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Abstract

Metabolic processes in biological cells are commonly either characterized at the level of individual enzymes and metabolites
or at the network level. Often these two paradigms are considered as mutually exclusive because concepts from neither side
are suited to describe the complete range of scales. Additionally, when modeling metabolic or regulatory cellular systems,
often a large fraction of the required kinetic parameters are unknown. This even applies to such simple and extensively
studied systems like the photosynthetic apparatus of purple bacteria. Using the chromatophore vesicles of Rhodobacter
sphaeroides as a model system, we show that a consistent kinetic model emerges when fitting the dynamics of a molecular
stochastic simulation to a set of time dependent experiments even though about two thirds of the kinetic parameters in this
system are not known from experiment. Those kinetic parameters that were previously known all came out in the expected
range. The simulation model was built from independent protein units composed of elementary reactions processing single
metabolites. This pools-and-proteins approach naturally compiles the wealth of available molecular biological data into a
systemic model and can easily be extended to describe other systems by adding new protein or nucleic acid types. The
automated parameter optimization, performed with an evolutionary algorithm, reveals the sensitivity of the model to the
value of each parameter and the relative importances of the experiments used. Such an analysis identifies the crucial system
parameters and guides the setup of new experiments that would add most knowledge for a systemic understanding of
cellular compartments. The successful combination of the molecular model and the systemic parametrization presented
here on the example of the simple machinery for bacterial photosynthesis shows that it is actually possible to combine
molecular and systemic modeling. This framework can now straightforwardly be applied to other currently less well
characterized but biologically more relevant systems.
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Introduction

Modern computational systems biology aims at an overall

description of the components, interactions, regulatory circuits,

and metabolic fluxes in biological cells [1,2]. The central challenge

for such a systemic description is to set up a consistent network for

the complete system [3]. To facilitate the generation of such large-

scale models a number of databases have been set up which

compile metabolic, regulatory, and genetic informations (e.g.

KEGG, EcoCyc, Sabio-RK). At the other end of the spectrum are

the molecular modeling approaches used in the fields of

biochemistry and molecular biology which aim at understanding

the functional details of individual proteins down to the atomistic

level. Between these two paradigms there is a significant gap in

scales which cannot easily be bridged from either side. Neither the

existing network approaches nor the molecular modeling tech-

niques can be applied to the full range of time and length scales

from individual molecules to a complete compartment. Thus,

there is a clear need for novel computational methods that have a

resolution at the molecular level and propagate the system

dynamics at the time scale of the biochemical reactions.

Here, we show that this gap between molecular and systems

biology can be successfully bridged by combining our previously

presented pools-and-proteins approach [4] with a systemic top-

down parametrization of the set of individual kinetic and

biophysical parameters against a set of time-dependent experi-

mental data that probe the behavior of the full system. On the one

hand, this allows for making full use of the vast amount of detailed

biological knowledge about the molecular processes in and at the

individual proteins for the setup of the computational model. On

the other hand, the systemic treatment of the complete model

enables a direct comparison between the, normally, macroscopic

experiments and the behavior of the completely assembled system.

In this stochastic model, a protein is an encapsulated object that

undergoes individual microscopic reactions like the binding of a

metabolite to its binding site, an electron transfer from a donor

group to the active site, or the release of the product molecule back

into the bulk. All these one-molecule-at-a-time reactions are

modeled as stochastic events. At the next level, individual proteins

are connected to metabolite pools. A metabolic model conse-

quently consists of multiple independent copies of each type of

protein and one pool per metabolite. Thus, the network is

established without explicitly specifying pathways. All the details of

the inner workings of the proteins are encapsulated locally so that

the overall complexity remains at a manageable level. Due to the

encapsulation the different protein types can even be modeled at
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different levels of internal details and individual proteins can be

replaced by updated versions to incorporate new findings or

amend shortcomings of the current model.

