are still on early stage and 
verification and validation procedures are not well established yet. In 
addition, the real value of a computational model depends much on 
the ability of other researchers to reproduce and enhance the results 
elsewhere; in other words, results must be reproducible. Hence, in 
order to achieve reproducibility, research methods should be stated 
clearly and should preferentially being backed by standard methods 
and software tools.

Bearing this in mind, we introduce R/Repast a GNU R package for 
running Repast (North et al., 2013) models from GNU R environment 
as well as for carrying out global sensitivity analysis on the model 
results. In the following sections, we will contextualize the prob-
lem providing a basic background for understanding what is being 
addressed in this study and we will also provide a basic description 
about the package functionalities. Finally, we will show three worked 
examples on how the package can help modelers to make the conclu-
sions drawn from model results much more robust. The first exam-
ple explores the basic aspects of bacterial conjugation process. The 
second is an individual-based implementation of the classic preda-
tor–prey model enclosed as part of the standard Repast Simphony 
distribution. Finally, the last example was developed ex professo for 
this study and it is an instance of common pool problem in the con-
text of two plasmids “sharing” the genes required for the expression 
of conjugative system.

2  | BACKGROUND

2.1 | Model development

Model development is an iterative and objective-driven activity, and 
the first step required to develop a model is having a clear and ideally 
unambiguous statement about the model purpose. Therefore, every 
experimental study carried out using modeling and simulation should 
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follow the experimental life cycle based on the successive sequence 
of four cyclic steps, starting from (1) conjecture, which defines the 
model purpose and why the model is being developed; (2) design 
phase, where the model is translated to some runnable implementa-
tion; (3) experiment step, which means the execution of model fol-
lowing a well-established plan oriented to confirm or reject the initial 
conjecture; and finally, the (4) analysis step, where the data gener-
ated in the previous step is analyzed with a sound methodology which 
will generate new insights, uncover model flaws, and iteratively im-
prove the initial conjecture and design (Box & Draper, 1987). A sim-
ple graphical representation of these four iterative steps is shown in 
Figure 1.

Part of design phase consist in converting the model equations 
and rules to a computer code implementation. Currently, there are 
several frameworks available for developing individual-based models. 
These frameworks are designed to address some specific require-
ment such as usability (Tisue & Wilensky, 2004), flexibility or scalabil-
ity (Luke, Cioffi-Revilla, Panait, Sullivan, & Balan, 2005; North et al., 
2013), or support to multiple paradigm, such as AnyLogic (Emrich, 
Suslov, & Judex, 2007). Certainly, the most widespread framework 
in ecological modeling is NetLogo (Tisue & Wilensky, 2004) which is 
considered to provide an easier development environment based on 
extensions to Logo paradigm especially suited for those which are not 
much familiar with modern programming languages. One of the main 
drawbacks of NetLogo is the scalability. NetLogo tends to show some 
performance issues when simulating a large number of agents. On the 
other hand, Repast Symphony framework has a steep learning curve 
but provides a fast and flexible java-based environment with many 
interesting features for simulating large-scale computational ecology 
models. These features include, among others things, the integration 
with Weka, exporting the model output to R environment, support for 
running distributed batch simulations, and some built-in facilities for 
parameter sweeping (North et al., 2013). Finally, Mason is, in some 
extent, very similar to Repast but less mature than it is; it has been 
designed focusing on providing faster execution speeds (Luke et al., 
2005). Of these frameworks, only AnyLogic provides integrated sen-
sitivity analysis capabilities, whereas the other frameworks NetLogo, 
Repast, and Mason, which are all free software, do not have built-in 
support to sensitivity analysis.

The Repast framework is widely used in many different fields for 
building individual-based simulation models of dynamic processes 
(Gutfraind et al., 2015; Tack, Logist, Noriega Fernández, & Van Impe, 
2015; Watkins, Noble, Foster, Harmsen, & Doncaster, 2015). In addi-
tion, Repast also has a framework for high-performance computing 
using the C++ programing language with similar conceptual entities 
as those found in Repast—java. Repast also has support for running 
GNU R code (Crawley, 2007; R Core Team, 2015) from inside the 
user interface, but until now, it has not been feasible to run Repast 
models from R environment for controlling model in order to imple-
ment experimental designs, calibration, parameter estimation, and 
sensitivity analysis, therefore hindering a throughout and com-
prehensive validation of individual-based models developed using 
Repast Simphony.

2.2 | Sensitivity analysis

Because of sensitivity analysis is a broad and complex subject, a 
throughout discussion would be lengthy and out of the scope of this 
work. Instead, we will try to provide a more amenable and practical ap-
proach keeping the discussion at a general level but rigorous enough 
to let the practitioners gain the knowledge required to understand, 
apply, and interpret the results. For a more detailed review, please 
refer to Saltelli, Tarantola, Campolongo, and Ratto (2004) and Pianosi 
et al. (2016). It is interesting to start the discussion providing the exact 
meaning of some the many expressions which are used commonly in 
the analysis of models. There are several terms used in the context of 
sensitivity analysis for which is important to provide the formal mean-
ing. For instance, the jargon of sensitivity analysis includes model cali-
bration and parameter estimation which many times are used as they 
were equivalent, even though they are different objectives. Other 
terms such as uncertainty analysis, omitted variable bias, objective 
function, or cost function are also important part of SA lexicon.

Generally speaking, the objective of SA is to understand the effect 
of varying input factors on the model output (Saltelli et al., 2004). 
Under this very general statement, we have a wide range of methods 
and techniques which are suitable for distinct kinds of models. In order 
to improve this definition, it is convenient to provide a more formal 
definition to the entity which is the target of SA: the model. Formally 
speaking, a model is a functional relation between a number k of input 
factor, also called independent or predictor variable and the output 
variable, sometimes referred as dependent or response variable (Box & 
Draper, 1987) as depicted by the expression η = f(x1, x2, … , xk), being 
η is the average value of response variable considering any specific 
setting for the input factors xi. Therefore, the value of a single model 
run is given by y = f(x1, x2, … , xk) + ϵ, where ε is difference between 
the value of y and the expected value E(y) = η. The error ε is conse-
quence of stochasticity introduced by design in the structure of model 
to capture the population variability. Finally, recognizing that most 
real-world models usually have more than one response variable, the 
structure of an individual-based model M can be generalized for n out-
puts as can be seen below

F I G U R E  1   The iterative model development life cycle. This figure 
shows the relationship between the modeling phases and their 
associated tasks when applied to an individual-based model
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Therefore, being yi some output of model M, the model calibration 
process consists in comparing these outputs to some reference values 
(Zeigler, Praehofer, & Kim, 2000) which are normally, in the case of 
ecological or biological studies, experimental or observed data. The 
target of calibration process is minimizing the discrepancies between 
simulated and reference values. The function used for computing 
how far yi output is from the reference values is known as objective 
function or cost function. There are many options for implementing 
the objective function and the only requirement is that the return of 
objective function should be inversely proportional to the quality of 
fit, being zero the return value for the perfect fit. Common implemen-
tations for objective function are based on the definition of acceptable 
ranges, least squares, or even a combination of both. For instance, let 
yi be the output of some hypothetical model M, assuming this variable 
represents the net reproductive rate R0. The reference values Rv for 
the output variable must fall between 0.8 and 1.2; hence, any yi value 
within this interval is considered to have a perfect fit, bearing this in 
mind the cost function could be given by the following expression

That is, what is known as categorical calibration criteria (Thiele et al., 
2014). The main drawback of this approach is that it does not provide 
any information about how far is the response value from the reference 
value. A better alternative is to apply some distance function d(yi,Ry) to 
the output and the reference values, even standalone or in combination 
with categorical calibration. The most commonly used metric is some of 
the multiple forms of squared deviation, but any distance function can 
be alternatively employed as long as two properties hold: d(yi,Ry) = 0 if 
xi and Ry are equal and d(yi,Ry) > 0 when xi and Ry are not equal.

