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Parkinson’s disease (PD) is a complex, multisystem, progressive, degenerative disorder

characterized by severe, debilitating motor dysfunction, cognitive impairments, and

mood disorders. Although preclinical research has traditionally focused on the motor

deficits resulting from the loss of nigrostriatal dopaminergic neurons, up to two thirds

of PD patients present separate and distinct behavioral changes. Loss of basal

forebrain cholinergic neurons occurs as early as the loss of dopaminergic cells and

contributes to the cognitive decline in PD. In addition, attentional deficits can limit posture

control and movement efficacy caused by dopaminergic cell loss. Complicating the

picture further is intracellular α-synuclein accumulation beginning in the enteric nervous

system and diffusing to the substantia nigra through the dorsal motor neurons of the

vagus nerve. It seems that α-synuclein’s role is that of mediating dopamine synthesis,

storage, and release, and its function has not been completely understood. Treating

a complex, multistage network disorder, such as PD, likely requires a multipronged

approach. Here, we describe a few approaches that could be used alone or perhaps

in combination to achieve a greater mosaic of behavioral benefit. These include (1)

using encapsulated, genetically modified cells as delivery vehicles for administering

neuroprotective trophic factors, such as GDNF, in a direct and sustained means to the

brain; (2) immunotherapeutic interventions, such as vaccination or the use of monoclonal

antibodies against aggregated, pathological α-synuclein; (3) the continuous infusion of

levodopa-carbidopa through an intestinal gel pad to attenuate the loss of dopaminergic

function and manage the motor and non-motor complications in PD patients; and (4)

specific rehabilitation treatment programs for drug-refractory motor complications.
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INTRODUCTION

Mammalian brain activities, from executive and motor functioning to memory and
emotional responses, are strictly regulated by the integrity of subcortical projections. Among
the subcortical structures, the dopaminergic nigrostriatal pathway and the cholinergic
innervations from the basal forebrain play pivotal roles in orchestrating motor and cognitive
performance under normal circumstances and in degenerative neurological diseases (1, 2).
Research using animal models of Parkinson’s disease (PD) has typically focused on the
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motor deficits resulting from extensive loss of nigrostriatal
dopaminergic neurons and on the modeling and treatment of
levodopa-induced dyskinesia (3–7). However, up to two thirds
of PD patients suffer from a range of non-motor symptoms,
including cognitive impairments and mood disorders. Loss of
basal forebrain cholinergic neurons occurs as early as the loss
of midbrain dopaminergic neurons and likely contributes to the
cognitive deficits in PD (8, 9). PD patients also suffer from a
propensity for falls, freezing of gait, and associated impairments
in posture control and movement efficacy (10) that are not
treatable with L-DOPA. These patients have a greater reduction
of cortical cholinergic activity relative to PD non-fallers and
control subjects (8, 11). Preclinical studies confirm that dual loss
in cholinergic and striatal dopamine afferents disrupts posture
control and movement efficacy in conditions requiring attention
control (12).

In addition to these subcortical changes, increasing evidence
suggests that PD pathology can arise in the gut. Clinically,
gastrointestinal symptoms often appear in patients before other
neurological signs and aggregates of α-synuclein (α-syn) have
been found in the enteric nerves of PD patients. The mechanisms
through which the disease spreads remain unclear, but it is
believed to start in the gut and then move retrogradely to the
brain via the vagal nerve or begin in the vagal dorsal motor
nucleus and move to the gut in an anterograde way (13–15).

Finally, clinical evaluations found rehabilitation strategies,
such as a promising non-drug-based approach able to influence
the progression of PD lasting long after the program break,
therefore suggesting the involvement of the anatomical substrate
accompanying the disease (16, 17).

These findings further strain the urge to explore the plastic
changes occurring at multiple levels, including cortical and
subcortical areas, spinal cord, nerve trucks, and muscles.
Understanding the contribution of central and peripheral
anatomical rearrangements to the symptoms and recovery could
lead to the development of rehabilitation strategies able to
counteract the maladaptive changes induced by the disease,
ultimately improving patients’ quality of life (Figure 1).