To demonstrate the power of such a bottom-up modeling

approach combined with a systemic parameter determination, we

used the simple and well understood photosynthetic apparatus of

the purple bacterium Rhodobacter (Rb.) sphaeroides and compared the

dynamic behavior of a molecular-stochastic model to a set of time-

dependent experiments. The selected experiments were taken

from a project which investigated the role of the PufX protein in

cyclic electron transfer. They were conducted in the group of

Oesterhelt and published in two consecutive papers [5,6]. The

versatile Rb. sphaeroides, which can live on respiration, fermenta-

tion, or photosynthesis, is one of the best studied bacteria [7,8]. Its

photosynthetic apparatus is located in the inner membrane of the

bacteria and on so called chromatophore vesicles. The photosyn-

thetic apparatus consists of four integral membrane proteins, the

light-harvesting complexes (LHC) LH1 and LH2, the photosyn-

thetic reaction center (RC), the proton pumping cytochrome bc1

complex, and the FO-F1-ATP synthase (ATPase). It also contains

the two electron carriers cytochrome c2 and ubiquinone (Q). The

chromatophore vesicles have an average diameter of 45 to 60 nm

only [9] so that the total number of membrane proteins per vesicle

is less than a hundred, most of which are the simple LHCs [10,11].

All relevant reactions take place inside the vesicle, which yields

well defined boundary conditions for a numerical simulation of

manageable complexity. Although these vesicles may also contain

a few copies of the cytochrome c oxidase from the respiratory

chain, experimental studies of the photosynthetic apparatus

typically poison these proteins by adding potassium cyanide, so

that there is no interference with this competing metabolic

pathway [5]. Also, most of the other proteins embedded in the

inner membrane of bacteria might be found in the membrane of a

chromatophore vesicle, too. However, as photosynthesis works

well in the absence and in the presence of these proteins, we did

not consider them explicitly in our model. During photosynthesis,

light energy is converted into chemical energy, which is then used

to power the metabolism of the bacteria. The processes of this

conversion are sketched in figure 1. First, photons are absorbed by

the bacteriochlorophylls of the LHCs. Their energy is used in the

RCs to translocate an electron from the special pair bacteriochlo-

rophylls (P) to a quinone bound to the RC at the Qb site. The

charge of the electron on the Q is compensated by a proton taken

up from the cytoplasm. Loaded with two such electron-proton

pairs, the resulting quinol (QH2) unbinds and diffuses inside the

membrane to the cytochrome bc1 complex. There, the protons are

released into the vesicle interior and the energy of the two

electrons is used in the so called Q-cycle [12] to pump another two

protons into the vesicle. The resulting proton gradient, which leads

to a transmembrane potential gradient DW, is finally used by the

ATPase to produce ATP from ADP and inorganic phosphate.

Although bacterial photosynthesis is usually considered well

understood, the available descriptions are rather qualitative

representations similar to figure 1, whereas a quantitative

computer simulation requires ‘‘hard’’ numbers for protein copy

numbers and rate constants. Also, spatial configurations which put

constraints on the kinetics have to be identified and their effect has

to be quantified. As a first step we previously set up a steady state

model of a chromatophore, for which we determined the

stoichiometries of the membrane proteins and of the electron

carriers cytochrome c2 and ubiquinone by using experimentally

determined stoichiometries and spatial constraints such as the

surface area of the vesicle [10,13]. We found that a typical

chromatophore vesicle from Rb. sphaeroides of 45 nm diameter

contains about ten dimeric core complexes of two RCs and a Z-

shaped LH1 each [10,11,14]. Most of the remaining surface area

is occupied by the auxiliary LH2 with about six LH2 per core

complex. All-atom molecular dynamics simulations of LHCs and

core complexes in membranes support the hypothesis that the bent

core complexes induce the formation of the chromatophore

vesicles [15,16]. Dynamic experiments showed that each vesicle

contains on average a single ATPase [9]. Interestingly, the number

of cytochrome bc1 complexes could only be determined by us with

a rather large uncertainty. Many other kinetic parameters were left

unconstrained, too, by this steady state reconstruction. A systems

biological steady state reconstruction based on elementary modes

was recently presented by Klamt et al [17].

