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Introduction: Developmental and epileptic encephalopathies (DEE) is

a group of epilepsies where the epileptic activity, seizures and the

underlying neurobiology contributes to cognitive and behavioral impairments.

Uncovering the causes of DEE is important in order to develop guidelines for

treatment and follow-up. The aim of the present study was to describe the

clinical picture and to identify genetic causes in a patient cohort with DEE

without known etiology, from a Norwegian regional hospital.

Methods: Systematic searches of medical records were performed at

Drammen Hospital, Vestre Viken Health Trust, to identify patients with

epilepsy in the period 1999–2018. Medical records were reviewed to identify

patients with DEE of unknown cause. In 2018, patients were also recruited

consecutively from treating physicians. All patients underwent thorough

clinical evaluation and updated genetic diagnostic analyses.

Results: Fifty-five of 2,225 patients with epilepsy had DEE of unknown

etiology. Disease-causing genetic variants were found in 15/33 (45%) included

patients. Three had potentially treatable metabolic disorders (SLC2A1, COQ4

and SLC6A8). Developmental comorbidity was higher in the group with a

genetic diagnosis, compared to those who remained undiagnosed. Five novel

variants in known geneswere found, and the patient phenotypes are described.

Conclusion: The results from this study illustrate the importance of performing

updated genetic investigations and/or analyses in patients with DEE of

unknown etiology. A genetic cause was identified in 45% of the patients, and

three of these patients had potentially treatable conditions where available

targeted therapy may improve patient outcome.
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Introduction

About 30.000 people in Norway have active epilepsy (1, 2).

Epilepsy can have many different causes, and knowing the

etiology is of great importance when it comes to treatment,

follow-up and prognosis (3–5). However, in 2/3 of the cases the

etiology is unknown (2). As the knowledge about genetic causes

of epilepsy increases, the proportion of epilepsy with unknown

etiology will probably diminish (3, 6, 7). Genetics may influence

the cause of epilepsy in different ways, from small or moderate

effects of multiple genetic risk factors in common epilepsies

like juvenile myoclonic epilepsy, to large effects of single gene

variants in rare monogenic types of epilepsies like Dravet

syndrome (8). The list of genes known to cause monogenic types

of epilepsy is growing rapidly, and several of these genes can

now be screened in clinical practice (5, 9). Knowledge of genetic

causes may guide treatment and follow-up (5, 10).

A group of epilepsies where a high proportion show

monogenic inheritance is developmental and epileptic

encephalopathies (DEE) (4, 9). In DEE, epileptic activity

contributes to cognitive and behavioral impairments, above and

beyond what is likely to be caused by the underlying pathology

alone (4, 11, 12).

A wide range of etiologies can cause DEE, but monogenic

causes are among the most prevalent (9, 13, 14). Uncovering

the underlying etiology paves the way for application of

personalized, targeted therapies, including replacement therapy

(5, 10, 15, 16).

By a systematic approach, the aim of the present study was to

identify patients with DEE of unknown etiology, describe their

phenotype and uncover the genetic cause of disease, in a regular

clinical practice in a Norwegian regional hospital.

Materials and methods

Study design

The study is a descriptive case series of 33 patients with DEE

of unknown etiology from a regional hospital in Norway.

Study area and population

Drammen Hospital, Vestre Viken Health Trust, is a

non-tertiary hospital serving the general population of 21

municipalities (14.238 km2) in Viken County, in addition to one

municipality in Vestfold and Telemark County, Norway. The

most recent census of January 1st 2021 listed 484,112 inhabitants

in this area, constituting 9% of Norway’s total population.

During the last 10 years, the number of inhabitants in this region

increased with 11% (17).

Identification of patients and inclusion

In order to identify eligible patients, two systematic searches

of Drammen Hospital’s medical records were performed at

the following departments: the Department of Children and

Adolescents and the Department of Neurology (which also

include the Section of Neurophysiology and the Section

of Neurohabilitation).

The first search included subjects with a diagnosis of active

epilepsy according to the International Classification System of

Diseases 10th Edition (ICD-10) codes G40.0-9, in the period

January 1st 1999 to January 1st 2014 (2). The second search

included patients with ICD-10 codes G40.0-9, in the period

January 2nd 2014 to July 2nd 2018. In this search the diagnostic

code P90 (neonatal seizures) was included as well, but only for

patients younger than 12 years of age. P90 was included in order

not to miss the youngest subjects in the second search, who

might not have received a diagnostic code of epilepsy yet.