STRIATAL MICROCIRCUIT ALTERATIONS
AND BEHAVIORAL OUTCOMES

The hallmark of PD is the degeneration of dopaminergic
neurons in the substantia nigra pars compacta (SNpc) and
subsequent reduction of striatal projections. The striatum is
a primary nucleus of the basal ganglia involved in motor
control, goal-directed action, habit learning, and reward-related
processes (18–20). It consists of projection neurons with
medium spiny neurons (MSNs) representing 90–95% of the
local interneuron population (INs). Among them, cholinergic
interneurons (ChINs) represent only 1–2% of the population
but play a crucial role in sensory integration and movement
control. The lessening of dopaminergic striatal innervation leads
to a reduction in inhibition of the tonically active ChINs,
significantly altering the local microcircuit and contributing to
the major motor symptoms of PD. ChINs express both D1 and

D2 dopaminergic receptors. Activation of D1 receptors induces
glutamate co-release and facilitates acetylcholine (ACh) activity
(21, 22) while D2 receptor stimulation decreases ChIN activity
by sodium current modulation (23, 24). In a reciprocal role, ACh
powerfully modulates DA release from terminals originating in
the SNpc via nicotinic ACh receptors (nAChRs) on DA axons
(25–28). The activation of muscarinic ACh receptors M2 and
M4 that are expressed on somatodendritic and axonal sites
exert a more complex action on DA release and related motor
and reward-related behaviors (29, 30). Although ChINs have
traditionally been considered the principle source of striatal
cholinergic innervation (31, 32), additional inputs arising from
the peduncolo pontine nucleus (PPN) and laterodorsal tegmental
nucleus (LDT) have also been identified (33). Although low in
numbers, these ChINs play important roles in controlling motor
behavior, and prior to the use of L-DOPA, anticholinergic drugs
were used to control motor symptoms (34). Of note, Lozovaya
et al. (35, 36) report that a subpopulation of striatal ChINs also
co-release GABA. Decreased dopaminergic innervation appears
to lead to the failure of the GABAergic function in these dual
cholinergic/GABAergic cells augmenting the circuits’ cholinergic
excitatory component.

Post-mortem human brain histology demonstrates that, when
the motor symptoms of PD manifest, ∼70% of the SNpc
DA cells have degenerated (37) together with a marked loss
of choline acetyltransferase (ChAT) expressing neurons in the
nucleus basalis of Meynert and penduncolopontine nucleus
(PPT) and reduced cortical and striatal cholinergic activity (38).
Accordingly, a dual-syndrome hypothesis has emerged in which
dopaminergic denervation leads to executive/motor function
impairments while cholinergic decline underlies learning and
attentional goal-driven deficits and poor performance on
cognitive neuropsychological tasks (39, 40). Imbalances in striatal
activity of these neurotransmitters may impair the normal
induction of synaptic plasticity, altering the processing of
routine daily experiences and leading to a plethora of cognitive
impairments (41). These observations suggest that, rather than
having opposite roles, a cooperative, functional interaction
occurs between ACh and DA, and therapies targeting both
systems may be effective (42, 43).

THE GUT–BRAIN CONNECTION

The accumulation of intracellular α-syn is among the major
pathological changes associated with neuronal degeneration
in PD, including those in the SN and cholinergic cells of
the dorsal motor nucleus of the vagus (DMV). α-syn is a
140 amino acid protein that, when misfolded, has the ability
to spread from cell to cell in a prion-like manner, leading
to an accumulation of α-syn aggregates and formation of
oligomers that can progress to fibrils and eventually Lewy bodies.
Intracellular accumulation of α-syn likely mediates changes in
dopamine synthesis, storage, and release in both the central
and enteric nervous systems [C-ENS (44)]. Research into the
role of α-syn in PD suggests that several early stage, non-
motor symptoms of PD may not originate in the SN. α-syn
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FIGURE 1 | Synopsis of the impairments and therapeutic approaches that constitute the landmarks for the treatment of network dysfunction in Parkinson’s disease.

aggregations evolve in nerve cells of the ENS (13, 14, 45, 46).
Shortly thereafter, α-syn deposition seems to involve the anterior
olfactory nucleus and the dorsal motor nucleus of the vagal
nerve [medulla oblongata (47–51)]. This deposition progresses
to affect additional nuclei of the brainstem, the mid and
forebrain, and eventually cortical regions. Anatomical studies
have identified lesions in the ENS in both non-symptomatic and
clinically diagnosed and neuropathologically confirmed cases
(45, 52), making the exact role of gut pathology on brain DA
denervation unclear. Improvements in techniques that reliably
discriminate misfolded, aggregated α-syn from physiological
α-syn help clarify the role of this marker for prodromal
PD (53).

