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Abstract

Pulmonary hypertension (PH) is characterized by severe exercise limitation mainly attributed to the impairment of right ventricular

function resulting from a concomitant elevation of pulmonary vascular resistance and pressure. The unquestioned cornerstone in

the management of patients with pulmonary arterial hypertension (PAH) is specific vasoactive medical therapy to improve pul-

monary hemodynamics and strengthen right ventricular function. Nevertheless, evidence for a beneficial effect of exercise training

(ET) on pulmonary hemodynamics and functional capacity in patients with PH has been growing during the past decade. Beneficial

effects of ET on regulating factors, inflammation, and metabolism have also been described. Small case-control studies and

randomized clinical trials in larger populations of patients with PH demonstrated substantial improvements in functional capacity

after ET. These findings were accompanied by several studies that suggested an effect of ETon inflammation, although a direct link

between this effect and the therapeutic benefit of ET in PH has not yet been demonstrated. On this background, the aim of the

present review is to describe current concepts regarding the effects of exercise on the pulmonary circulation and pathophysio-

logical limitations, as well as the clinical and mechanistic effects of exercise in patients with PH.
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Introduction

Pulmonary hypertension (PH) is characterized by an ele-
vated pulmonary arterial pressure (PAP) and an increased
pulmonary vascular resistance due to remodeling of the pul-
monary arteries.1 If left untreated, right ventricular (RV)
maladaptation and RV failure ensue as a consequence of
prolonged exposure to excessive afterload.2 Maladaptive
hypertrophy and/or dilatation represent central characteris-
tics of the pathophysiological RV response.2 Moreover, the
maladaptive process affecting the RV is described as a key
factor in determining the occurrence of relevant clinical

symptoms and overall survival.3 A further key characteristic
of PH pathobiology is chronic inflammation which has been
detected in the airways as well as the systemic circulation
and which contributes in particular to vascular remodeling.4
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For a long time, it was believed that exercise would crit-
ically enhance RV stress by substantially increasing RV
afterload, and it was assumed that this stress would result
in a worsening of RV failure rather than having beneficial
effects.5 As a central consequence, a limitation of physical
activity and exercise was recommended during the late 1990s
for patients with PH (Fig. 1).5 However, evidence is growing
for positive effects of exercise training (ET) on pulmonary
hemodynamics and exercise capacity. Anti-inflammatory
effects have also been observed, although these have not
yet been directly linked to the therapeutic benefit of ET in
PH, and the precise mechanism by which ET positively
influences RV function, the pulmonary vascular system,
and/or immunity in patients with PH is still unknown.6

The present review aims to summarize the current status
of ET in PH by describing current knowledge of RV and
exercise physiology and discussing the available data regard-
ing the effects of ET on the cardio-pulmonary and immune
systems with possible transition into the clinical setting.

The healthy pulmonary circulation
under exercise

Physiologically, the pulmonary circulation resembles a low-
resistance and high-compliance system.7 The response to
exercise of the crescent-shaped right ventricle differs dramat-
ically from the response of the left ventricle.7 During mod-
erate or extensive exercise, both the pulmonary and the
systemic circulation have to adapt to manage increased car-
diac outputs (CO), which can reach up to 35–40L/min
in trained athletes.8 Moreover, healthy individuals show