Medical records of all patients identified in both searches

were reviewed in order to find patients with DEE of unknown,

yet suspected genetic cause.

Following the mentioned systematic searches, in the

period July 3rd 2018 to December 31st 2018, patients

were consecutively recruited from treating physicians at the

Department of Children and Adolescents and the Department

of Neurology at Drammen Hospital.

All potentially eligible patients were discussed on a one-

to-one basis among four experienced physicians (JK, MS, IS

and the individual patient’s treating physician) to ensure that

the medical records were assessed correctly regarding inclusion-

and exclusion criteria. Patients from the first search (1999–

2013) were discussed in 2014, while patients from the second

search and from the recruitment from physicians (2014–2018)

were consecutively discussed in 2018–2021. Updated genetic

diagnostic testing was advised to the treating physician when

each patient was discussed.

Parents or guardians of patients considered eligible for

inclusion were consecutively contacted, and patients were

included in the period January 1st 2017 to December 31st 2021.

Definitions, inclusion—and exclusion
criteria

Epilepsy was defined as having two or more unprovoked

seizures occurring with at least 24 h apart (18, 19). Active

epilepsy was defined as current treatment with anti-seizure

medication (ASM) or having at least one seizure within the last

5 years (18, 19).

DEE was defined according to the ILAE criteria of 2017

as epilepsy and developmental delay or intellectual disability

(ID) (4).
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TABLE 1 Clinical information.

ID

Clinical

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sex (F/M) M F M M F F F M K M F M F M M

Age in 2021

(y)

12 16 30 25 31 8 27 10 30 5 18 18 22 22 22

Sz onset, age

(y)

2 <1 <1 <1 <1 <1 <1 1 3 <1 1 <1 <1 <1 <1

Active

epilepsy

(2021)

No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

ASM in 2021

(# of ASMs)

No Yes (2) Yes (1) Yes (1) Yes (NA) Yes (1) Yes (3) Yes (1) Yes (1) No Yes (1) Yes (2) Yes (2) Yes (2) Yes (1)

Disease-

specific

treatment

No No Ketogenic

diet*

No No No No No No No Coenzyme

Q10**

No Aa, folic

acid**

No No

# of ASM/KD

tried

10/+ 5/– 5/+ 8/+

w/effect

10/– 9/– 10/– 3/– 2/– 6/– 1/– 3/– 4/– 5/– 3/–

Infantile

spasms

No Yes No Yes No No No No No No No No No No No

Status

epilepticus

No No No No No No Yes No No No No Yes No No No

Hypsarrhythmia

(EEG)

No Yes No No No No No No No No No No No No No

PMD prior to

sz

Delayed Delayed Normal Normal Normal Delayed Normal Delayed Delayed Normal Delayed Normal Normal Delayed Delayed

Degree of ID Moderate Severe Severe Profound Unspecified Mild Profound Severe Severe NA Mild Unspecified Moderate Profound Unspecified

Relevant

comorbidities

FD Blind,

contractures,

H, FD

Sp-Atx Sp-Q, Sl,

Sc, FD

Cerebellar

Atx

FD Sp- Q, Sl,

Sc, FD,

hyperkinetic

movements,

H, FD SGA, mic,

alternating

exotrophia,

H

H Tremor,

mild Atx,

Sp-

paraparesis

Mic, H,

Sc

Primary

amenorrhea

Sp- Q, H DD of

puberty,

malnutrition

H, Sc, FD

Behavioral

disturbances

Impulsive,

rigid

No No No ASD No No No ASD,

AMP

No No No ADD,

AMP

No No

Language DD

/language

(2021)

Yes/ Yes Yes

severe/No

Yes/ Yes Yes

severe/No

No /Yes Yes/Yes Yes/No Yes

severe/No

Yes/Yes Yes/Yes Yes/Yes Yes/No No/Yes Yes/No Yes/No

(Continued)
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Inclusion criteria were the following:

1. DEE According to the Definition of ILAE (4).

2. Onset of Seizures Before 12 Years of age.

3. Either a or b:

(a) Patients older than five years of age: Diagnosis of

delayed psychomotor development and/or a diagnosis

of ID.