While calibration is a general term, meaning fundamentally the 
comparison of some value to a reference value, the term parameter 
estimation has a more subtle and specific goal. The parameter esti-
mation is normally considered an inverse problem because the objec-
tive is finding the values for the model parameters providing the best 
adjustment to the reference values. In other words, knowing the 
expected values for response variable, the target is estimating the suit-
able values for the model parameters. Usually, the terminology param-
eter refers to the constants which are part of models with clear distinc-
tion between parameters and independent variables (Beck & Arnold, 
1977), for instance, in the growth differential equation shown below

the model parameter would be only the growth rate r and the 
independent variable the time, but for the purpose of this study, we 
consider indistinctly the model constants and independent variables 
as being parameters.

The two main objectives of sensitivity analysis are understanding 
how robust are the model results considering the existing uncertain-
ties and quantifying the effect of input factors on the variance of out-
put (Law, 2005; Pianosi et al., 2016; Saltelli et al., 2004). The intrinsic 
characteristics of individual-based models which relies on mechanistic 
descriptions favors the production of models with many subprocesses, 
state variable, and parameters. The design is normally based on incom-
plete knowledge resulting in several levels of uncertainties in the model 
parameters, in the model response variables, and in the model structure 
itself. The model structure is also related to the identifiability problem 
where not all model parameters can be uniquely estimated. The sensi-
tivity analysis can be also used to assess the effect of model structure 
on the output considering the alternative model implementations as 
being another parameter. This can be useful for analyzing the omitted 
variable bias, which basically means that some parameter of model can 
be over or underestimated because another important parameter was 
not included in the model structure. The sensitivity analysis can be car-
ried out letting the parameters varying over the full range of parameter 
space or restricted to a small region close to the average value, respec-
tively, referred as global sensitivity analysis and local sensitivity analy-
sis. Sensitivity analysis can also be performed varying one factor at a 
time (OAT) leaving all others fixed or varying all factors at the same time 
(AAT). The application of second method is required in order to capture 
interaction between parameters and nonlinear effects.

The central point of SA methodology is the estimation of sensitiv-
ity indices or coefficients. The sensitivity coefficients allow the quan-
titative comparison of the contributions from distinct parameters to 
the model output. In its classical form (Beck & Arnold, 1977), the sen-
sitivity indices are defined as the first derivative with respect to some 
model parameter xi. Considering the general model y = f(X), being X 
the parameter vector of size k, the sensitivity index Si is given by

It is also important to take into account that the partial deriva-
tives can have different units, hence can be necessary to scale them 
in order to make them comparable. In this approach, input factors are 
perturbed one-at-a-time, being that measure of sensitivity suitable for 
local SA (Pianosi et al., 2016).

Several methods to estimate sensitivity indices which are adequate 
for global sensitivity analysis are available, such as metamodeling 
approach (Happe, Kellermann, & Balmann, 2006), correlation-based 
methods, regression-based methods, Fourier amplitude sensitivity test 
(FAST; Xu & Gertner, 2011), for a more in-depth discussion, please 
refer to Thiele et al. (2014), Saltelli et al. (2004), Saltelli (2008), Pianosi 
et al. (2016) and Pujol et al. (2015). The Figure 2 shows how the dif-
ferent methods for assessing the importance of input factors in simu-
lation models are related, also including screening techniques (Saltelli,  
Andres, & Homma, T. 1995; Bettonvil & Kleijnen, 1996). In this study, 
we will focus on those methods based on the variance decomposi-
tion which are suitable for a wide range of situations, including those 
which are commonly found in individual-based models, such as non-
linear mappings between input factors and outputs variables (Zhang & 

M=

⎧
⎪
⎪
⎨
⎪
⎪
⎩

y1= f1(x1,x2,… ,xk)+ϵ

y2= f2(x1,x2,… ,xk)+ϵ

⋮

yn= fn(x1,x2,… ,xk)+ϵ

C(yi)=

{
0, if 0.8 ≤ yi ≤ 1.2

1, otherwise

dN

dt
= rN,

Si=
∂Y

∂xi
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Rundell, 2006). In addition to first-order effects, the variance decom-
position methods also allow the quantification of second-order effects 
sometimes referred as total-order effects. Total-order effect indices 
are useful for the assessment of the interaction between factors which 
cannot be expressed by a simple linear superposition.

One of main drawbacks for applying variance decomposition 
methods on large spatially explicit individual-based models is the 
requirement of very high number of model evaluations in order to pro-
duce consistent results (Herman, Kollat, Reed, & Wagener, 2013). An 
alternative approach, in those cases where it is impractical or compu-
tationally unfeasible a fully quantitative analysis, is the application of 
the Morris screening method. The Morris method delivers qualitative 
information allowing to rank the importance of input factors requiring 

lees model evaluations, which in some case can one order of magni-
tude be inferior to the Sobol method (Saltelli, 2008).

The Sobol is a method for sensitivity analysis based on the decom-
position of the variance of model output and is particularly suitable for 
discovering the effect of high-order interactions between input fac-
tors. The interaction means nonlinearity where the total effect of two 
input factors x1 and x2 on the model output Y are not equivalent to the 
sum of the individual effects. The general form of sensitivity indices 
for Sobol methods is shown in Equations 1 and 2, respectively, the 
first-order and total-order indices.

where the terms Vi and V(Y) are, respectively, the variance contribution 
attributed to the ith parameter and the total variance. The expression 
V(Y)−Vi represents the total variance with exception of the variance 
which is generated by the parameter i. The total-order index STi is the 
contribution of all input parameters but one, the ith parameter, and 
hence estimating the effect of that parameter on the variance reduc-
tion (Saltelli, 2008).

The total variance V(Y) for a model with n input parameters can be 
expressed as shown in Equation 3 as long as the orthogonality of input 
factors precondition holds.

being V(Y) the total variance from model output and the compo-
nents Vi, Vij, and Vijk, respectively, the variance contribution from the 
parameter i, the variance contribution form input parameters i and j, 
and the variance contribution form input parameters i, j, and k. Finally, 
the component V12…n expresses the interactions from all parameters 
present in the model.

The application of Sobol method, as have been mentioned, can be 
computationally expensive and sometimes could be useful to reduce 
the problem dimensionality filtering only the most significant param-
eters or even simplifying the model structure considering only the 
parameters accounting for the most of the variability in the model 
output. It can be accomplished using the Morris screening method to 
rank the importance of input parameters. The Morris method is an OAT 
method, meaning that it changes just one factor keeping all other input 
parameters fixed. The input factors are allowed to vary in discrete levels 
within the relevant parameter range (Morris, 1991). The method is con-
sidered to be more effective when the number of most significant input 
parameters are a small subset of model parameters (Saltelli et al., 2004).

The original work of Morris (1991) defines two metrics for ranking 
input factors which are depicted by μ and σ values.1 Further, another 
metric termed μ∗ has been suggested by Campolongo, Cariboni, and 
Saltelli (2007) which use absolute values in order to handle effects of 
distinct signs canceling each other. These metrics for ranking input 
factors are calculated from what has been termed elementary effects. 
Therefore, considering a model with k input parameters and being 

(1)Si=
Vi

V(Y)
,

(2)STi=1−
V(Y)−Vi

V(Y)
,

(3)V(Y)=
∑

i

Vi+
∑

i< j

Vij+
∑

i< j< k

Vijk+⋯+V12…n,

F I G U R E  2   The different types of sensitivity analysis and their 
associated methodologies and techniques
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 = (x1,x2,… ,xk) any value from the region of experimentation Ω, the 
elementary effects are calculated according to the Equation 4.