As light serves as the central in-flux ‘‘metabolite’’, the

photosynthetic apparatus can be probed very easily in a wide

range of kinetic regimes. These range from the picosecond time-

scale for electronic excitations in the LHCs and RCs probed by

single flash experiments over association and dissociation reactions

on the millisecond range up to quasi steady state conditions under

constant illumination. We previously presented a first model how

the encapsulated objects representing the individual proteins are

built up from their microscopic reactions [4]. In the following

section we shortly summarize the implementation and explain how

the cytochrome bc1 complex was extended from its original

implementation in order to include more biological detail required

to extract quantities that were measured in the experiments. The

main focus of this publication is placed on the systemic

parametrization of the underlying molecular stochastic model.

Figure 1. Network Representation of Bacterial Photosynthesis. The system consists of multiple copies of the proteins (rectangles) and one
pool per metabolite (rounded rectangles). The thick arrows denote the flow of the energy through the system, i.e., its conversion from light energy
via the intermediate forms of electron-proton pairs on the QH2 or as protons pumped into the vesicle into chemical energy stored on the ATP
molecules. The grey area indicates the membrane with the cytoplasm above and the inside of the vesicle below.
doi:10.1371/journal.pone.0014070.g001
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By fitting against experiments covering all these time regimes [5,6]

we were able in this work to identify those reactions which are

important for the dynamic behavior of the photosynthetic

apparatus and to determine their rate constants. Interestingly,

the experiments used as basis measured only four different

observables. However, due to the wealth of information contained

in the different time series even those reactions that are ‘‘far away’’

in the network from the measured quantities could be parame-

trized. Consequently, the simple and well understood photosyn-

thetic apparatus of Rb. sphaeroides turned out to be an ideal system

to develop and test our approach, which now allows to

straightforwardly bridge between the molecular and the systemic

realms of computational biology for other systems of more current

interest, too.

However, the model of the bacterial photosynthesic apparatus

presented here is far from complete. It is focussed on the metabolic

processes taking place on the millisecond to second timescales,

whereas any regulatory adaptations to slowly changing environ-

mental conditions are omitted. On the other hand, the very fast

multi-step exciton and electron dynamics in the LHCs are

described by a few low-detail effective reactions in the current

iteration of the model. This simplified picture was sufficient

because these processes were not resolved in the experiments.

These two examples show that the model of bacterial photosyn-

thesis as presented here serves well as a versatile scaffold or

template that can be used to collect knowledge about the

individual proteins and about how they interact to reproduce

the rich spectrum of experimental observations. It nevertheless

proofs that this concept can be used to bridge between the two

currently not so well connected fields of molecular and systems

biology.

Results and Discussion

In this work we report on how we connected a molecular model

of a biological system to its systemic treatment to bridge between

these two fields. This two-sided approach is reflected in the

following section, too, where we first explain the molecular

modeling aspects required for the stochastic simulations, which

serve as the starting point from the one side of the gap, and then

how we performed the optimization by treating the complete

model as one entity. Each of the tasks could be performed

independently but by combining them we are able to connect the

molecular and the systemic sides by exploiting the respective

strenghts of both approaches. After the model setup we show how

different numbers of cytochrome bc1 complexes affect the non-

equilibrium dynamics of the chromatophore vesicles. This initial

analysis is then followed by the main part of this work, the

stochastic dynamics simulations combined with an evolutionary

parameter optimization of the full vesicles.