(b) Patients younger than five years of age: Suspected delay

in psychomotor, speech or cognitive development based

on information from medical records and thorough

evaluation in collaboration with the treating physician.

Exclusion criteria were the following:

1. Patients with an identified cause of DEE, including

metabolic, infectious, immune or structural etiology.

2. Patients who received a genetic diagnosis prior to 2014.

3. Not considered eligible for ethical reasons.

Structural brain pathology was not considered an exclusion

criterion in patients with a clinical picturemore severe thanwhat

would be expected from the identified structural lesion alone.

In these patients, a genetic cause was a suspected contributing

factor to the clinical picture. Ethical reasons for exclusion were

mainly different aspects of challenging relations to the parents

or guardians.

Behavioral disorders were defined according to the

Department of Health and Human Services, United States of

America, to involve a pattern of disruptive behaviors in children

that lasts for at least six months and causes problems in school,

at home and in social situations (20).

Genetic analyses and clinical examination

All study participants underwent a clinical examination by

the treating physician and/or one of the doctors of the project

group at the time of inclusion. A blood sample was drawn

for genetic analyses. When available, blood was also drawn

from parents.

Genetic analyses

Genetic routine testing had already been performed in

most of the patients prior to inclusion. Hence, a range of

different analyses had been performed in the patients: E.g.,

array comparative genomic hybridization (aCGH) had been

performed with different resolutions, some patients had Sanger

sequencing of single candidate genes done, whereas other had

gene panel analysis done based on bioinformatics filtering of
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TABLE 2 Genetic information.

Patient 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Gene CHD2 KCNQ2 SLC2A1 STXBP1 SCN1A SCN8A SCN1A GRIN2B SYNGAP1 KCNQ2 COQ4 PPP2R1A SLC6A8 STXBP1 PURA

Reference

sequence

NM_

001271.3

NM_

172107.2

NM_

006516.2

NM_

003165.3

NM_

001165963.1

NM_

014191.3

NM_

001165963.1

NM_

000834.3

NM_

006772.2

NM_

172107.2

NM_ 016035.3 NM_

014225.5

NM_

005629.3

NM_

003165.3

NM_

005859.4

Coding DNA

variant

c.1390A>T c.602G>A c.101A>G c.735T>G c.4277T>C c.5630A>G c.2681C>G c.2459G>C c.509G>A c.997C>T c.304C>T,

c.718C>T

c.658G>A c.1196C>A c.416C>T c.514C>T

Protein

variant

p.Arg

464*

p.Arg

201His

p.Asn

34Ser

p.His2

45Gln

p.Leu14

26Pro

p.Asn18

77Ser

p.Thr8

94Ser

p.Gly8

20Ala

p.Arg1

70Gln

p.Arg33

3Trp

p.Arg10

2Cys, p.Arg24

0Cys

p.Val2

20Met

p.Ala

399Asp

p.Pro

139Leu

p.Gln1

72*

De novo Yes Yes NA ** Yes Yes Yes No, 2%

GM

Yes Yes Yes No, no Yes Yes NA** Yes

Novel Yes No No Yes Yes No No No No No No, no No Yes No Yes

Zygosity Het Het Het Het Het Het Het Het Het Het C-het Het Het Het Het

Age (y) at

genetic

diagnosis

8 10 26 20 29 2 23 2 28 <1 14 15 17 17 18

Variant

evaluation

P P P Likely P P Likely P∧ Likely P Likely P∧ Likely P Likely P∧ Likely P Likely P P∧ Likely P P

NA, not applicable; **, Unknown inheritance; parental sample(s) not available; GM, Germline mosaicism in parent; C-het, Compound heterozygous; Het, Heterozygous; y, years; <,below; P, pathogenic; as described in the lab report; ∧ , indicate that the

lab did not report an explicit ACMG classification.
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FIGURE 1

Flowchart of inclusion and exclusion of patients. DEE, Developmental and epileptic encephalopathy; N, number of subjects; Red color, treatable

disease; *, Supplementary Table 1. Patients given a genetic diagnoses prior to 2014 and therefore not invited. **, 3/22 of the excluded patients

were diagnosed with a genetic cause of disease (SCN1A, AMT, SCN2A); ***, Other disease includes; three patients with structural lesions

explaining epilepsy and two with autism spectrum disorder and self-limiting epilepsy.

whole-exome sequencing (WES) or whole-genome sequencing

(WGS) data.