a slight (age dependent) rise in mean PAP and pulmonary
arterial wedge pressure during exercise.9,10 The healthy pul-
monary circulation has several mechanisms to compensate
for such a rise in CO, pressures, and RV afterload. Healthy
individuals show a slight reduction in pulmonary vascular
resistance to allow the increased CO to pass the pulmonary
vessels during exercise.11 Interestingly, the reduction in pul-
monary vascular resistance during exercise depends on body
position; in the supine position (which allows complete pul-
monary vascular recruitment), only a slight decrease in pul-
monary vascular resistance is observed.7 Various invasive
hemodynamic studies in healthy volunteers have shown
that mean PAP and CO increase in a specific physiological
relationship. It is widely accepted that the pressure/flow
relationship can be estimated with a linear model (despite
the distension of the pulmonary vessels resulting in a slight
curvilinearity).12 Therefore, during exercise, healthy individ-
uals show a mean PAP/CO slope of 0.5–3.0mmHg/L/min.
The flattened slope indicates that even during extensive exer-
cise with a concomitant rise in CO, only a moderate increase
in mean PAP is evident. The RV itself compensates for the
increased CO demand and the challenge of an elevated after-
load by increasing contractility, heart rate, diastolic func-
tion, and RV–arterial coupling.13 As a noteworthy
secondary effect, ET subsequently leads to an increase in
myocardial mass with concomitant RV hypertrophy and
dilatation.14 Within this framework, the ability of the
healthy RV to adapt to ET and to an extensively increased
afterload is an intensively discussed issue. Extensive exercise
in healthy individuals challenges the RV with a dispropor-
tionately high afterload and a greater increase in wall stress
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Fig. 1. Timeline of clinical evidence for exercise training in PH.

CTEPH,chronic thromboembolic pulmonary hypertension; PAH, pulmonary arterial hypertension; PH, pulmonary hypertension.
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compared with the left ventricle.14 The stress from extreme
and prolonged exercise is suspected to result in RV dysfunc-
tion with cardiac injury due to myocardial inflammation,
substrate deficiency, and oxidative stress.15 The occurrence
of ventricular arrhythmias in athletes has been associated
with mild structural and functional RV abnormalities.16

Whether moderate/normal ET also results in RV dysfunc-
tion or an increased risk of RV failure in healthy individuals
remains unknown.11

Exercise limitation in pulmonary
hypertension

Even in mild PH, numerous relevant pathological alter-
ations contribute substantially to exercise limitation. The
multifactorial pathophysiology of exercise limitation in PH
includes impairment of the circulatory, respiratory, and per-
ipheral muscle systems (Fig. 2).

Hemodynamic hallmarks

A key contributing factor to the pathogenesis of PH is the
reduced elasticity and patency of the pulmonary vascular
system, characterized by an imbalance of vasoconstrictive /
vasodilatory mediators and increased proliferation of cells
within the pulmonary arterial and capillary vessel walls
and extracellular matrix.17,18 These changes lead to an
increased RV afterload,19 and the initial adaptive response

of the right ventricle to maintain CO is a rapidly commen-
cing RV hypertrophy.20 Interestingly, this initial compen-
sated response is characterized by a concentric pattern of
hypertrophy, enhanced contractility, preserved ejection
fraction, and absence of biomarkers of cardiac dilata-
tion.20,21 In PH, this compensated status can deteriorate
into a maladaptive response characterized by an eccentric
pattern of RV hypertrophy, a decreasing contractility, RV
dilatation with markedly reduced ejection fraction, release
of biomarkers of cardiac dilatation, and a secondary
neuro-hormonal activation.20,21 The imbalance between
the RV oxygen demand (which is increased owing to the
increased RV myocardial mass) and the delivered oxygen
(which is insufficient owing to insufficient capillarization) is
considered to be the main cause of the associated right
heart failure.22,23 With the progression of the disease and
the aggravation of contractile dysfunction, diastolic dys-
function develops, resulting in a further increase of filling
pressures and leading to RV output failure.24 This, in turn,
leads to a depletion of left ventricular preload,25 which
combines with the increased RV pressure and the accom-
panying paradoxical leftward shift of the inter-ventricular
septum to lead to a compression of the left ventricle,26

resulting in a decreased left ventricular output and depleted
systemic oxygen supply at rest and during exercise.27,28

Moreover, exercise limitation in patients with pulmonary
arterial hypertension (PAH) is partly attributed to
impaired chronotropic competence29 (evident in

Exercise limitation in pulmonary hypertension

Pulmonary circulation

• Vascular dysfunction
• ↑ Right ventricular afterload
• Systolic and diastolic dysfunction
• ↓ Chronotropic competence
• Restriction in stroke volume
• Failure to increase cardiac output

Respiratory system

• ↑ Dead space ventilation
• ↑ Ventilation/perfusion mismatch
• Exercise-induced hypoxemia
• ↑ Ventilatory drive 
• Hyperventilation