The Chromatophore Model
Molecular Stochastic Simulations. The stochastic

simulations of the chromatophore vesicles from Rhodobacter

sphaeroides presented in this work were performed with a refined

version of the model introduced in [4]. In the spirit of a bottom-up

approach, the model vesicle contains multiple, independent copies

of all protein types. Each protein copy is assembled from

elementary microscopic reactions such as the transfer of a single

electron, the binding of a metabolite molecule to a binding site of

the protein, or the translocation of individual protons. By nature,

each of these single-molecule reactions has to be simulated

stochastically. In contrast to other approaches based on

stoichiometric matrices (flux balance analysis [18], extreme

pathways [19], elementary mode analysis [20]), or on

propagating dynamic rate equations (for an introduction see

[21]) which consider one reaction per protein type regardless of

how many copies of the proteins are present, our model vesicle

consists of as many independent copies of each of the proteins as

are located in a real chromatophore vesicle. Consequently, our

model also differs from the stochastic Gillespie approach for well

stirred chemical systems [22] where the events in different copies

of a protein are coupled to each other.

In our model, the proteins are connected to each other via

metabolite pools which are well-mixed subvolumes of the

simulated system. Hereby, different charge or oxidation states of

the same biological molecule are treated as different metabolites.

For example, the oxidized and reduced forms of cytochrome c2 are

two distinct species. As the chromatophore vesicles are so small

that the diffusive transport through the vesicle is much faster than

the respective times for association and dissociation [13], a single

compartment per metabolite is sufficient in the vesicle interior or

in the membrane. Due to this distinction between the active

proteins and the passive metabolite pools, we termed this

simulation scheme the ‘‘pools-and-proteins’’ approach [4].

The initial conditions of a simulation are set via the numbers of

metabolites in the pools. In a dark-adapted vesicle all cytochrome

c2 are reduced. Consequently, all c2s will be in the pool

representing the reduced cytochrome c2 while the pool of oxidized

c2 is empty. At the same time, about 90% of the quinones will be in

the QH2 pool. Before the actual experiments were simulated by

‘‘exposing’’ the model vesicle to the respective illumination

profiles, the simulations were ‘‘thermalized’’ for 20 to 100

milliseconds in the dark.

The state vector of the simulation is propagated by looping over

all individual reactions of the individual proteins and checking

whether the conditions that allow a certain reaction to take place

are fulfilled. A binding reaction, e.g., may only take place if the

binding site is empty, and an electron transfer can only occur

when the donor is reduced and the acceptor oxidized. If the

conditions are fulfilled, the probability that the reaction takes place

during the next time step of size Dt is determined. The probability

Pon for an association reaction at a certain binding site of an

individual protein during Dt depends on the concentration r of the

metabolite in the pool and the association rate kon as

Pon~Dt kon r

For dissociation or internal charge transfer reactions, which are

independent of the metabolite concentrations, a survival time toff is

determined following Gillespie [22] from the rate koff and an

exponentially distributed random number r:

toff ~r=koff

Based on toff a timer is initialized which then initiates the actual

dissociation event. Note that such a waiting time algorithm cannot

be used for the density dependent associations without extensive

bookkeeping, because the metabolite concentrations may change

after the timer was initialized due to other reactions that produce

or consume the same metabolites.

In our approach none of the microscopic reactions was

implemented as reversible. Explicitly reversible processes such as

the association/dissociation of a metabolite or the back-and-forth

hinge motion of the Rieske domain of the cytochrome bc1 complex

were modeled as two independent elementary reactions each with

their own conditions and their own rate constants. For the regimes
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considered here thermodynamically driven reverse reactions can

be neglected.

As a consequence of our implementation from individual

microscopic reactions we do not have to deal with the

combinatorial explosion of the number of states which appears

in traditional rate-equation approaches from treating all possible

combinations of charge and oxidation states of the multiple sites in

the proteins. A simple protein unit such as the reaction center can

be modeled with two external binding sites for cytochrome c2 and

quinone, two sites for electrons residing on the special pair and the

Qb quinone, respectively, and one ‘‘counter’’ for the number of

electron-proton pairs on the Qb. With zero, one, or two electron

proton pairs on the Qb and the other four sites either empty or

occupied, a single RC alone can already be in 48 different states.