Upon recruitment, all patients were offered updated genetic

testing according to current routine standards, unless genetic

analyses were already in progress. The gene panel analysis

applied in epilepsy patients evolved rapidly throughout the

study period, as the first panel was designed for epileptic

encephalopathy in 2014 and contained only 13 genes. Today,

a comprehensive gene panel of more than 2,500 genes is the

current standard for both patients with developmental delay

and DEE. As the list of genes is revised yearly, the analysis

of each patient may vary according to the current standard

for the genes included in the panel at the time of analyzes.

However, updated lists are available for referring medical

doctors online (21).

Genetic routine testing of the patient, including parents

when available, was performed at the diagnostic laboratory at

Oslo University Hospital. Genetic analyses were performed on

data from either WES or WGS data. Bioinformatic filters were

slightly different depending on sequencing data source (WES

or WGS) and whether analysis was performed on a single

patient or a trio. However, the basic principles were to filter

out the variants of low quality, variants with high population

frequency (different limits depending on mode of inheritance)

and synonymous variants. Variants were also evaluated with in

silico prediction tools, as e.g. FATHMM and SIFT (22, 23). After
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2015, evaluation and classification of variants was based on the

ACMG (American College of Medical Genetics and Genomics)

classification (24). The interpretation of the variants is included

in Table 2, including the ACMG classification when this was

explicitly stated in the lab report.

Clinical information

Medical records were reviewed, systematically retrieving

the following information: family history, psychomotor

development, the time of seizure onset, seizure semiology,

ASMs used, concomitant symptoms and diagnoses, previous

genetic and biochemical test results from blood, urine and

spinal fluid, and description of electroencephalogram (EEG)

and radiological examinations. An updated status of the patient

condition was retrieved from medical records in 2021.

Results

Of the 2,225 medical records with epilepsy reviewed, 135

patients were suspected or reported to have epilepsy-related

disease with genetic etiology; 80 patients had already received a

genetic diagnosis prior to 2014, and were therefore not invited

to the study. The remaining 55 patients were classified as

DEE of unknown etiology, and were invited. Figure 1 describes

inclusion and exclusion of patients. Among the 33 included

patients, a disease-causing genetic variant explaining their DEE

was discovered in 45% (15/33), of which three were potentially

treatable (variants in SLC2A1, COQ4 and SLC6A8). Tables 1, 2

include detailed clinical and genetic characteristics of each

patient diagnosed with a genetic cause of disease, while Table 3

provides clinical data on group-level.

The included patients (20 males/13 females) had a mean

age of twenty years (range 5–49) in 2021. The average age at

genetic diagnosis was 14 years (range 4 months - 28 years).

All experienced the first seizure before the age of four years

(range 1 day – 4 years). Fifteen percent was diagnosed with

infantile spasms in early age, and 12% had hypsarrythmia in

one or several EEG recordings. Fifteen percent experienced

status epilepticus. In 2021, 97% still had active epilepsy, and

94% were using at least one type of ASM. The average number

of ASMs reported was 6, 6 (range 1–15), and 24% had

tried ketogenic diet. Half of the patients (51%) had normal

psychomotor development prior to seizure onset. All patients

were diagnosed with varying degrees of ID, except one who

was too young to be diagnosed with ID, but in whom the

treating physician suspected psychomotor delay. Most had

delayed development of language (82%) and/or motor skills

(84%). In 2021, 36% were unable to speak, and 27% were

unable to walk. Twenty- four percent of the patients had

spasticity, and 30% had eating difficulties. Fifty-eight percent

was diagnosed with or had symptoms of a behavioral disorder.

In 32 of the 33 included patients, information about cerebral

Magnetic Resonance Imaging (MRI) was available. Twenty-four

of these 32 (75%) had normal MRI results. In the remaining

eight patients, pathological findings included one or more of the

following: corpus callosum dysgenesis (4), cerebral atrophy (4),

delayed myelination (3), sclerosis of hippocampus (1) and/or

periventricular leucomalacia (1).