Muscle

• Skeletal muscle dysfunction
• Respiratory muscle dysfunction
• Early anaerobic metabolism
• Deconditioning

Fig. 2. Major pathophysiological hallmarks of exercise limitation in patients with PH. Alterations within the pulmonary circulation, combined

with maladaptive responses of the right and partly the left ventricle, influence the respiratory and peripheral muscle systems as well as

contributing directly to exercise limitation. In addition, alterations within the respiratory system such as increased dead space ventilation and

ventilation/perfusion mismatch result in exercise-induced hypoxemia and thus exaggerate exercise limitation and the sensation of dyspnea.

Moreover, reduced peripheral and respiratory muscle strength might lead to excessive muscle fatigability, increased ventilatory drive, and

increased perception of effort.
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cardiopulmonary exercise testing [CPET] as a low oxygen
pulse [oxygen uptake (VO2)/heart rate])30 as well as a
restriction in stroke volume. This phenomenon is attribu-
ted to a downregulation of ß-adrenoreceptor activity in the
RV myocardial mass31 and is associated with disease sever-
ity.29,32 The combination of these two negative effects pre-
vents an adequate rise of CO and systemic blood pressure
during exercise. Animal models have shown that there is a
close relationship between RV and right atrial pressure and
the ventilatory response. Pressure-related stimulation of
mechanoreceptors in the right atrium and right ventricle
results in an aggravated sensation of dyspnea that increases
ventilation.33–35 Moreover, the right atrial pressure has a
strong negative association with exercise capacity36 and
correlates with survival in PH.37

Respiratory system

Further relevant mechanisms besides the hemodynamic
alterations contribute to exercise limitation in PH.
Patients suffering from moderate to severe PH show a
decrease in oxygen saturation during exercise.30 This
decrease has been associated with the impaired CO
response described above, which leads to insufficient
oxygen delivery to the peripheral tissue accompanied by
a compensatory rise in peripheral extraction.38 Impaired
diffusing capacity39 combined with ventilation/perfusion
mismatch40 also results in relevant hypoxemia during exer-
cise in patients with PH. Within this framework, reduction
of diffusing capacity for carbon monoxide is a common
finding in PH.39,41 The reduction is a result of impaired
pulmonary membrane diffusing capacity and, to some
degree, reduced pulmonary capillary blood flow.39,41

Ventilation-perfusion mismatch (indicated in CPET by an
elevated ventilatory equivalent for CO2 [VE/VCO2], steep
VE/VCO2-slope, and reduced end-tidal CO2 tension)42,43 is
caused by an obstruction of the small pulmonary vessels,
non-efficient ventilation, and hyperventilation.30 The reduc-
tion in ventilatory efficiency is partly attributed to impaired
blood flow and reduced pulmonary vascular perfusion,44

which lead to increased dead space ventilation;30,44 the ele-
vated VE/VCO2 is primarily attributed to increased dead
space ventilation and is influenced by alterations in venti-
latory response (e.g. hyperventilation).45 The exaggeration
of hypoxemia during exercise is associated with stimulation
of central and peripheral chemoreceptors, a pronounced
sensation of dyspnea, hyperventilation, and substantially
increased respiratory demand.45,46 The imbalance between
the increase in oxygen demand and the insufficient oxygen
supply within the skeletal muscle cells during exercise leads
to the early onset of anaerobic metabolism, resulting in a
low VO2/workload ratio in CPET (the VO2/workload ratio
may not show any alteration until the anaerobic threshold
is reached).45 These changes lead to stimulation of intra-
cellular and extracellular chemoreceptors and thus, via the
so-called ergoreflex, increase ventilation.47,48

Muscle dysfunction

During the past decade, numerous studies have focused on
the impact of muscle dysfunction within the complex patho-
physiology of exercise limitation in patients with PH. In this
context skeletal and respiratory muscle dysfunction have
been reported mostly in patients with PAH.49–53 It is
assumed that reduced peripheral and respiratory muscle
strength might contribute to exercise limitation in patients
with PAH by causing excessive muscle fatigability, increased
ventilatory drive, and increased perception of effort.45,54,55