In a traditional state-based model all these 48 states have to be

included, in principle, and updated simultaneously for a complete

description of the state vector of a single RC. With more protein

types and more complex models, the number of possible states will

grow exponentially. For traditional approaches, rule based setup

tools have been developed to help with this tedious and error-

prone setup of, for example, receptor phosphorylation in signaling

cascades [23,24]. In our model, however, there is no need to

explicitly enumerate or even to define these states—we only have

to check the occupancies of a few nearby sites to determine

whether a given reaction may occur during the next time step.

Even though our approach is not optimized for numerical

efficiency, the fast dynamics of a complete vesicle during a flash

experiment can be simulated close to realtime at a time resolution

of Dt = 1 microsecond on a current desktop computer. This is fast

enough to perform even an extensive multi-parameter optimiza-

tion on a small cluster of workstations. The largest optimizations

performed in this study took about ten days on 40 CPUs. This,

however, is still much less time than what it took to compile the

data, set up the simulation model, or to analyze the results.

Modeling the Cytochrome bc1 Complex. In our first

model, most of the internal reactions of the cytochrome bc1

complex were lumped together into two reactions [4]. To be able

to describe experimentally accessible data such as the oxidation

state of the c1 domain, the current version now explicitly models

the different pathways of the two electrons away from the QH2

docked into the Qo site, see figure 2. For the first electron, we

included the heme of the c1 domain and the hinge motion of the

Rieske iron-sulphur domain (FeS) between the b and the c1

domains (positions FeSb and FeSc1 in figure 2, connected by the

reactions R2). For the second electron, we added the hemes bL and

bH on its way from Qo (indicated by the binding site bsQo in

figure 2) to Qi (bsQi). Also, the proton release into the vesicle is

now coupled to the gating motion of the FeS domain (reaction D2)

[25]. The rates for this proton release [26] and for the electron

transfer between bH and bL, which are the major charge transfer

steps against the transmembrane potential (reactions D2 and R6 in

figure 2), are modeled to decrease exponentially with increasing

transmembrane potential DW. We used the same scaling for both

reactions. In the current model, the kinetics of the bc1 complex are

thus modeled by four association and four dissociation reactions

connected to external metabolite pools (A1 to A4 and D1 to D4,

respectively, in figure 2), by seven internal electron and proton

transfer reactions (R1 to R7), and by the two quinone (quinol)

exchange reactions between the Qi and the Qo sites of the two

dimer halves (R8 and R9). This set of reactions reproduces the Q-

cycle proposed by Crofts [12].

Further details and the implementation of the other proteins,

i.e., of the LHC, the RC, and the ATPase are given in [4]. These

proteins are also not modelled with all known details. The design

criterion was to incorporate all reactions that are required to

reproduce the available experimental data. Thus, when new

experiments performed under different conditions or on different

timescales would be added to the current set, the protein models

most probably would have to be updated, too.

The Transmembrane Potential DW. The second

modification of our earlier model [4] addresses the calculation of

the transmembrane potential across the vesicle membrane.

Previously, only the Nernst relation had been used, which relates

the transmembrane potential DWchem to a proton concentration

(or pH) difference across the membrane [27]:

DWchem~DW0 DpH with DW0~59 mV

Figure 2. Reactions Used to Model the Dimeric Cytochrome bc1 Complex. Shown are only the reactions for the left half of the dimer (bc1.1).
For the right half (bc1.2), only those reactions are given which are related to the left half of the dimer. In the simulation, the same set of reactions is
considered for bc1.2 as for bc1.1. The rounded rectangles denote the metabolite pools. Association and dissociation reactions are indicated by black
arrows, while the internal reactions are represented by dark grey arrows.
doi:10.1371/journal.pone.0014070.g002
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The standard value of the conversion factor DW0 was derived from