The region of experimentation Ω is a grid defined by the number 
of k input factors and by the p discrete levels for every parameter. The 
recommendations for the values of p and Δ are, respectively, that the 
first should be an even number of levels and the second calculated by 
the expression Δ = p/(2(p−1)) (Morris, 1991; Saltelli et al., 2004). The 
value of Δ has important implications in the model analysis. It has been 
shown that in some situations, choosing an alternative value calcu-
lated as Δ = 1/(p−1) can detect nonmonotonic behaviors such that the 
suggested standard calculations are not able to capture otherwise (van 
Houwelingen, Boshuizen, & Capannesi, 2011).

The metrics of Morris method are calculated over the Fi and Gi dis-
tributions for every input parameter. These distributions are generated 
taking random samples of  from Ω for calculating the elementary 
effects, and the only difference between them is that Gi uses the abso-
lute values of elementary effects |eei( )| as described in Campolongo 
et al. (2007) and Saltelli (2008). The estimation of Morris metrics are 
carried out by taking r samples from Fi and Gi distributions according 
to the Equations 5–7.

These three metrics can be used to extract valuable information 
about the model behavior, in addition to ranking the input factors. For 
instance, a low value of μ and a high value of μ∗, points that the input 
factor under scrutiny, possibly has a nonlinear behavior having differ-
ent signs in function of the system trajectory (Saltelli et al., 2004). A 
high value of μ indicates that the input has a monotonic effect on the 
model output.

The sensitivity analysis methods require significant samples from 
input space in order to provide reliable results. It is customary to 
choose between some experimental design (Hicks, 1993) for gen-
erating the collection of input parameters needed by evaluating the 
model and allocating the variance contribution of every model param-
eter. The most generally applied sampling schemas are based on ran-
dom sampling, full factorial designs, or Latin hypercube sampling.

3  | OVERVIEW OF R/REPAST PACKAGE

In the previous sections, we had seen some fundamental ideas on 
model building and the role occupied by sensitivity analysis methods 

in the iterative modeling life cycle. We have also introduced the basic 
principles of sensitivity analysis focusing on two main techniques 
namely the Morris Elementary Effects Screening (Morris, 1991) and 
the Sobol GSA method for variance decomposition (Saltelli, 2008). 
Both methods have a wide range of applicability, making them suit-
able for their use in the analysis of individual-based models. These 
methods require the model to be evaluated many times with a differ-
ent set of input parameters, making completely impractical undertak-
ing a manual analysis introducing individual parameters manually on 
a graphical user interface. The Repast is an extremely flexible frame-
work for object-oriented development of AbM using Java language, 
but it lacks model analysis tools. On the other hand, the GNU R is a 
superb open-source tool for data analysis with a vast and active com-
munity developing and adding new methods to the core R system. 
Bearing this in mind, we introduce our package R/Repast which bring 
together the best of both worlds. Roughly speaking, the R/Repast 
package have two main objectives: (1) Provide an interface for run-
ning Repast models from R and gathering the simulation data gen-
erated and (2) automating the application of sensitivity analysis and 
simple model calibration methods to the Repast models. The R/Repast 
is an open-source project delivered under the MIT license system. The 
package provides a powerful and simple R Application Programming 
Interface (API) which reduces the code required for running the most 
commonly used experimental methods suitable for. The software and 
the user manual can be downloaded from CRAN website and the com-
plete project source code from GitHub repository. Both are available, 
respectively, from the following URLs:

•	 https://cran.r-project.org/web/packages/rrepast/
•	 https://github.com/antonio-pgarcia/RRepast

3.1 | Design

The R/Repast was intended primarily for invoking Repast Simphony 
models from inside GNU R environment. Additionally, the package 
contains more high-level and value-added features for experimen-
tal design and experiment analysis to address the specific need of 
individual-based models. The underlying implementation idea is 
to provide a set of turnkey features for facilitating the task of ap-
plying the sensitivity analysis to models. Functionally, the package 
consists of four modules which interoperate together for instanti-
ate and running the Repast code inside R. These four components 
are (1) the Repast Integration Broker, (2) the Repast Integration 
Engine, (3) The R Integration wrapper, and finally, (4) the R API for 
Experiment design. A schematic view of package architecture is 
shown in Figure 3.

The R/Repast integration broker and the R/Repast engine are both 
written in java code and are required for instantiating and loading the 
Repast Simphony model in batch mode. The R/Repast engine contains 
also the required hooks for transferring the model output data from 
Java to R environment. The engine can transfer data from aggregated 
dataset defined by the modeler on the Repast model. An aggregated 
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https://cran.r-project.org/web/packages/rrepast/
https://github.com/antonio-pgarcia/RRepast
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dataset is a Repast Simphony entity used to collect data about the 
simulation model agents which can be used for plotting or saving the 
model output data to a file using a file sink. A File Sink is Repast com-
ponent for saving simulation data to a file. The aggregated datasets 
use some kind of aggregate operation, such as counting, averaging, 
summing, or any other used defined aggregate operation (North et al., 
2013; North et al., 2005). The R integration wrapper is the R code 
for linking together the R and Repast subsystems. This module con-
sist of several wrapping functions for encapsulating the Java code calls 
implemented using the rJava package (Urbanek, 2016). These func-
tions are prefixed with the [Engine] keyword and, although exported in 
the R/Repast package, they are not intended for general use.

3.2 | The R/Repast R API

The module entitled R/Repast R API is the primary entry point for the 
user-defined code and relies on the subsystems mentioned previously 
for providing three group of functionalities for facilitating modelers 
to analyze the simulation output. These group functionalities are the 
following:

•	 Execution and control of Repast Simphony code.
•	 Basic functions for experimental design.
•	 High-level functions for a complete experiment in one call.

The functionalities on the first group are those required for the basic 
interface between Repast and R system, such as instantiating and run-
ning a Repast Simphony model, retrieving the declared model param-
eters, getting their default values, setting parameter values as well as 
running basic experimental designs and saving simulation data. The list 
of these functions are shown in Table 1.

The second group of methods within R/Repast R API contains 
the functionalities required for setting up and applying a complete 

F I G U R E  3   The R/Repast general architecture. The scheme shows 
in the left box the R environment and the associated components 
of R/Repast. The right box represents the Repast Simphony model 
running within a Java Virtual Machine as well as the R/Repast 
integration broker component

R/Repast 
Engine

R/Repast
Integration Broker

JVMR

R Integration
Wrapper

R/Repast 
R API

Y = f(X)

User defined Repast
Model

User-defined R code 
running Y = f(X)

T A B L E   1   The basic R/Repast Application Programming Interface 
functions. These functions are used for loading and modifying the 
default parameters defined for model and also for running the 
simulation

Function name Description

Model (d, t, o, l) This function creates an object instance 
for linking the Repast model to an R 
object. The required parameters are the 
directory where the model has been 
installed (d), the duration of simulation in 
Repast ticks (t), the name of any 
aggregated dataset of model for draining 
data generated by the model simulation 
(o), and a Boolean flag (l) which tells the 
function to call the Load method. The 
default value is FALSE

Load (m) This function loads the Repast scenario 
from model's directory. The only 
required parameter (m) is an instance of 
Repast Model created with previous 
function