Moreover, muscle dysfunction might be associated with
early anaerobic metabolism which could exaggerate early
peripheral muscle fatigue and make a substantial contribu-
tion to exercise limitation.56

It is believed that the muscle dysfunction is caused by
reductions in the proportion of type I muscle fibers, capil-
lary to fiber ratio, and aerobic enzyme activity, impaired
mitochondrial biogenesis/increased muscle protein degrad-
ation mediated by the ubiquitin–proteasome system, and
altered excitation–contraction coupling.51,53,57–59 The
origin of these multifactorial causes is still under investiga-
tion. Systemic inflammation has been suggested to contrib-
ute to muscle dysfunction, because pro-inflammatory
cytokines have detrimental effects on striated muscle, dama-
ging the function of contractile proteins and stimulating
their proteolysis. However, contributory roles have also
been proposed for peripheral endothelial dysfunction,
impaired anabolic signaling, chronic hypoxemia, and
abnormalities of mitochondrial function. The precise mech-
anism by which skeletal muscle dysfunction interacts with
circulatory, inflammatory, and neuronal pathways involved
in the exercise pathophysiology of PAH remains
unknown.60

Emerging concepts in hemodynamic measurement at rest
and under exercise in pulmonary hypertension

A recent study by Spruijt et al. showed that patients with PH
(in contrast to non-PH controls) were unable to increase
their ventricular elastance (Ees) during exercise.61 Ees is
considered to be the gold standard for the assessment of
load-independent myocardial contractility.62 RV afterload
can be evaluated via the measurement of pulmonary arterial
elastance (Ea) and calculation of the Ees/Ea ratio reflects
RV–arterial coupling.62 In patients with PH, only limited
data exist regarding the response to exercise of Ees, Ea,
and Ees/Ea derived from pressure–volume curves.63 This is
because of the complexity of direct measurement of
these parameters: the maximum end systolic pressure from
pressure–volume curves is combined with the maximum
isovolumic pressure obtained by the so called single-
beat-method.62,64,65 Although simplified formulas exist to
calculate Ees without pressure–volume curves, for example
from cardiac magnetic resonance imaging (MRI),66,67 accur-
ate and reliable assessment of Ees requires conductance
catheter technology.68
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Analogous to the findings of Spruijt et al.,61 Hsu et al.
observed a blunted response of Ees to exercise in patients
with PAH associated with systemic sclerosis indicating an
impaired contractility.63 Ea increased significantly during
exercise while RV–arterial coupling decreased in PAH asso-
ciated with systemic sclerosis.63 However, Hsu et al. also
showed a contradictory Ees and RV–arterial coupling
response in patients with idiopathic PAH.63 It has to be
noted that in PH the rest-to-exercise response in load-
independent measures of RV contractility and RV–arterial
coupling has only been studied in small cohorts (the studies
from Spruijt et al.61 and Hsu et al.63 each included only 24
participants). However, the given preliminary data indicate
that the impaired rest-to-exercise response in Ees, the
increase in Ea, and the deterioration in RV–arterial coupling
are important contributors to exercise limitation in PH
beyond the increased pressure and resistance of the pulmon-
ary circulation. Fig. 3 shows a conductance pressure–
volume loop measurement at rest and during exercise in a
patient with PH due to congenital heart disease. The
observed right shift of the averaged pressure–volume loops
indicates a concomitant increase in RV volumes and pres-
sures. Nevertheless, the derived single-beat measurement of
Ees in our patient indicated an increase in contractility and
thus RV–arterial coupling during exercise.