a thermodynamic analysis at a planar wall separating two infinitely

large half spaces [28]. However, such a configuration hardly

applies to a finite-sized spherical vesicle. Moreover, the inner

volume of a chromatophore vesicle is so small that one cannot

assume a continuous, macroscopic density. In fact, a situation with

pH = 7 in a typical chromatophore vesicle of 45 nm outer

diameter corresponds to one twentieth of a free proton inside

the vesicle. In this volume, a single free proton already creates a

pH = 4.1 and four protons would be enough for a typical

transmembrane potential of DWchem = 200 mV. To make as few

assumptions as possible about the driving force of a proton

gradient in this small vesicle, we treated DW0 as a freely adjustable

conversion factor that relates the concentration of free protons

inside the vesicle to a contribution DWchem to DW. DW0 was then

tuned in the optimization such that the kinetic response of DW
matched the experiments as well as possible.

In real biological vesicles, however, the lipids of the membrane

and the solvent exposed protein surfaces contain a large number of

titratable groups. These allow for averaged fractional proton

numbers in the vesicle, eliminating the unrealistic discretization

steps in the pH difference due to the very small number of free

protons. To account for such titratable groups inside the vesicle, a

special pseudo-protein was included in the simulations which has

Np proton binding sites with a given pK value. Each of these Np

proton binding sites is protonated with a probability

P~
1

1z10pH{pK

As a conservative estimate, we placed one titratable residue on

each of the transmembrane proteins, which yields Np = 80 for our

model chromatophore. Assuming, for example, a pK = 4.5, which

is close to the pK = 3.8 value of aspartic and glutamic acid residues

which are often found on solvent exposed protein surfaces, 76

protons are then required to generate DWchem = 200 mV. Only

four of these 76 protons will be free in solution whereas the other

72 are bound to the titratable groups. In the optimization (see

below), pK was varied to check for its effect. Tests showed that for

Np.80 the dynamic behavior of the vesicle did not change

anymore. Also, as will be shown below, for increasing Np the

importance of DWchem actually decreases relative to the electric

contribution DWcap which accounts for the charges of the protons

themselves.

This second contribution to DW arises not only from the charges

of the protons inside the vesicle but also from those bound to the

titratable residues and from the charges displaced perpendicular to

the membrane in the proteins. Similar to DWchem this contribution

was calculated from the total number of charges Nq and a freely

adjustable conversion factor DU0 for the transmembrane potential

created by a single charge.

DWcap~DU0 Nq

In this capacitor model DU0 describes the (yet to be determined)

effective inverse capacitance of the complete vesicle without any

assumptions about its form or dielectric properties. For compar-

ison, Feniouk et al. used the specific capacitance per area of

1 mF cm22 of a planar membrane to estimate the electrical

capacity of a typical vesicle as 561022 fF [29]. With this

capacitance we would get DU0 = 3.2 mV/e and the 76 H+

estimated above for DWchem = 200 mV lead to an additional

DWcap<240 mV.

Based on observed relaxation times, Feniouk et al. concluded

that the chemical proton buffering capacitance is about 3.5 times

larger, i.e., less important for DW than the electric contribution. A

slightly smaller ratio between DWcap and DWchem was reported by

Klamt et al., who found that two thirds of the protonmotive force

are due to the charges and one third stems from the proton density

gradient [17]. Both these observations are consistent with our

findings that DWcap is much more important for the chromato-

phore kinetics than DWchem (see below). Here we did not attempt

to fix the conversion factors DW0 and DU0 from a physical model

but tried to find values for them that allowed reproducing the time

dependent experiments in the best way. Only then can we

interpret the obtained results in thermodynamic terms.

Due to their different physical origins, the two terms

contributing to DW scale differently with an increasing number

of protons in the vesicle. While the chemical contribution DWchem

increases logarithmically with the number of free protons, DWcap

grows linearly with the total number of charges. Consequently, for

a few protons in the vesicle, DWchem is the main contribution, while

for larger numbers of protons or charges displaced in the activated

proteins, DWcap dominates and the accurate description of DWchem

becomes less important. For the bacterial ATPase, it does not

matter whether the proton driving force is generated via DWcap or

via DWchem [30]. In contrast, for electron or proton transfer

processes perpendicular to the membrane in the proteins, only the

electric field resulting from DWcap matters. With the numbers

estimated above, we can consequently expect that for metaboli-

cally relevant values of the total transmembrane potential

DW=DWchem+DWcap<200 mV, where the ATPase already runs

at full speed, the dynamic response of the photosynthetic chain is

mainly determined by DWcap.