Run (m, r, s) The purpose of this function is to execute 
a single round of simulation using just 
one parameter set. The parameters for 
this function are a model instance (m), 
the number of repetitions (r), and a 
collection of random seeds (s) to be used 
for each one of the repetitions. The only 
required parameter is the model 
instance, created with the Model() 
function. The default value for r is one

RunExperiment (m, r, d, F) Execute a complete experimental setup 
for different sets of parameters. The 
parameters required are a model 
instance (m), the number of replications 
(r), the experimental design (d), and 
finally a user-provided calibration 
function (F). The experimental design 
parameter is an R data frame containing 
a complete set of model's parameter per 
row. The function returns a list with 
three data frame elements: the paramset, 
the output, and dataset which holds, 
respectively, all simulated input 
parameters, the result of user provide 
calibration function, and the complete 
dataset produced during the experiment 
execution

GetSimulationParameters  
(m)

Returns the complete list of parameters 
declared by the model. The parameter 
(m) is an instance of Repast model 
generated with Model() call described 
previously

SetSimulationParameters 
(m, p)

Modify several parameters at once

SaveSimulationData (t, e) Exports the results of Run or 
RunExperiment to a csv or excel files. 
The parameters t and e are, respectively, 
the format of exported data (xls or csv) 
and the experiment results returned by 
RunExperiment()
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experimental design to a Repast simulation model. The group include 
functions for adding the input factors and the relevant input range 
which the modeler wants to evaluate. The group also have func-
tions for generating the experiment inputs using different sampling 
approaches. It is not required to add as input factors all declared model 
parameters, the modeler can just evaluate a small subset keeping 
the other factors fixed. The functions of this group are presented in 
Table 2.

Finally, the third group contains the “Easy” API functions. These 
functions are intended to provide a complete method implementa-
tion which is accessible using just one R function call. The user has 
to provide the directory location where the Repast model is installed, 
the objective function, and the parameters relevant to the specific 
method. The currently available Easy API methods are presented in 
Table 3. The objective function is a user-defined R function over the 
model output for calculating and returning a cost metric for the sim-
ulation outputs of interest. The return of objective functions is the 
target for the application of the analysis method.

3.3 | The objective function interface

The last piece of R/Repast architecture is the definition of the objec-
tive function which actually allows the flexible definition of the model 
analysis target decoupling it from the Repast dataset output. As we 
have mentioned previously, any model is a functional relationship be-
tween a vector of input parameters X and a scalar dependent variable 
y and expressed as y = f(X). On the other hand, usually the dataset 
collected from Repast model execution will be a time series where 
the aggregated measure will be collected at fixed intervals. Therefore, 
some transformation must be applied in order to obtain a value con-
sistent with the functional definition. In addition, even though the 
value returned from the Repast model was a scalar one, it would add 
much more maintainable and flexible to act upon it directly from R 
without making changes in the Repast code. The objective function is 
also necessary for calibrating, where the output values are compared 
to some reference data or even for more complex tasks, such as tun-
ing oscillations in the population output. It is also the place for normal-
izing he model outputs. The objective function is a required parameter 
for all methods presented here.

The specification of R/Repast requires the objective function hav-
ing two input parameters. The first input parameter for the objective 
function is the input parameter set used for executing the Repast 
model, the second parameter is the results generated by executing 
the model and corresponding to and aggregated dataset in the Repast 
model. The objective function must return one or more scalar values 
grouped using the cbind() (Crawley, 2007) R function. The complete 
function signature is shown in Figure 4.

4  | EXAMPLES OVERVIEW

In the next sections, we will provide examples on how the R/Repast 
can help modelers on the analysis of their simulation models. Three 

T A B L E   2   The experimental setup Application Programming 
Interface functions. These functions are used for experimental 
design, parameter calibration, and sensitivity analysis

Function name Description

AddFactor (f, l, k, b, u) Creates the parameter collection for 
the experimental setup. The 
function requires the data frame (f) 
where parameter will be added, if 
this parameter is not provided, a 
new data frame will be created. The 
second parameter (l) is the random 
function used internally, the default 
value is runif which will be the valid 
choice in many cases, the next 
parameter (k) is the name of factor, 
the value provided must match 
some parameter defined in the 
repast model. The following two 
parameters (b), (u) are the lower and 
the upper range, respectively. The 
function returns the updated (f) data 
frame with the new parameter

AoE.RandomSampling (n, f) Also known as Monte Carlo 
sampling, generate an experimental 
design based on making random 
samplings of parameter space. The 
function takes two parameters, the 
sample size (n) and the factor (f) 
data frame created using 
AddFactor(). The function returns 
the design matrix for the provided 
parameters

AoE.LatinHypercube (n, f) Generates an experimental design 
using the Latin Hypercube stratified 
sampling technique which is a more 
efficient sampling scheme, in terms 
of model evaluations, than the pure 
random sampling. The parameters 
(n, f) and return values are the same 
already described for the function 
AoE.RandomSampling()

AoE.FullFactorial (n, f) Creates a factorial design where the 
effects of all independent variables 
of model are studied simultaneously, 
which implies many more model 
evaluations. The parameters (n, f) 
and return values are the same 
already described for the function 
AoE.RandomSampling()

BuildParameterSet (d, p) Constructs the data frame required 
for executing RunExperiment(). 
The function takes two param-
eters: the design matrix (d) created 
with one of previous functions and 
the declared parameters (p) 
defined in the Repast Model with 
the default values retrieved using 
the function 
GetSimulationParameters(). The 
functions return a data frame with 
varying and fixed parameters for 
the experimental setup of choice
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examples will be used for illustrating the application of some pack-
age's functionalities and what kind of information these functions can 
offer about the simulation outputs. For clarifying what every model 
does, a summary version of Overview, Design concepts, and Detail 
(ODD) will be given for facilitating a general idea about these mod-
els. The ODD is a protocol (Grimm et al., 2006, 2010) which has been 
proposed as a standard way to specify and describe individual-based 
models. A brief description on the model structure and parameters 
will be given in order to allow the readers to understand the kind of 
questions the model is intended to answer and how R/Repast can be 
used for analyzing the model outputs. The last section for each model 
under the title of Model analysis is not part of ODD protocol, but it is 
included to show the results of running the R/Repast model analysis 
methods.

The first model used as example here is a spatially explicit individ-
ual-based representation of bacterial conjugation using BactoSIM for 
simulating the plasmid spread on a surface-attached bacterial colony 
(Prestes García & Rodríguez-Patón, 2015a, 2015b). The example will 
be used for showing the application of Easy.Stability method for find-
ing the number of replications of simulation experiments required for 
obtaining consistent outputs. The second example is a Repast imple-
mentation of the omnipresent predator–prey model describing the 
interaction between two species. This one is part of examples coming 
along the standard Repast distribution and will be used for showing 
the application of Easy.Morris function. Finally, the third example is 
an instance of the common pool problem in the context of bacterial 
conjugation. This model was developed exclusively for this study. This 
model will be used for exemplifying the use of Easy.Sobol method. The 
complete sources for all projects are available, respectively, in the fol-
lowing locations:

•	 BactoSIM: https://github.com/antonio-pgarcia/haldane
•	 Predator-Prey: The sources come with the Repast distribution.
•	 T4SS Common Pool: https://github.com/antonio-pgarcia/PoolT4SS

For convenience, in order to facilitate the experiments shown in this 
article being reproduced elsewhere, we also provide the prebuilt install-
ers for the three projects mentioned previously. The installers can be 
downloaded from URL shown below:

•	 BactoSIM: http://goo.gl/YYIt1o
•	 Predator-Prey: http://goo.gl/cJ5z2r
•	 T4SS Common Pool: http://goo.gl/zq4LH0