Role of inflammation in the pathogenesis of
pulmonary hypertension

There is increasing evidence that inflammation plays a key
role in PH pathobiology.69 For example, pathologic speci-
mens from patients with PAH show an accumulation of
perivascular inflammatory cells such as macrophages,

dendritic cells, T and B lymphocytes, and mast cells;70 inter-
estingly, pulmonary arteries from patients with idiopathic
PAH show tertiary (ectopic) lymphoid tissues often adjacent
to areas of vascular remodeling.71 In addition to the local
inflammation, systemic circulating levels of certain cytokines
and chemokines are elevated, and these correlate partly with
a poor clinical outcome.70,72 Furthermore, certain inflam-
matory conditions such as connective tissue diseases are
associated with an increased incidence of PAH. Although
to date there is a lack of data showing a precise causal or
mechanistic relationship between inflammation and PAH
pathology,70 the emerging focus on inflammation provides
a new perspective in understanding (and potentially treat-
ing) PAH.73

Despite the lack of mechanistic data, the role of specific
cytokines in the initiation and progression of PAH has
been intensively discussed.74 In particular, levels of inflam-
matory proteins such as tumor necrosis factor (TNF)-a,
interleukin (IL)-6, and IL-10 have been found to be slightly
but chronically increased in patients with PAH.75 Some of
these cytokines have been shown to modulate vascular
function or represent risk factors for cardiovascular
diseases.

One of these cytokines is the C-reactive protein (CRP)
which is known to be associated with systemic arterial
hypertension. It was shown that this acute phase protein
modulates endothelial cell function by reducing endothelial
nitric oxide synthase expression and bioactivity,76 and by
increasing endothelin-1 release.77 While some studies have
found associations between increases in PAP and CRP levels
in patients with chronic obstructive pulmonary disease
(COPD),4 a direct causal relationship between CRP and
PH pathogenesis has not yet been demonstrated.
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Fig. 3. Pressure–volume loops from a patient with PH due to congenital heart disease at rest (a) and during maximal exercise (b). The observed right

shift of the averaged pressure–volume loops indicates a concomitant increase in RV volumes and pressures. The derived single-beat measurement of

Ees in our patient indicated an increase in contractility and thus RV–arterial coupling during exercise. Placement of the conductance catheter and

calibration of the RV volume by cardiac MRI were done as reported previously.63,65 Approximately 10 pressure–volume loops were averaged.
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IL-6 has a potential role in severe primary PH and PH
associated with connective tissue diseases. Hypoxia induces
upregulation of hypoxia-inducible factor 1a which is fol-
lowed by an increase in IL-6 expression.78 Overexpression
of IL-6 induces PAH and vascular remodeling in rodents
and further augments hypoxia-driven PH. There are several
indications that IL-6 modulates smooth muscle and endo-
thelial cell function leading to vascular remodeling.79,80 On a
molecular level, overexpression of IL-6 induces vascular
endothelial growth factor resulting in increased prolifer-
ation. In parallel, IL-6 upregulates Bcl proteins, the inhibi-
tors of apoptosis, leading to a decrease in apoptotic cell
death.79

TNF-a is a proinflammatory cytokine with potent mod-
ulatory effects on the pulmonary circulation. In murine stu-
dies, TNF-a was shown to potentiate pulmonary
vasoconstriction and increase pulmonary vascular reactiv-
ity. In transgenic mice overexpressing TNF-a, severe PH
developed.81 In contrast, TNF receptor-deficient mice were
protected against PH. It is suggested that TNF-a signaling
in PAH is related to the increased production of reactive
oxygen species (ROS). ROS are suggested to play direct
and indirect roles in vascular remodeling. NADPH oxidases
are important internal sources of ROS and TNF-a is known
to be an important regulator of NADPH oxidases in vascu-
lar cells. Therefore, it is assumed that increased levels of
TNF-a induce ROS production by NADPH oxidases.82,83

However, human studies of the potential direct link between
TNF-a and the pulmonary circulation have yielded incon-
sistent results, which emphasizes the need for further mech-
anistic studies.