Parameter Optimization
The optimization of the rate constants was started from a set of

rates compiled from experimentally determined reaction rates and

estimates from the steady state reconstruction [13]. For those

reactions where no direct information was available, we used

estimates based on similar reactions in other types of proteins or

sometimes even an ‘‘educated guess’’. We found that this approach

works very well for the purpose of initializing the search. This

especially applies to combined reactions which describe a sequence

of reaction steps taking place in the real protein. One example is

the exciton induced electron transfer through the RC, which

consists of three consecutive steps with each step being about one

order of magnitude slower than the previous one [31].

Experiments and Parameters selected for the Optimiza-

tion. To determine the unknown kinetic parameters, we ran

molecular stochastic simulations according to seven time

dependent measurements on the photosynthetic apparatus of Rb.

sphaeroides reported by Barz et al. [5,6]. Those experiments

investigated the role of the protein PufX and covered a wide

range of time-scales from fast single-flash experiments over multi-

flash scenarios to quasi steady state conditions. Because PufX

lacking mutants of Rb. sphaeroides are not photosynthetically

competent, the bacteria were grown semiaerobically and then

incubated anaerobically in the dark before the actual experiments

started. Some experiments were performed on dark adapted

vesicles which had been extracted from cells disrupted in a French

press. For all simulations, both of the whole cell and of the vesicle

scenarios, we used the same standard vesicle of 45 nm outer

diameter with ten dimeric core complexes composed of one LHC

and two RCs, ten bc1 dimers, and one ATPase. The model vesicle

also contained as carriers 200 quinones and 20 cytochrome c2 as

well as 80 titratable residues. All scenarios were started from a

Molecular Systemic Modeling
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dark adapted initial state. Consequently, the cytochrome c2 pool

was initially completely reduced and only 15 of the 200 quinones

were oxidized. To get reproducible statistics, the single- and multi-

flash simulations were repeated 40 times for every parameter set

and their outputs were averaged before running the analysis.

We now shortly describe the selected experiments and point out

how special features of the scenarios were implemented in the

simulations. The letters A or B are used to denote whether the

experiment was reported in [5] or [6], together with the respective

figure number and an additional label indicating the measured

quantity. For the parameter optimization we used the data from

the PufX containing mutant which closely resembles the wildtype.

The chromatophores are so small that the diffusion of the

cytochrome c throughout the vesicle interior and of the quinones

across the complete membrane area are much faster than the

respective binding and unbinding rates [13]. Therefore, any

spatial arrangement of the proteins can be safely ignored here.

A7_DW and A7_cytc: Figure 7 of [5] reports the spectroscop-

ically determined electric component of the transmembrane

voltage and the cytochrome c oxidation state after one single-

turnover flash in dark-adapted anaerobic bacteria. The purpose of

this experiment was to show that PufX is not an integral part of the

electron transport chain as even without PufX cyclic electron

transport can occur. Consequently, the experimental results were

basically the same for wild-type and mutant strains. The

experiment was performed on anaerobically incubated dark

adapted cells, which we modelled by a single dark adapted vesicle.