In order to reproduce the examples shown in the next sections, it is 
required a computer with a Java JVM and GNU R installed. The examples 
have been produced and tested on a windows box with java 1.8 and 
GNU R 3.3.1. If these preconditions are met, just proceed to download 
and install the examples and the R/Repast package. The installation of 
R/Repast is carried out using the install command install.packages (“rre-
past”) on the R environment. Once the previous steps have been com-
pleted, just copy and paste the examples shown in this article, taking 

T A B L E   3   The easy Application Programming Interface functions. 
These functions are the preferred entry point for the eventual users. 
These “Easy” functions lump together a complete experiment task in 
just one call, reducing the number of lines of code required

Function name Description

Easy.Stability (d, 
o, t, f, s, r, v, F)

Evaluate the behavior of model output in order to 
determine the minimum required number of 
replication of the chosen experimental setup. 
The function accept the following parameters: 
the model installation directory (d), the 
aggregated data source defined within the 
Repast model (o), the simulation time in Repast 
ticks (t) which default value is 300 ticks, the 
input factors to be sampled (f) created with the 
previously mentioned function AddFactor(), the 
number of parameter samples (s), the desired 
number of replications to be tried (r) being the 
default value 100, the output variables of 
interest which will be checked for their stability 
and convergence of the coefficient of variation 
(v); if this parameter is left empty, all output 
variables are checked and finally the user 
provided calibration function (F) for determining 
the best input parameter combination

Easy.Morris (d, 
o, t, f, p, s, r, F)

This function performs all required tasks for 
carrying out the method of Morris for screening. 
The parameters are practically the same as 
described for the previous function with 
exception of parameters (p) and (s) which are, 
respectively, the levels of input factors and the 
number of sampling points of Morris method 
(Pujol et al., 2015)

Easy.Sobol (d, o, 
t, f, n, r, F)

Encapsulate all required steps for performing 
sensitivity analysis using Sobol method. The 
method of Sobol is a global sensitivity analysis 
technique based on the decomposition of output 
variance (Pujol et al., 2015; Saltelli et al., 2004). 
The parameter semantics are the same already 
described: the model installation directory (d), 
the aggregated data source defined within the 
Repast model (o), the simulation time in Repast 
ticks (t) , the input factors to be sampled (f), the 
sample size (n), the desired number of replica-
tions (r), and calibration function (F)

Easy.Calibration 
(d, o, t, f, n, r, F)

This function estimates the best set of input 
parameters or factors, performing a set of model 
executions in order to sample the calibration 
function. The objective of this function is to 
minimize the output of calibration function 
provided by the user

Easy.Setup (d, l) The parameters (d) and (l) are, respectively, the 
directory where repast model is installed and the 
location of R/Repast deployment directory. If 
omitted, it assumes as the default value, the 
directory where the Repast model is installed. 
The function is required for automatically 
making the changes in the model configuration 
for adding the integration code, for deploying 
the Java jar files with the integration code, and 
for preparing the deployment directory. That 
directory will hold the JVM logs and the saved 
model output datasets

https://github.com/antonio-pgarcia/haldane
https://github.com/antonio-pgarcia/PoolT4SS
http://goo.gl/YYIt1o
http://goo.gl/cJ5z2r
http://goo.gl/zq4LH0
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care of changing the references to the model installation directory to the 
directories where the models have been installed locally.

5  | EXAMPLE 1:  BACTOSIM

Normally, one of the advantages of using individual-based models for 
biological or ecological processes is the possibility of incorporating 
variability at an individual level. Therefore, unlike deterministic model, 
in order to get trustworthy results, the simulation must be repeated a 
number N of times to achieve stable value on the output variance. The 
objective of the first example is to show the application of a simple 
method for finding the minimal number of replications of a simulation 
model which is required for the variance of response variables become 
stable, converging to a common value. A straightforward way to de-
termine the output stability has been suggested in Thiele et al. (2014) 
and Lorscheid, Heine, and Meyer (2012) and consists in to compute 
the coefficient of variation2 of the output of interest with and increas-
ing number of repetitions while keeping the input parameters fixed. 
The number of replications for which the values of coefficient of vari-
ation stop to vary is the minimum number of repetitions necessary for 
getting robust results. In R/Repast, we have implemented that method 
which is accessible through the Easy.Stability API call.

For this example, the BactoSIM (Prestes García & Rodríguez-
Patón, 2015a, 2015b) model will be used. This is an individual-based 
model of bacterial conjugation process. The bacterial conjugation is 
a form of lateral genetic transfer which occur naturally in bacterial 
colonies (Arutyunov & Frost, 2013). The conjugation consists in the 
transference of a conjugative plasmid from a donor cell to a recipient 
cell. The plasmids are small circular DNA sequences which replicates 
independently from the main chromosome of their hosts (Bergstrom, 
Lipsitch, & Levin, 2000). The conjugation is considered one the causes 
of the rapid evolution and adaptation of bacterial colonies and the 
spread of antibiotic resistance (Chen, Christie, & Dubnau, 2005; Slater, 
Bailey, Tett, & Turner, 2008). The BactoSIM model is currently being 
used for an evaluation of the main factors governing the plasmid 
dispersion. A preliminary evaluation has shown that the point in the 
cell cycle is the principal factor responsible for the global dynamics 
of plasmid infective dispersion (Prestes García & Rodríguez-Patón, 
2015a, 2015b) which is consistent with some observations (Seoane 
et al., 2011) taken from individual bacterial cells.

5.1 | Model description

The model description follows the ODD protocol for describing 
individual-based models (Grimm et al., 2006, 2010). The model is 
implemented in java language using Repast Simphony agent-based 
simulation framework (North et al., 2013).

5.1.1 | Purpose

The objective of this model is the assessment of the best strategy for 
modeling and implementing the conjugation rule which provides the 
best fit to experimental data and better captures the most plausible 
process structure.

5.1.2 | Entities, state variables, and scales

The model comprises two entity types, namely the bacterial indi-
viduals or agents and environment. The environment contains the 
rate limiting number of nutrient particles required for the cell me-
tabolism and growth. All agents evolve in a computational domain 
defined by a 1000 × 1000 μm squared lattice divided in 106 cells of 
1 × 1 μm representing a real surface of 1 mm2. In this model, the 
agents representing bacterial cells are defined individually by two 
main state variables, namely the plasmid infection state and the t0. 
The plasmid infection states are  = R,D, T and the respective tran-
sition function for conjugative plasmids, δ is shown in Equation 8. 
For the oriT construction only, the first transition rule applies as 
transconjugant cells are sterile. The t0 is the time of cell birth or the 
time of the last cellular division, and it is employed in the estimation 
of agent doubling time used in the division decision rule. The T4SS 
pili is also taken into account and the agents have a state variable 
representing the number of pilus already expressed and available in 
cell surface.

Finally, the environment will hold the initial nutrient concen-
tration for every lattice cell. In the model initialization, a fixed 
amount of substrate particles will be distributed evenly over all lattice 
sites.

5.1.3 | Process overview and scheduling

The dynamics of bacterial conjugation is modeled as the execution 
of following set of cellular processes: the cellular division, the T4SS 
pili expression, the shoving relaxing which avoid bacterial cells to 
overlap and allow a more realistic colony growth, and the conjuga-
tion process. The state variable update is asynchronous. The order of 
execution of this process is shuffled to avoid any bias due to a purely 
sequential execution of model rule base, see Figure 5. The conjuga-
tion process is modeled in three different ways with respect to the 
time when conjugation event is most prone to happen, and the results 
are compared. Thus, the conjugation is defined by two variables: the 
value of intrinsic conjugation rate (γ0), which determines how many 

(8)δ=

{
(D,R)→ (D, T)

(T,R)→ (T, T)

F I G U R E  4   The skeleton of objective function. The function has two parameters and must return a one or more scalar values
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transfers should be performed by a single bacterial cell, and the cell 
cycle point, which defines the time when the conjugative events are 
likely to occur.