Therapeutic effects of exercise

Clinical effects of exercise training and physical
activity on PH

It is widely accepted that regular physical activity, among
other lifestyle factors, protects against a series of chronic
diseases and disorders.84 Consequently, various inter-
national health associations and institutes such as the
American College of Sports Medicine, the American Heart
Association, and the World Health Organization have pub-
lished exercise and physical activity recommendations for
adults and older people.85,86

In 2009, the Joint Task Force for the Diagnosis and
Treatment of PH included physical activity in their therapy
guidelines for the first time as a ‘‘general measure.’’ An
active lifestyle within symptom limits was recommended
while excessive physical activity that might induce distress-
ing symptoms was to be avoided.87 These recommendations
were based on the findings of Mereles et al. who were the
first to demonstrate that ET is a promising intervention as
an adjunct to medical therapy. They found an improvement
in exercise and functional capacity (as shown by the out-
come parameters 6-minute walking distance [6MWD] and

peak VO2) as well as in quality of life (derived from the
Short Form Health Survey quality-of-life questionnaire) in
patients with PH after a supervised ET program compared
with a control group of patients who did not undergo ET.88

The ET was multimodal, consisting of interval training on
bicycle ergometers (corresponding to 60–80% of the max-
imum heart rate for 10–25min per day) for seven days per
week combined with 60min of walking outside, 30min of
dumbbell training, and 30min of respiratory training for
five days per week each. Notably, although the study
included patients with severe PH, no adverse effects or com-
plications were reported.88 Since 2006, a series of further
randomized controlled trials and uncontrolled studies with
different types of ET have been performed (Table 1). Some
of these have been considered in the 2015 update of the Joint
Task Force PH guidelines, which reported that supervised
ET should be considered in physically deconditioned
patients under medical therapy (class IIa recommendation
[weight of evidence/opinion is in favor of usefulness/efficacy]
with level of evidence B [data derived from a single rando-
mized clinical trial or large non-randomized studies]).1

Nevertheless, due to the small number of primary studies
and some limitations, the 2015 guidelines lack information
about the type of exercise therapy in terms of exercise
modality (e.g. endurance or resistance training), frequency,
duration, and intensity. Furthermore, the authors stated
that the characteristics of supervision, mechanisms of
action, and possible effects on prognosis remain to be
shown.1

Since the development of the 2015 PH guidelines, further
interventional studies addressing the effects of exercise train-
ing have been published and the outcomes of these and pre-
vious studies have been analyzed in several systematic
reviews.104–107 One main conclusion was that improvements
in 6MWD varied with different exercise modalities, favoring
a combination of aerobic resistance and respiratory muscle
training.105 Further evidence comes from two systematic
reviews with meta-analyses which included controlled inter-
ventional studies published up to 2013106 and prospective
interventional studies published up to 2015.107 The meta-
analyses demonstrated that ET led to a significant increase
in 6MWD with a mean improvement of 72m versus controls
and 53m versus baseline, respectively, accompanied by
slight increases in peak VO2 (2.2mL/kg/min versus controls
and 1.8mL/kg/min versus baseline, respectively).106,107 The
highest mean increase in peak VO2/kg was demonstrated in
a recent study by Ehlken et al. (3.1mL/min/kg vs baseline);6

overall, published data suggest that patients with severe PH
who undergo ET increase their peak VO2/kg by about 15–
25%. In addition, Ehlken et al. observed substantial
improvements in pulmonary hemodynamics for the first
time in a prospective randomized study.6

It has been suggested that the lower improvements of
endurance capacity observed in some studies are due to
lower intensities and lower frequencies of ET. Since exer-
cise-related improvements of peak VO2 depend on several
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factors such as lung diffusion, stroke volume, blood volume,
and oxygen supply to the skeletal muscle, some studies have
focused on changes in muscle structure after training. In this
regard, Mainguy et al. found that improvement in 6MWD
following ET was associated with a decrease in the propor-
tion of type IIx fibers in patients with idiopathic PAH, indi-
cating a shift of muscle fibers to a more oxidative
phenotype.90

As RV afterload is increased in patients with PH, it has
been discussed if exercise-induced increases in pulmonary
artery pressures could exceed the RV contractile reserve in
these patients. However, all evidence to date indicates that
negative effects of exercise on the right ventricle are transient
and that function normalizes within days. It is further
known that regular ET in healthy individuals promotes
healthy physiological remodeling of the heart, as long as
the exercise is not too strenuous and prolonged.11