The total disease burden was higher in the group with

molecular diagnoses (Table 3). This group of patients had a

higher rate of ID (47% with severe-profound ID vs. 22%),

inability to speak (47 vs. 28%) and/ or walk (40 vs. 17%),

presence of spasticity (40 vs. 11%), and eating difficulties (47

vs. 17%). On the other hand, behavioral disorders were more

frequent in the group of DEEs without genetic diagnoses (78

vs. 27%). All patients without a molecular diagnosis used one

or more ASMs and 28% had tried ketogenic diet. Of the patients

with a molecular diagnosis, 87% used one or more ASMs, and

20% had tried ketogenic diet.

Among the 15 genetic variants discovered, eleven were de

novo, two were inherited from parents, and two were of unkown

inheritance, as parental samples were not available for testing.

Five variants in the following genes were novel: CHD2, STXBP1,

SCN1A, SLC6A8, and PURA.

Discussion

In this study of a large and representative group of patients

with epilepsy at a non-tertiary hospital, nearly half of the patients

with DEE of an unknown cause were, by systematic updated

genetic testing, diagnosed with a causative genetic etiology, three

of which were potentially treatable.

Estimated minimum occurrence of
epilepsies with genetic etiology

Among all the 2,225 patients with epilepsy reviewed in

this study, a substantial number had a genetic explanation of

their disease (Figure 1; Supplementary Table 1). The number is

as high as 98 patients when including the following; patients

diagnosed before 2014 and not invited to the study (N =

80), excluded patients who had a genetic explanation of their

disorder (N = 3), and the included patients diagnosed in this

study (N = 15). Although our design restricts us from doing

prevalence estimates, the results indicate an estimatedminimum

occurrence of epilepsy of genetic etiology of 4,4% in the general

epilepsy population in our region. We suspect that the true

proportion of genetic epilepsies is even higher, as our number

may be affected by inclusion biases. E.g., institutionalized elderly

patients with DEE are rarely followed by the specialist health

services, and would typically not be included in our study.
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TABLE 3 Clinical characteristics.

Clinical characteristics All DEE patients (N=

33)

DEE with genetic

diagnosis (N= 15)

DEE without genetic

diagnosis (N= 18)

Female gender % (n/total n) 39% (13/33) 47% (7/15) 33% (6/18)

Average age in 2021 in year (min-max) 20,12 (5–49) 19,7 (5–31) 20,4 (6–49)

Age interval of reported seizure onset 1 day – 3y and 7mo 2 days – 3y 1 day – 3y and 7mo

First seizure before the age of 2y, in % (n/total n) 70% (23/33) 87% (13/15) 56% (10/18)

Active epilepsy in 2021 97% (32/33) 93% (14/15) 100% (18/18)

ASM use in 2021 94% (31/33) 87% (13/15) 100% (18/18)

Average number of reported ASMs tried

(min-max)

6, 6 (1–15) 5, 6 (1–10) 7, 5 (2–15)

Ketogenic diet tried (n tried/total n) 24% (8/33) 20% (3/15) 28% (5/18)

Infantile spasms 15% (5/33) 13% (2/15) 17% (3/18)

Status epilepticus (n/total n) 15% (5/33) 13% (2/15) 17% (3/18)

EEG with hypsarrhythmia 12% (4/33) 7% (1/15) 17% (3/18)

Normal development prior to first seizure 51% (17/33) 47% (7/15) 56% (10/18)

ID any degree

ID mild-moderate degree

ID severe-profound degree

ID unspecified degree

Too young for testing

97% (32/33)

45% (15/33)

33% (13/33)

18% (6/33)

3% (1/33)

93% (14/15)

27% (4/15)

47% (7/15)

20% (3/15)

7% (1/15)

100% (18/18)

61% (11/18)

22% (4/18)

17% (3/18)

0% (0/18)

Behavioral disturbances 58% (19/33) 27% (4/15) 83% (15/18)

Language development delayed 82% (27/33) 87% (13/15) 78% (14/18)

No verbal language in 2021 36% (12/33) 47% (7/15) 28% (5/18)

Delayed motor development 84% (28/33) 93% (14/15) 78% (14/18)

Walking in 2021 (n/total n) 73% (24/33) 60% (9/15) 83% (15/18)

n, number; y, years; min, minimum; max, maximum; mo, month(s); ASM, antiseizure medicine; EEG, electro encephalography; ID, intellectual disability; NA, not applicable.