The model input and initialization requires the parameters shown 
in Table 4. The costT4SS is the total cost of pili expression. The cost 
applied for a single pilus expression is costT4SS/param(maxpili). 

F I G U R E  5   The flow diagram showing 
the overview on how bacterial process 
are scheduled in the BactoSIM simulation 
model
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The param(maxpili) is actually a constant having the value of 5 for 
Escherichia coli. The cellCycle parameter indicates two things: the type 
of modeling rule and its parameter. A value of −1 set the model to 
conjugate as soon an infected cell finds a susceptible one. Setting the 
parameter to 0 will randomize the conjugation time between t0 and G. 
Finally, using a value >0 indicates the specific point in the cell cycle 
for conjugation. A polynomial equation is fitted to the experimental 
data where the dependent variable represents the conjugation rate T/
(T + R). Setting isConjugative flag to false creates a simulation where 
the transconjugant cells are sterile; in other words, they are unable 
to conjugate. The equation is used only for comparing the quality of 
simulation output.

5.1.4 | Design concepts

Basic Principles: Three models differing in the way the conjugation 
rule is implemented and their results compared to the available 
experimental data. The best strategy can be used to build 
models which could serve as a predictive tool for synthetic 
biology and to explore some aspects which are hard to observe 
directly in experimental studies of plasmid spread. The key 
points of this model lies on the idea of the existence of a 
local or intrinsic conjugation rate, which has been termed γ0. 
This intrinsic rate stands for the number of plasmid transfer 
events, or conjugations on a cell life-cycle basis. In addition, 
the global infective wave speed depends directly from the 
specific point in the bacterial cell cycle when conjugative event 
is triggered.

Emergence: The model intends to find out what will be the global out-
come arising as function of local rules defining the evolution of the 

bacterial cells and their interaction with adjacent neighbors. With 
this objective, the model incorporates the most significant aspects 
of the spatial structure and the behavior of the cellular processes 
that are related to the conjugation. Specifically, the values of the 
generation time of donor and transconjugant cells are one of the 
emergent properties depending from the metabolic penalizations 
applied both for conjugation event and for the expression of T4SS 
genes.

Adaptation: All agents adapt their growth according to the local avail-
ability of nutrient and space.

Fitness: It is considered implicitly to the extent that plasmid-free indi-
viduals will present a better adaptation in terms of growth rate than 
plasmid bearing cells.

Prediction: The model is intended to provide prediction regarding the 
range of possible values for the number of plasmid transfer events 
per cell cycle and the cell-cycle point when conjugative transfer is 
most likely to happen.

Sensing: All process defined over the agents implicitly sense the local 
environment and the close neighborhood for their decisions.

Interaction: Bacterial cells interact with their nearby individuals for nu-
trient access, cellular division, mate pair formation, and plasmid 
transfer.

Stochasticity: Stochasticity is introduced at individual level for all cel-
lular process sampling a normal deviate and fitting the value to cor-
responding process.

Collectives: No collectives are taken into account in this model.
Observation: The output target variables will be saved at intervals of 

1 min of simulated time.

5.1.5 | Initialization

The simulation model is initialized with a population of plasmid-free 
(R) and plasmid-bearing (D) cells according to input parameters. The 
agents are placed randomly within a circular surface centered over the 
lattice central position. The radius of circle where agents are placed is 
calculated as function of N0 in order to be consistent to the desired 
initial cell density (Zhong, Droesch, Fox, Top, & Krone, 2012). The 
simulation environment is also initialized with a number of nutrient 
particles in order to support the half of the estimated number of cel-
lular divisions, and the rationale behind it is to capture the intercellular 
competition for nutrient access.

5.2 | Model analysis

The objective of stability analysis is to find the minimum number 
of experimental setup replications required for achieving reliable 
results. Thereby, the model output response is evaluated for an in-
creasing number of repetitions allowing the evaluation of the con-
vergence for output variance of simulation outputs. The complete 
listing for carrying out the stability check for the BactoSIM model 
is shown in Figure 6. As can be observed, the complete implemen-
tation of model analysis encompasses five steps. These steps are 

T A B L E   4   The complete list of model initialization parameters

Parameter Unit Description

G Minutes Average doubling time for 
plasmid-free cells

cellCycle % of G The percentage of cellular 
cycle for conjugation

costConjugation % of G The penalization due to a 
conjugative event

costT4SS % of G The Pilus expression cost

γ0 Conjugations/
cell

Upper limit for conjugations 
performed by an agent

isConjugative True|false Defines a conjugative or a 
mobilizable plasmid

isRepressed True|false The T4SS expression state for 
the plasmid

N0 Cells/ml Initial population expressed in 
cells/ml

donorRatio % of N0 The initial density of donor 
cells (D)

Equation N/A An equation for experimental 
data
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conserved for all high-level functions available in R/Repast pack-
age. The step 0 clean all existing R objects, loads the R/repast 
package, and set the random seed for the analysis. The step 1 is 
the definition of the objective function which can be any user-pro-
vided function following the R/Repast API specification. It is not 
strictly necessary for the Easy.Stability as the coefficient of varia-
tion is calculated for the model output variables. In this example, 
the objective function is basically the comparison of simulated data 
and experimental data using the normalized root-mean-square 
error API call AoE.NRMSD. The step 2 adds the model input factors 
for which the importance on the model output will be assessed and 
their biologically relevant range of variation. It is necessary to add 
at least one parameter which will be varied, while all other model 
parameters are kept fixed using the default value or with a value 
previously set using the R/Repast API SetSimulationParameter. The 
purpose of step 3 is to configure automatically the Repast model 
with the integration broker and for initializing the integration di-
rectory. Finally, the step 4 is where the analysis method is invoked; 
all analysis methods will return a list holding three objects, namely 
the experiment, the object, and the charts. The experiment contains 
simulation parameters and results, the object is method specific, 
and finally, the charts are pregenerated graphs for the method 
results.3

The method will generate automatically one chart for each 
model output.4 One of the output chart of model is shown in 
Figure 7 for the variable named X.Simulated. As can be observed, 
the coefficient of variation of these variable decreases as the sam-
ple size increases. The variation starts to become acceptable with 
a sample size of 25, and approximately with sample size of 50, we 
can see that coefficient of variation become stable. Therefore, we 
can feel relatively confident with or model results with a number 
of replications >25. Of course, it is important to take into account 
the computation cost of our model in order to select a value for the 
number of repetitions.

6  | EXAMPLE 2:  PREDATOR–PREY

6.1 | Model description

6.1.1 | Purpose

The purpose of Predator–Prey model presented here is to provide 
an alternative individual based-model implementation for the clas-
sic ODE model describing the association between two species. The 
model will be used to show the application of Morris method for rank-
ing the most important parameters.

F I G U R E  6   The listing for stability of model output method using the Easy.Stability function from R/Repast

FIGURE 7 The stability of model output. It is possible to observe 
how, insofar that the number of replications of the experimental 
setup increases, the value of the coefficient of variation converges to 
a common value
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6.1.2 | Entities, state variables, and scales

The model comprises three entities or agent types, the wolves, the 
sheep individuals, and the grass. These agents evolve in a computa-
tional domain of a 50 × 50 units with periodic boundaries, represent-
ing a large portion of space. The agents are positioned in a continuous 
bidimensional space and are free to move. On the other hand, the 
grass agent is placed in a discrete grid.