Therefore, more studies are needed to investigate whether
an acute bout of exercise or regular ET may have a negative
or positive impact on RV function in patients with PH. On
this background, a recent meta-analysis by Pandey et al.
demonstrated a slight reduction in resting pulmonary arter-
ial systolic pressure of �3.7mmHg and an increase in peak
exercise heart rate of 10 bpm after ET.107 Overall, it was
reported that exercise was tolerated well with low dropout
rates and no serious adverse events related to ET.105-107

Effects of exercise on inflammation

Several studies have demonstrated that both acute and
chronic ET affect systemic and local inflammation,108,109

and data from a recent study have shown for the first time
that a single bout of exercise may induce an immune
response in patients with idiopathic PAH.73 Up to now, a
direct connection between the anti-inflammatory effects of
exercise and the therapeutic benefits of exercise in PAH has
not been shown. However, our experimental data provide
some support for this therapeutic link, showing that regular
exercise training downregulates phosphodiesterase-5 in
lungs from mice with hypoxia-induced PH.110

In general, data derived from other studies focusing on
cardiovascular, metabolic, or pulmonary diseases have
shown that regular physical activity lowers the levels of vari-
ous proinflammatory cytokines. More precisely, several lon-
gitudinal studies of the immunologic effects of ET
demonstrated that regular ET resulted in a reduction of sys-
temic CRP and TNF-a levels in patients with chronic low
grade inflammation.111 Systemic CRP levels in the US gen-
eral population were found to be significantly lower among
physically active individuals when compared with their inac-
tive peers,112 and a recent meta-analysis of interventional
studies demonstrated that ET is associated with a decrease
in CRP levels regardless of the age or sex of the individ-
ual.113 Regarding TNF-a, it was shown that exercise inhibits
the endotoxin-induced increase in circulating levels of TNF-
a in healthy individuals.114 A major mechanism suggested to

underlie this phenomenon is the release of myokines, which
are cytokines with mainly anti-inflammatory properties
released by muscular tissue. In this regard, it was shown
that contracting muscle releases IL-6 as a response to glu-
cose depletion during exercise. Although IL-6 has negative
effects during chronic disease states, the exercise-induced
periodic release of IL-6 is followed by the appearance in
blood of IL-1RA (which inhibits the pro-inflammatory
actions of IL-1�) and IL-10 (which downregulates the adap-
tive immune response). It was also demonstrated that IL-6
exerts inhibitory effects on TNF-a and IL-1
production.115,116

Another exercise-related mechanism that might affect
inflammatory status during disease is the release of adrenal
hormones. Exercise is known to activate the hypothalamic–
pituitary–adrenal axis and the sympathetic nervous system,
which is followed by increased secretion of cortisol, epineph-
rine, and norepinephrine. Cortisol is known to elicit potent
anti-inflammatory effects. Catecholamines have been shown
to downregulate the lipopolysaccharide-induced production
of cytokines such as TNF and IL-1�. Therefore, it is
assumed that both hormones and myokines contribute to
the anti-inflammatory effect of exercise (Fig. 4).117

However, it remains to be shown in future experimental
studies if ET exerts its therapeutic effect in PAH via a reduc-
tion of proinflammatory cytokines.

Anti-oxidative effects of exercise

Given the involvement of ROS in inflammation and vascu-
lar remodeling, the relationship between exercise and oxida-
tive stress must also be discussed. During acute exercise,
increased amounts of free radicals are generated, which
are known to modulate muscle contraction, antioxidant pro-
tection, and oxidative damage repair. Furthermore, exer-
cise-induced ROS formation is suggested to mediate
upregulation of antioxidant molecules, as reflected by
increased glutathione reductase or superoxide dismutase
levels in response to regular ET. These effects are currently
explained by the hormesis theory, in which an agent that is
detrimental at high doses can induce an adaptive beneficial
effect in the cells or the organism at low doses.118,119

Therefore, it is concluded that exercise training seems to
induce an antioxidant effect. On this background, it can
be suggested that patients who exercise regularly benefit
due to an improved balance of their redox status.
However, the direct benefit patients with PAH gain from
the exercise-induced changes in redox status is still unclear.