Brain–gut connectivity and interplay is actually quite
deep-rooted in medical history. In 1850, Sydney Whiting
(54) in his Memoirs of a Stomach wrote, “. . . and between
myself and that individual Mr. Brain, there was established a
double set of electrical wires, by which means I could, with the
greatest ease and rapidity, tell him all the occurrences of the
day as they arrived, and he also could impart to me his own

feelings and impressions.” More recently, Kaelberer et al. (55)
report that enteroendocrine cells synapse with the vagus and
rapidly transduce gut stimulus signals through glutamatergic
neurotrasmission. Moreover, catecholamines modulate GI
motility by controlling ACh release from motor neurons (56)
while the number of DA-positive cells in the meyenteric plexus
of patients has been reported to be more than 10 times smaller
than in control subjects (57).

THERAPEUTIC STRATEGIES FOR THE
TREATMENT OF PD

Pharmacotherapy with L-DOPA remains a mainstay treatment
for PD even though its effectiveness wanes with time. Its
use is logically based on the observations of dopaminergic
cell loss in patients, but our developing understanding of the
multicomponent circuits in PD suggests that multiple treatment
avenues might lead to more optimal and longer-lasting efficacy.
Some of these avenues are discussed below.
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Neurotrophic Factor Therapy
Delivering trophic factors, such as glial cell line–derived
neurotrophic factor (GDNF) to the brain is a potential treatment
for PD (58). Although not definitive yet, GDNF may slow or
perhaps even reverse the loss of dopaminergic function in PD
patients (59, 60). Preclinically, the benefits of GDNF are clear
as it prevents the loss of nigral neurons and abnormal motor
function that occurs following 6-hydroxydopamine (6-OHDA)
lesions in rats (61, 62) and MPTP-lesioned monkeys (63, 64).
Direct delivery to the brain is needed for GDNF to be effective,
and several approaches are underway to achieve this goal. We
have focused on one approach based on implanting GDNF-
secreting cells, housed in an immunoprotective membrane, into
the brain (65). This approach achieves the goals of selective
and long-term delivery to the nigrostriatal system, providing
a targeted, continuous, de novo synthesized source of high
levels of GDNF (66–72). For instance, we recently reported
sustained, stable, and selective delivery of high levels of GDNF
to the rat striatum implanted with human clonal ARPE-19 cells
encapsulated into hollow fiber membranes. Long-term efficacy
was evidenced by robust neuroprotection of dopaminergic
neurons in the SN and fibers in the striatum in 6-OHDA
lesioned rats. In the longest duration studies, GDNF implants
produced a significant improvement in motor performance that
persisted for over 1 year [62 weeks (73)]. Similarly, impressive
distribution of GDNF and positive effects on dopaminergic
function were observed when larger, clinical-sized devices were
implanted for 3 months into the putamen of Göttingen minipigs.
Implantation of GDNF-secreting devices resulted in distribution
of GDNF throughout the putamen and caudate that robustly
upregulated the expression of tyrosine hydroxylase staining in the
regions covered by GDNF diffusion (73, 74). Such an approach
may be applicable long term to directly deliver therapeutic
molecules, such as GDNF, to the striatum in an attempt to rescue
dopaminergic neurons that are otherwise destined to die. GDNF
provides substantial anatomical and functional benefits of the
nigrostriatal pathway in both rodents and primates, but there is
discrepancy in the neuroprotective effects of GDNF in the α-syn
models of PD likely related to poor brain penetration or limited
distribution within the brain parenchyma (75).