6.1.3 | Process overview and scheduling

The agents are defined by the execution of a set of processes depicting 
the agent movement and search of food source, the consumption of 
food, the process incrementing the agent reserves, the reproduction, 
and finally, the death process driven by predation or starvation. The 
fundamental idea behind the model formulation is that both predator 
and prey individuals incrementing their “energy” levels by predation 
or by consuming the available grass, respectively. Both agent types 
search for their food in the current patch where they are placed. The 
agents move a unit of space at time selecting randomly the heading.

The individual-based version of this model is a spatially explicit 
representation and have a few parameters more but is still very suc-
cinct. The list of model parameters are shown in Table 5.

The original formulation of Lotka-Volterra consists in a system of 
two differential equations with four parameters, namely the predator 
and the prey growth rate, the effect of predator on the prey growth, 
and finally, the effect of prey on the predator growth as can be seen 
in Equation 9.

There is a conceptual correspondence between the predator c2 
and prey c1 growth rates with the model parameters wolfreproduce and 
sheepreproduce as well as between the parameter wolfgainfromfood 
and the constant c4.

6.2 | Model analysis

The implementation code for the Morris screening exercise is shown 
in Figure 8 and, as has been mentioned in the previous example, we 
have the same sequence of steps, starting with the library loading and 
the selection of the random seed. Subsequently, we define the objec-
tive function, which in this case is a very simple one consisting in the 
arithmetic average of the population sizes of sheep individuals and 
wolves. The next step is the selection of model input factors for the 
screening method and providing the range of variation for each them. 

(9)

dx

dt
= c1x−c3xy,

dy

dt
=−c2y+c4xy.

T A B L E   5   The input parameter collection for the Repast 
implementation of Predator–Prey model

Input parameter Description

initialnumberofwolves The initial population of predators

initialnumberofsheep The initial population of preys

wolfgainfromfood The rate of predator energy is incremented 
every time a prey is consumed

wolfreproduce The reproduction rate of predator 
individual

sheepgainfromfood The prey rate energy increment for grazing 
grass

sheepreproduce The reproduction rate of prey individual

grassregrowthtime The amount of time required for grass 
be available again once consumed by a 
prey

F I G U R E  8   The listing for Morris screening method using the Easy.Morris function from R/Repast
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Then, the step 3 shows the call to the Easy.Setup function which ini-
tializes the Repast Model with the R/Repast integration code. Finally, 
the function Easy.Morris is called and the results are stored in the 
variable r. The example uses five levels with 10 sampling points for 
Morris method. The results consist of an R list holding the experiment 
carried out, the Morris object, and a list with charts generated by the 
experiment.5

The Figure 9 presents the μ∗ versus σ chart for both predator and 
prey average population sizes. At a first glance, the most important 
input factor for both predator and prey populations is the sheep-
gainfromfood. The second most significant for the predator output is 
grassregrowthtime. The other parameters are not very significant for 
the average of predator individuals. It is also interesting to note that 
wolfgainfromfood has very high value of σ which could indicate that 
the parameter significance strongly depends on the values of other 
parameters. On the other hand, it could mean that the number of sam-
pling points or replications should be increased. The prey output pres-
ents three important parameters, which in order of importance are the 
sheepgainfromfood, the sheepreproduce, and grassregrowthtime. These 
input parameters also have a high σ values which possibly indicate 
some nonlinear effects or that the values of these input factors are 
influencing each other. These results can be explained by the depen-
dence of wolf population on the availability of prey. The common 
observed pattern in that kind of model is the population of predators 
lagging in phase behind the prey population.

The chart of μ versus σ for model output is shown in Figure 10. 
It seems to provide very similar results, and the only significant dif-
ference is the contribution of grassregrowthtime. The input param-
eter was considered important by μ versus σ, but here, it has a 
negative value. In order to interpret this sensitivity measure, we 
must recall that μ∗ takes the absolute values of elementary effects. 

Therefore, the elementary effects of grassregrowthtime possibly 
has effect of opposite sings depending on the values of that input 
parameter.

Finally, we have the Figure 11 showing the chart of μ∗ ver-
sus μ, where the value of both measures can be observed together 
allowing the appreciation of the differences of both, which possibly 
indicates that the input factors present effects with different signs 
which, in other words, means nonlinearity in the model behavior.

7  | EXAMPLE 3:  T4SS COMMON POOL

7.1 | Model description

7.1.1 | Purpose

The objective of this model is to explore the conditions where two 
plasmids can coexist in a population competing for a common re-
source required for their horizontal transfer. The common resource 
is the set of genes required for conjugation because one of the two 
plasmid genes has lost these genes.

7.1.2 | Entities, state variables, and scales

The model uses two entity types, namely the agents representing 
the bacterial cells and a ValueLayer, which is a Repast specific struc-
ture, for holding the nutrient available for the bacterial growth. The 
agents interact and grow in a computational domain of 100 × 100 μm 
squared lattice with periodic boundaries representing a total real sur-
face of 0.01 mm2. Despite of being a lattice, the bacterial cells are 
positioned and allowed to move in a continuous space system. The 
agents are also allowed to overlap to each other. Explicitly, the agents 

F I G U R E  9   Results of Morris screening method for predator–prey model. The graph shows the μ∗ and σ sensitivity measures for Predator (a) 
and Prey (b) model outputs
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are defined by the five state variables: (1) heading, (2) mass, (3) divi-
sion mass, (4) plasmid P1 infection state, and (5) plasmid P1 infection 
state. The current position of every bacterial cell in the coordinate 
system is available implicitly through a Repast API call.

7.2 | Process overview and scheduling

Every bacterial cell in this model is abstracted as the execution of a 
series of successive processes capturing the basic tenets of bacterial 

life cycle. These processes are the nutrient uptake, the bacterial cell 
growth, the division, and the conjugation. The input parameters re-
quired for initializing the model are shown in Table 6.

7.2.1 | Design concepts

Basic Principles: The plasmid dispersion depends on an intricate 
balance between metabolic costs associated to horizontal and 

F I G U R E  1 0   Results of Morris screening method for predator–prey model. The graph shows the μ and σ sensitivity measures for Predator (a) 
and Prey (b) model outputs
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F I G U R E  1 1   Results of Morris screening method for Predator-Prey model. The graph shows the μ∗ and μ sensitivity measures for Predator (a) 
and Prey (b) model outputs
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vertical dispersion strategies. The conjugative proficiency requires 
the expression of set of transmembrane proteins which are 
known collectively as type IV secretion systems (T4SS; Lawley, 
Klimke, Gubbins, & Frost, 2003). The presence of conjugative 
plasmids and the expression of conjugative machinery are det-
rimental for the host cell fitness (Rozkov et al., 2004), but there 
is no consensus on the valid ranges of metabolic costs imposed 
by the conjugative process. Therefore, in this model the short-
term dynamics of two plasmid system P1 and P2 is simulated. 
The plasmid P1 is a complete conjugative plasmid containing 
all genes required for horizontal transfer and the plasmid P2 is 
a cheater, which having lost its conjugative genes, depends on 
the T4SS system from the plasmid P1. In other words, the 
model is used to assess how large should be the cost difference 
required for the lack of conjugative apparatus become a true 
competitive advantage making P2 dominate over P1.

Emergence: The colony growth pattern, the population distribution, 
and the dominance of a plasmid over another on the bacterial pop-
ulation are global properties arising from local properties defining 
the agent behavior and the interaction constraints.