Perspectives and future directions

Since 2006 it has been repeatedly demonstrated that an exer-
cise program is safe and effective in improving exercise and
functional capacity as well as quality of life in patients with
PH. Indeed, there is still a need for further investigations to
titrate the most effective exercise variables in this patient
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group. For example, it would be interesting to evaluate the
value of eccentric strength training, which induces a lower
drive to breathe during high workloads than concentric
training and might therefore be more feasible for patients
with PAH. Similarly, recent studies demonstrated that high-
intensity interval training (using an intensity calculated rela-
tive to patients’ exercise capacity) could also be successfully
used for exercise therapy.11,120 However, no data are avail-
able to demonstrate if this also applies to patients
with PAH.

Many interventional studies have investigated individual,
home-based exercise rehabilitation programs. For most
chronic diseases, it was shown that group-based and super-
vised exercise programs are more effective than home-based
training. On this background, we suggest that the regular

participation of patients with PAH in specific ambulatory
training groups might be a favorable therapeutic approach.
Programs like this are supervised by a professional instruc-
tor and offer – beyond targeting the main symptoms – psy-
chosocial and educational support.

With respect to the current clinical data, it can be suggested
that the guidelines should be adapted to more precise sports
therapy recommendations (Table 2). Based on these, it can be
proposed that training programs should include endurance
exercise, strength training, and respiratory muscle training.
Furthermore, it has been shown that everyday physical activ-
ity measured by activity monitors positively correlates with
6MWD as well as quality of life in patients with PH.121

However, to the best of our knowledge, no study has reported
the significance of increasing the level of habitual physical
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Fig. 4. Proposed role of systemic inflammatory effects in the pathobiology of PAH and the hypothetical potential of exercise to counteract

vascular remodeling. PAH is induced by various pathological mechanisms, with inflammatory and autoimmune processes contributing to the

increased proliferation and decreased apoptosis of pulmonary vascular smooth muscle cells (vascular remodeling). Increased NADPH oxidase

activity increases oxidative stress and induces inflammatory pathways via expression of TNF-a, which in turn stimulates NADPH oxidase.

Increased CRP levels decrease eNOS activity, leading to pulmonary vasoconstriction. Exercise affects inflammation and redox status, and could

thus potentially counteract vascular remodeling, though this proposed mechanistic link remains to be demonstrated in experimental studies. In

particular, exercise training decreases CRP levels and increases eNOS activity, which could lead to improved vascular compliance. It further

stimulates anti-oxidative enzyme activity and inhibits NADPH oxidase activity, leading to an overall reduction of ROS. Finally, exercise stimulates

the release of myokines such as IL-6 from the contracting muscle followed by an increase of IL-10 and IL-1RA, which exert anti-inflammatory

effects.

CRP, C-reactive protein; eNOS, endothelial nitric oxide synthase; HIF, hypoxia-inducible factor; IL, interleukin; MCP, monocyte chemoattractant

protein; NK cells, natural killer cells; PAH, pulmonary arterial hypertension; ROS, reactive oxygen species; TNF, tumor necrosis factor.
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activity in terms of morbidity/mortality outcomes in PH,
though this has been shown for cardiovascular diseases122

and COPD.123 On this background, we hypothesize that a
specific treatment which aims to increase activity of daily
living in patients with PAH might be a suitable approach to
increase the patients’ functional status and quality of life.

Summary

In conclusion, ET is emerging as a promising additional ther-
apy option for patients with PH. Besides the impact of ET on
functional capacity and pulmonary hemodynamics, recent
studies have suggested that ET has anti-inflammatory effects,
although it is not yet known if these effects contribute to the
therapeutic benefits of ET in PH. Despite the emerging evi-
dence from various controlled trials, the actual mechanistic
link between ET and improvements of major pathophysio-
logical PH features remains unknown. Whether ET directly
influences RVmaladaptation or improves pulmonary arterial
remodeling has to be investigated in the future.
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