Diagnostic yield

Previous studies from university hospitals or specialized

epilepsy care centers report a diagnostic yield ranging from

18 to 53% (25, 26) in patients with DEE, and higher yield

correlates with early onset of disease (5, 26, 27). This fits well

with the high diagnostic yield of 45% in the present study

where all patients experienced the first seizure before the age of

four. Moreover, 13/15 (87%) of the patients receiving a genetic

diagnosis had seizure onset before their second year of life,

whereas this was the case for only 10/18 (55%) of the patients

with no genetic diagnosis.

Apart for implications regarding treatment and

prognosis, an exact genetic diagnosis also has impact on

aspects like dialogue with health care- and social services,

limiting economical and psychological costs associated

with ongoing diagnostic work-up, and granting access to

national and international support groups for patients and

care-givers (28, 29).

Genetic investigations of patients with neonatal and

early childhood onset seizures have changed dramatically

over the past decades (9, 30). The mean age at the time of

receiving a genetic diagnosis in our study was 14 years, and

many of the patients have gone through time-consuming

and costly investigations. Twenty years ago, if genetic

diagnostics were attempted at all, Sanger sequencing of

single-genes on demand was typically performed. Now,

advances in genetic sequencing techniques have enabled

the use of large gene panels making the diagnostic work-

up more affordable and available, giving rapid exact

genetic diagnosis for many patients, to a lower cost and

workload (25). There are now recommendations available for

investigation of DEEs both for children (3, 31, 32) and for

adults (33).

Treatable epilepsies

The most recent epilepsy classification of 2017 emphasizes

the importance of the underlying etiology of epilepsy (4).

Thirty seven percent of seizures in children aged three

years or less can be classified as DEE (14), but it is
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still difficult to clinically identify patients with a potentially

treatable disease (3, 10). Moreover, the group of patients

with DEE where etiology guides treatment and follow-up

is still small, and the effect of recommended treatment

varies (5, 10, 15, 16).

In the present study, three of the 33 included patients

(9%) had a genetic metabolic disease where targeted treatment

is available; Glucose transporter protein type 1 deficiency

syndrome (GLUT-1-DS) (SLC2A1-variant), Primary coenzyme

Q10-deficinecy syndrome (COQ4-variant), and X-linked

creatine transporter deficiency (CTD) (SLC6A8-variant). For

these diagnoses, specific treatment is available, including

ketogenic diet, co-enzyme Q10 supplements and carnitine

supplements. The patient with GLUT-1-DS was diagnosed

at the age of 26 years. Previous studies of GLUT-1-DS have

also demonstrated a diagnostic delay of more than ten years

(3, 34). Early initiation of treatment by means of ketogenic

diet is of great importance, as it improves neurocognitive

development and seizure outcome (34–37). Positive effects

of dietary treatment were experienced and observed also in

Patient three, even though treatment was started in adulthood.

These three patients, with potentially treatable diagnoses,

underlines the importance of reevaluation of patients with

DEE of unknown cause. The prognosis for each of them would

probably have been better if the diagnoses were found and

disease- specific treatment was given from early childhood.

The genetic field is evolving rapidly, continuous improvement

of genetic analyses, and the discovery of new disease-causing

genes lead to higher proportions of patients receiving a

genetic diagnosis, which may have direct implications for

treatment. Genetic testing in patients with DEE should be

liberal and repeated, not only in early childhood, but also

in adolescence and adults, particularly if seizure onset was

early (14, 33).

Disease burden and genetic diagnosis

Symonds and colleagues reported an association between

drug resistant epilepsy and global developmental delay with

a higher chance of genetic diagnosis (5, 14). In the present

study, developmental comorbidity was higher in the group

with a genetic diagnosis, compared to those who remained

undiagnosed. We found the level of drug resistance to be quite

similar in those receiving a genetic diagnosis and those who did

not (87 vs. 100 %). The group not receiving a genetic diagnosis

had a higher number of patients with behavioral disorders.