Adaptation: All agents adapt their growth rate, as well as the conjuga-
tion rates, according to the local availability of nutrient.

Fitness: The bacterial cells infected by any plasmid are considered to 
behave less efficiently than the plasmid-free cells. The fitness of 
plasmid-bearing cells is explicitly specified by the cost input 
parameters.

Objectives: No objectives are taken into account in this model.
Prediction: The model will provide predictions on the possible ranges 

of plasmid metabolic cost which are favorable to the cheaters plas-
mid strategy.

Sensing: The agents representing the virtual bacterial cells sense the 
environment to the extent that the nutrient availability controls the 
growth and the conjugation rates.

Interaction: Bacterial cells interact with their nearby individuals for nu-
trient access, cellular division, mate pair formation, and plasmid 
transfer.

Stochasticity: Stochasticity is introduced at individual level for all cel-
lular process sampling a normal deviate and fitting the value to cor-
responding process.

Collectives: No collectives are taken into account in this model.
Observation: The model provides two kind of outputs, one is numeric 

and contains the total number of bacterial cells which are plasmid 
free or are infected by the plasmids P1, P2, or both. These outputs 
are generated for every time step. The model also has a 2D view of 
colony growth updated every time tick.

7.3 | Model analysis

The global sensitivity analysis using the Sobol variance decom-
position method for the T4SS common pool model is shown in 
Figure 12. We can observe the same sequence of steps which has 

T A B L E   6   The input parameter collection for the conjugative 
plasmid common pool model

Input parameter Description

doublingTime The doubling time of plasmid-free cells

p1P (P(γ0)) The probability of cell conjugate at least one 
time

p1Cost The cost imposed by the plasmid P1 including 
the metabolic burden required to express the 
conjugative apparatus

p2Cost The metabolic cost of plasmid P2

F I G U R E  1 2   The listing for Sobol GSA variance decomposition method using the Easy.Sobol function from R/Repast
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been previously mentioned. The objective function is defined for the 
average values of the model outputs named P1, P2, and Both. These 
variables are, respectively, the bacterial population size infected by 
the P1 plasmid, infected by the cheater plasmid P2, and finally, the 
number of individuals infected by both plasmids. The Sobol sensi-
tivity indices will provide the measures of the importance of every 
input parameter shown in step 2 of Figure 12 with respect to the 
results returned by the objective function, that is to say, the average 
population sizes.

The Figure 13 shows the first- and total-order indices for the 
model output P1. That output is the average number of bacterial 
cells infected just by the plasmid P1. As can be observed, the most 
important input parameter is the bacterial cell doubling time fol-
lowed by the probability P(γ0). This is an expected result as the 
rule for the conjugative transfer requires the bacterial cells have 
achieved a value rounding the 70% of cell mass at division. Other 
interesting aspect to note is the negative values of first-order indi-
ces. Obviously, the sensitivity indices should not be negative. This 
is a consequence of a small sample size, and to correct the problem, 
we must increase it. The other important input factors for the plas-
mid P1 output are, in order of importance, the probability P(γ0), the 
cost of plasmid P2, and the cost of plasmid P1, both with similar 
sensitivity indices.

The first- and total-order indices for the model output showing 
average population size of plasmid P2 can be seen in Figure 14. It is 
possible to appreciate again that the sensitivity indices show that the 
most important factor is the length of cellular cycle. The reason is sim-
ple, and can be attributed to the fact that plasmid P2 alone is only 
transferred vertically and depends on the plasmid P1 for horizontal 
transmission, being both aspects related to the cell cycle. Following 

in importance the doubling time, we have the cost of plasmid P1, the 
cost of plasmid P2, and the probability P(γ0), being the sensitivity index 
of P1 cost, noticeably higher than the other two indices. This could 
be attributed probably because the plasmid P2 requires a significant 
cost difference in order to outcompete the plasmid P1 which transfer 
vertically.

Finally, in the Figure 15, we have the sensitivity indices for the out-
put of model accounting for the average population size of bacterial 
cells infected by both plasmids. The importance of factors is consistent 
with the explanations for the previous sensitivity indices. Again, the 
most important model parameter is the doubling time of bacterial cell 
followed by the P1 and P2 cost parameters and by the probability P(γ0).

8  | CONCLUSIONS

The ecological modeling is a complex subject which can be normally 
perceived as being simpler than it actually is. Specifically, the individ-
ual-based models are subject to many levels of uncertainty, which 
means that it is hard to get completely fixed the values of model 
inputs, the model structure, and the outputs. Normally, there is no 
complete experimental or observational data to construct mechanistic 
descriptions of individual, and therefore, many assumptions and sim-
plifications must be made in order to implement a model. The same is 
true regarding the input values, which are particularly critical in the 
case of the ecology of microorganism, as normally, just very few input 
parameters are directly observed and the most of them are estimated 
from whole population experiments. Therefore, it is always important 
to bearing mind that modeling is an iterative task which must incorpo-
rate compulsorily some what-if analysis of model outputs.

F I G U R E  1 3   Results of Sobol variance decomposition method for T4SS common pool model. The graph shows sensitivity measures 
containing the first-order (a) and total-order (b) indices for bacterial population infected by P1 plasmid
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Several methods exist for assessing the uncertainty and for esti-
mating the relative importance of input parameters in the model out-
put. We have provided here and overview on those methods which 
are based on the variance decomposition because they have a wider 
application scope and are specifically suitable for their use on individ-
ual-based models. These methods, although conceptually simple, are 
computationally intensive and can be somewhat hard to apply because 

the required tools are either unavailable or they do not provide an easy 
integration pattern. Roughly speaking, the sensitivity analysis methods 
require the generation of large sample of the parameter space and the 
model evaluation for each of them which, of course, makes the manual 
execution an infeasible option.

The in-silico experimentation is becoming a vital tool for under-
standing complex phenomena in a way that cannot be performed 

F I G U R E  1 4   Results of Sobol variance decomposition method for T4SS common pool model. The graph shows sensitivity measures 
containing the first-order (a) and total-order (b) indices for bacterial population infected by P2 plasmid
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F I G U R E  1 5   Results of Sobol variance decomposition method for T4SS common pool model. The graph shows sensitivity measures 
containing the first-order (a) and total-order (b) indices for bacterial population infected by both P1 and P2 plasmids
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without modeling. The effective application of computational ecol-
ogy methods requires a high level of proficiency in many diverse 
domains of knowledge which sometimes are neither feasible nor 
practical. Therefore, it is indispensable to have a ready-to-use arse-
nal of reusable computational tools for modeling and analysis. In 
this study, we have introduced the R/Repast package and showed 
how it can help modelers to improve the robustness and quality of 
individual-based models results using the functionalities inside the 
package for analyzing systematically the model outputs. The pack-
age can save much effort for modelers by providing simple wrap-
pers for complex methods within a simple and consistent API. We 
hope that these R/Repast functionalities can facilitate enormously 
the systematic analysis of individual-based models implemented in 
Repast.
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NOTES
1	Not to be confused with population mean and standard deviation.
2	Also known as relative standard deviation given by CV = σ/μ which provides 

a normalized version of the standard deviation expressed relatively to the 
output mean.

3	 In the current API version, there is a function for accessing the charts for 
the Easy.Stability method, named Easy.getChart(), please refer to the user 
manual for the complete syntax.

4	It is possible to limit it passing to the method a subset of model outputs.
5	In order to plot the charts, the user should use a R code for accessing the 

chat list members. There are three members, namely mustar, musigma, and 
mumu. In order to get the mumu chart for the second objective function 
output, we must use the R call: r$charts[2,]$mumu.
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