A member of the same neurotrophic factor family as GDNF
(76), Neurturin (NTN) has also demonstrated promoting the
survival of dopaminergic neurons. The first time an NTN
expression construct was tested in an animal model of PD via
a lentiviral in vivo gene transfer approach was published in
2005 (77). In this study the authors found that NTN enhanced
function and protected dopamine neurons similar to GDNF.
Similar findings were reported when an adeno-associated virus
type 2 (AAV2) encoding human NTN was administered to
aged or MPTP-treated monkeys (78). Although NTN delivery
by viral gene transfer provides long-term expression and
widespread distribution in the target region of the bioactive
protein with a single procedure, benefits have not been observed
in double-blind trials in PD patients (79, 80). Quantitative
immunohistochemical analyses of post-mortem brain sections
of patients enrolled in the studies and survived from 1.5
months to 8 and 10 years post-surgery revealed a mild but

persistent effect of NTN on nigrostriatal neurons, which seem
to modestly amplify over time. Unfortunately, the localized
responses were less thanwhat had been assessed in animalmodels
and likely were too weak to induce any clinical improvements
(81, 82).

Immunotherapies Directed Against
Pathological α-Syn
Immunotherapies were first conceptualized more than 300
years ago (83) and are being used in clinical applications to
significantly improve human health and longevity. In the case
of degenerative diseases, the use of monoclonal antibodies or
vaccination is a means of treating proteopathies across multiple
neural populations (84, 85). In transgenic mice, monoclonal
α-syn-specific antibodies increased the degradation of neural
and glia accumulation of α-syn, reduced synaptic loss, slowed
neurodegeneration, and improved behavioral deficits. At an
intracellular level, immunization promotes the clearance of α-syn
via the lysosomal pathway (78, 86), whereas in the extracellular
space, immunization against α-syn aidsmicroglia in the clearance
of the toxic protein, thereby reducing cell-to-cell transmission
and local inflammatory response (87, 88). In the PD field, several
passive immunization therapies are in preclinical development
(89–91), and several others have reached various phases of
clinical evaluation (92). One drawback of passive approaches is
the necessity for repeated, hospital-based intravenous infusions.

Active immunotherapies elicit a self-produced immune
response in the host organism and have the potential advantage of
providing long-lasting clearance of the target protein. Recently,
Affiris, an Austrian company, completed a Phase I trial with two
anti-α-syn vaccines PD01A and PD03A. Although the results
from the latter have not yet been published, they have reported
about the use of PD01A, which was designed to induce antibodies
that selectively target aggregated α-syn with much lower affinity
for monomeric forms. Eighty-seven percent of patients (21 out
of 24) received all six immunizations across 259 weeks. Over
5 years of follow-up, the authors found that the vaccine was
safe and well-tolerated and induced humoral immune responses
against pathological α-syn. The Phase I clinical trial of the PD01A
vaccine was based on a set of preclinical studies using two
different transgenic mouse models (93), and although the study
was not powered to assess efficacy, patients treated with PD01A
showed stabilized clinical scores compared to a placebo group.
The results from this study led to the design and initiation of a
Phase II clinical trial (94). Though promising, the most critical
drawback for α-syn immunotherapy is the lack of a reliable
marker of disease-related proteopathy, and therefore, it becomes
difficult to monitor disease progression and establish potential
target engagement for anti-α-syn.