As the burden of developmental comorbidity was lighter in

this group, these patients would also be more accessible to

psychiatric testing, which might explain the higher count of

behavioral disorders.

Genetic variants

The 15 genetic variants in 12 genes identified in this study

were either identified through a gene panel approach (13/15),

or by whole-genome sequencing with Sanger sequencing for

variant validation (2/15). All 12 genes are previously associated

with epilepsy-related disorders. Although the clinical picture

of all included patients matched with a DEE, we found

disease-causing variants (SLC2A1, GRIN2B, SYNGAP1, COQ4,

PPP2R1A, SLC6A8 and PURA) that are more often reported

as being associated with other epilepsy-related conditions than

DEEs. In patients with variants in these genes, epileptic seizures

are part of the clinical picture, but usually not the main

symptom, which emphasize how difficult it is to classify the

patients in the clinical setting, mainly due to the heterogeneity

of both phenotype and genotype (30).

In a large proportion of genes (KCNQ2, SCN1A, STXBP1,

SCN8A, GRIN2B, SYNGAP1 and PPP2R1A), we found variants

were both genotype and phenotype is previously well-

described (38–45).

In the following sections, we describe in more detail the

patients who had novel variants or unusual phenotypes as an

elaboration of the information given in Tables 1, 2.

Patient 1, with a pathogenic CHD2-variant, c.1390A>T

(p.Arg464∗), had severe epilepsy in early age. At follow-up in our

study, however, seizures were rare, and his current phenotype

at twelve years includes delayed speech development, moderate

ID and behavioral disorders. Close-by variants, c.1387C>T

(p.Gln463Ther) and c.1399C>T (p.Arg466Ter), were both

reported to be pathogenic with a clinical phenotype of DEE

(46, 47). The novel CHD2-variant of our study seems to give

a milder phenotype, which may be categorized as a CHD2-

developmental encephalopathy, a subgroup of DEEs, according

to the most recent recommendations (12, 32).

A likely pathogenic STXBP1-variant, c.735T>G

(p.His245Gln), was identified in Patient 4. Two closely

located variants affecting the same codon, c.734A>G

(p.His245Arg) and c.732A>C (p.His245Pro), are previously

described in patients with epileptic encephalopathy (47–

49). The phenotype of the patient in the present study,

including drug-resistant epilepsy, profound ID and spastic

quadriplegia, is typical for patients with disease-causing

variants in this gene (40). Balagura et al. reported a correlation

between early seizure onset with poor neurodevelopmental

outcome in patients with STXBP1-variants, which is also

demonstrated by Patient 4, who experienced the first

seizure at one month of age and who now has profound

ID (50).

In Patient 5, a novel disease-causing missense variant of

SCN1A, c.4277T>C (p.Leu1426Pro), was identified. Another

variant in the same codon was previously described (47), but no

clinical reports exist. The phenotype of the patient in or study fits

well with previously described cases of Dravet syndrome (51).
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Patient 7 had a variant of the SCN1A gene, c.2681C>G

(p.Thr894Ser), reported as likely pathogenic, and was inherited

from the mother who was mosaic for the same variant. The

patient had neonatal onset of treatment refractory epilepsy

from day two of life. At inclusion, the patient still had severe

epilepsy with episodes of status epilepticus, profound ID, spastic

quadriplegia and hyperkinetic movements. We believe that the

phenotype of the patient fits within the severe end of the SCN1A-

related spectrum of DEEs, previously described as early infantile

SCN1A encephalopathy (52, 53).

In the SLC6A8-gene, there is a previously reported variant,

c.1196C>T (p. Ala399Val), of uncertain significance in the

same amino-acid position as the variant found in Patient

13, c.1196C>A (p.Ala399Asp) (47). Variants of this gene is

associated with an X-linked creatine transporter defect (54).

Patients typically present with intellectual disability, severe

speech delay, behavior disturbance, and epilepsy. The disease is

X-linked and is inherited in a recessive manner, and therefore

mainly affects men. Females can be affected due to skewed X-

inactivation, but they often present with a milder phenotype

(54). The variant identified in the female patient in our

study (Patient 13), c.1196C>A (p.Ala399Asp), was reported of

uncertain clinical significance, but was considered pathogenic

due to the localization and in silico analyses. Moreover,

clinical diagnostic workup, including MR-spectroscopy and

metabolic screening of blood and spinal fluid, supported this

diagnosis. The patient phenotype at the age of 22 was in

accordance with previous reports, except that she had also had

primary amenorrhea.The SLC6A8-gene codes for a sodium-

and chloride-dependent transporter carrying creatine across

the blood-brain-barrier. A reduced or lack of function of

this transporter is suspected to be the reason why dietary

supplementation of creatine and amino acids has shown limited

success to rescue creatine levels in the CNS, and furthermore

explains the limited efficiency to relieve symptoms (55, 56).

Patient 13 did not show any significant improvement in

symptoms after initiation of treatment. There are promising

ongoing studies on several new treatment strategies that may

change the future treatment for these patients, including nose-

to-brain delivery of medication, pharmacochaperones and gene

therapy (55, 56).

A novel variant of the PURA-gene, c.514C>T (p.Gln172∗),

was found in Patient 15 and was considered to be pathogenic.

The phenotype of the patient is according to previous

reports of PURA-related neurodevelopmental syndrome,

including neonatal hypotonia and feeding difficulties,

delayed psychomotor development, inability to speak

and no possibility of ambulation, malnutrition, lack

of puberty, as well as epileptic seizures (57, 58). In a

cohort of 142 patients with PURA syndrome, 60% had

drug-resistant epilepsy, and the most common epilepsy

syndrome reported was Lennox-Gastaut. Although many

different variants were detected in the PURA-gene,

the authors did not observe overt genotype-phenotype

associations (59).

Potential sources of bias

Our study cohort represents DEEs from a large and

representative group of patients in a regular regional

hospital, following a systematic screening of epilepsy

diagnoses. However, the sample size is relatively small

and lacks the power required to perform reliable

statistical analyses, thus our results must be interpreted

with caution.

When it comes to clinical information, it was

collected from medical records. Even though they

represent real-time information from the patients’

clinical visits at the hospital, no standard information

or validated questionnaire was used. Consequently, the

retrospective information was sometimes incomplete

or unclear.

A potential bias is that patients invited to the

study might be those with the highest disease burden,

who are more often in contact with the hospital.

Patients with a milder phenotype, especially in the age

group above 50 years, might have been missed in our

systematic search, due to lack of follow-up from the

specialist healthcare.

When estimating minimum occurrence of genetic epilepsy

in this study, a potential bias is that we might have

overestimated the number of patients with epilepsy in

our population. The reason for this is that the purpose

of the second search was to find more patients with

DEE, not to verify that all patients found in the search

actually fulfilled the criteria of an ICD-10 code of G40.0-9

or P90.

Future directions

DEE is an umbrella term, comprising disorders that one

by one are very rare, often with just a few case-reports

available. An important aspect is that the concept of DEE

is vaguely defined and the definition has changed repeatedly

(4, 11, 12, 32), making it difficult to compare studies and

patient groups. As the genotype-phenotype correlation may

be inconsistent, it can be challenging to translate available

information to the newly diagnosed patient (30). Current

available treatment is mainly symptomatic. As we gradually

gain deeper knowledge of the pathomechanisms underlying

these disorders, new hypotheses and access points for targeted

treatment are revealed. There is increasing interest for precision

medicine in the field of rare monogenic epilepsies, the goal

of which is not limited to seizure control, but targeting
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the underlying cause of developmental delay and other

comorbidities. There are already promising preclinical studies

on drug repurposing, new pharmacological drugs, and even

gene therapies ongoing, that give hope for the development

of personalized treatment for patients with DEE in the

future (10, 15, 60–62). In order to get there, the causes and

mechanisms of this heterogeneous group of disorders must be

carefully mapped.

Conclusion

This is a study of a large and representative group

of patients with epilepsy at a non-tertiary hospital.

Nearly half of the patients with DEE of an unknown

cause were diagnosed with a causative genetic etiology

by updated routine genetic testing, three of which were

potentially treatable.

All patients with refractory seizures, and especially those

with affected development, should undergo genetic testing.

If results are negative, they should be reevaluated regularly,

as new methods and findings develop continuously, and

the potential for discovering a potentially treatable condition

is increasing.
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