Levodopa–Carbidopa Intestinal Gel
Therapy
Administration of oral levodopa–carbidopa is still the most
effective drug for PD. However, advanced stage and long-
term oral administration leads to disabling motor fluctuations
(3, 95) due to pulsatile dopamine release and erratic gastric
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emptying (96). To overcome these side effects, the European
Medicines Agency (May 2011, EU/3/01/035) and the U.S. FDA
(2015) approved levodopa–carbidopa intestinal gel (LCIG) for
the treatment of advanced idiopathic PD with severe motor
fluctuation in patients unresponsive to oral treatment. LCIG is
a fluidic carboxymethylcellulose gel suspension containing four
parts of L-DOPA to one part carbidopa monohydrate (same
as oral formulations) administered into the duodenum through
a percutaneous endoscopic gastrostomy tube and portable
infusion pump [PEG (97–99)]. Delivery of L-DOPA via infusion
achieves more stable plasma levels relative to oral treatment.
As a consequence, striatal dopaminergic neurons are stimulated
in a sustained manner that reduces the occurrence of “off”
periods while increasing the “on” time without dyskinesia.
Although there are few large-scale evaluations of the long-
term efficacy and safety of LCIG (87, 90, 91), this treatment
may have specific benefits on freezing of gait and global
axial signs (100–104). Improvements have also been observed
on non-motor symptoms, such as sleep/fatigue, urinary and
sexual functions, gastrointestinal motility, and cognitive and
affective comorbidities (105, 106). Adverse events occur more
frequently during the early stages of implantation, but these
appear to be related to the surgical procedure and stoma
inflammation (107). The contribution of dopaminergic as
well as noradrenergic, glutamatergic, and GABAergic pathways
provide insights into the intricacy of the PD phenomenology
and the development of novel disease-modifying approaches
in addition to dopamine-replacing therapies. Nevertheless,
evidence-based and experimental therapeutics continues to
expand providing cautious optimism for the treatment of patients
with PD (108, 109).

Motor Abnormalities and Physical Activity
Nondrug-based approaches are emerging with the potential
to improve cognitive and motor impairments and slow the
progression of PD (110–112). The pre-Socratic philosophical
belief mens sana in corpore sano or “healthy mind in a
healthy body” has developed into a vibrant field exploring
the possibilities that physical activity might improve cognitive
functions as a consequence of hippocampal neurogenesis (113),
brain angiogenesis (114), and augmented neurotrophic factors
(115). In rodent models, exposure to treadmill or wheel running
improves balance, and motor velocity through activity-induced
hippocampal upregulation of BDNF (116), or striatal increased
dopaminergic neurotransmission (117).

According to the Movement Disorder Society-PD (MDS-
PD), the clinical diagnosis of PD focuses on a defined motor
syndrome (Parkinsonism) based on bradykinesia, rigidity, and
resting tremor. In addition to these symptoms, patients often
report posture impairments. Postural abnormalities (PA) belong
to the motor axial component in which posture may be affected
in its orientation, such as stooped posture, camptocormia, and
Pisa syndrome or in its balance component, which implies loss
of postural reflex (118, 119). These disabling, drug-refractory
motor complications of PD lead to imbalance, fall-related
injuries, and generalized pain, ultimately reducing quality of
life and increasing hospitalization. PA are poorly improved

by L-DOPA, which implies that it is unlikely related to the
nigrostriatal dopaminergic denervation. However, Schlenstedt
and collaborators (120, 121) found that total, upper, and
lateral bending were significantly improved when combined
medications and deep brain stimulation (DBS) in the subtalamic
nucleus were administered.

Factors related to PA associated with PD suggest two
mutually non-exclusive pathophysiological pathways involving
central (dystonia, rigidity, proprioceptive disintegration) and
peripheral (myopathy and soft tissue changes) mechanisms
varying between patients and disease progression (122, 123).
Although rehabilitation is fundamental in the management of
PD, the current approaches only partially improve postural
complications. As motor and non-motor components are
involved in the neural control of PA, three main elements are
fundamental for effective rehabilitation: active self-correction
techniques, stabilization exercises, and functional tasks. Based on
this, Tinazzi and collaborators (16, 17, 118) have found that a
4-week trunk-specific rehabilitation program improved passive
and active control of the trunk and was maintained at 1-month
post-treatment. The benefits of training were evident even when
PA were assessed through the Unified Parkinson Disease Rating
Scale–motor subscale (122, 124).

CONCLUSION

The results from preclinical models and clinical research reveal
the importance of investing in innovative therapies for the
treatment of PD and other neurological and degenerative
diseases. Targeted, continuous, and sustained delivery of drugs
at the level of the C/ENS are efficacious, safe, and promising
though each still requires improvements to reach a more stable
and predictable titration of the delivered drugs. Although the
understanding of the beneficial effects of physical activity and
general activities that are stimulating for the CNS and motor
system is limited, evidence suggests a bidirectional interaction
where brain functionality orchestrates the periphery and is
deeply modulated by external inputs. A refined understanding
of the complexity of normal and dysfunctional networks
in PD should lead to improved multifaceted and more
optimal treatments.
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