In the simulation, the cytochrome c oxidation was determined as

the total number of oxidized c2 and of oxidized c1 domains of the

bc1 and rescaled for comparison with the arbitrary units of the

experimental data. The electric part of the transmembrane

potential was measured via absorption difference spectra of the

carotenoids of the LH2 [7]. The strength of the signal depends on

the number of the LH2, which may be different in the various

strains. The experimental data were therefore normalized to the

fast first step induced by the charge transfer in the RCs and thus

provides absolute values for the timing and relative values for

DWcap and the cytochrome c oxidation state. In the simulation also

the chemical part of DW was included. The flash was simulated by

a light intensity of 1500 W/m2 for 0.1 milliseconds, which is fast

and strong enough to initiate a single electron transfer from the

special pair to Qb in nearly all RCs. Note that due to the stochastic

nature of the simulations there is always the chance that one of the

RCs does not trigger even upon an extremely strong flash. At the

chosen intensity of the single flash, most RCs end up in the

semiquinone state with a single electron-proton pair on the initially

oxidized Qb. The total simulation time was 0.3 seconds using a

timestep of 2 microseconds where the flash occurred after 30

milliseconds. The 40 independent runs per parameter set took

about 50 seconds to simulate and analyze as described below.

A8_DW and A9_cytc: While PufX does not affect single

turnover electron transport, it is required for continuous turnover

of the photosynthetic apparatus as demonstrated by the next

experiment. The two quasi steady state measurements shown in

figures 8 and 9 of reference [5] report DWcap and the cytochrome c

oxidation state of intact anaerobic cells during a nine seconds long

continuous illumination. Without PufX, DWcap and the cyto-

chrome c oxidation level shortly rise upon illumination and then

decay again as in the single flash experiment A7, whereas in the

wildtype both signals saturate after about two seconds while the

light is on. Again, DWcap was rescaled to the first fast step and the

cytochrome c oxidation given in arbitrary units. Here, a single

closed vesicle was simulated for 12 seconds using a timestep of 20

microseconds. After one second in the dark the illumination was

switched on for nine seconds with an intensity of 90 W/m2. This

intensity is higher than the reported value of 50 W/m2 in the

experiment to ensure that the light is still saturating when the

absorption cross section of the LHCs is reduced during the

optimization. The five simulation runs for every parameter set

took about 40 seconds including analysis.

B1_Q: To show that the RC is fully functional in a PufX

deficient mutant, Barz et al. probed isolated chromatophores with

a series of four single-turnover flashes spaced 1 s apart [6]. After

each flash one electron-proton pair is transferred onto the Qb

quinone bound to the RC. When loaded with a second electron-

proton pair after the next flash, the quinol detaches from the RC

and is replaced by another quinone. As this exchange is fast

compared to the spacing between the flashes, semiquinone

oscillations can be observed spectroscopically. In this experiment

the bc1 complexes were inhibited by antimycin A, which blocks

electron transfer from heme bH onto the quinone bound at the Qi

site. Additionally, N,N,N9,N9-tetramethyl-p-phenylenediamine

was added in the experiment, which efficiently reduces the RC

special pair and oxidizes Qb
2 with a slow time constant of minutes

that is negligible here. This scenario, in which only the state of the

RCs was probed, was simulated with a vesicle which only contains

the LHCs and the RCs. The pool of reduced cytochrome c2 was

set to a constant concentration to mimick the fast re-reduction of

the special pair after each of the flashes. In the experiment the

chromatophore density was adapted such that each flash induced a

single turnover in about 90% of the RCs. For a similar turnover

probability in the simulation the flash was set to 4000 W/m2 for

0.2 ms.

B6_P and B6_cytc: These two scenarios are again different

measurements performed during the same experiment, where the

oxidation states of both the special pair bacteriochlorophylls of the

RCs (P) and of the total cytochrome c content in anaerobic dark-

adapted cells were monitored during a train of 16 flashes spaced

20 ms apart (figure 6 of reference [6]). After the first flashes, a

dynamic equilibrium is established between the pulsed excitation

of the RCs and the turnover of the subsequent steps in the

photosynthetic chain. Consequently, the flash intensity has to be so

low that the single ATPase can utilize all the protons pumped into

the vesicle. From the maximum turnover of the ATPase of 400

H+/s we find that no more than 100 QH2 per second may be

produced by the RCs under an excitation every 20 ms, i.e., with a

frequency of 50 s21. Thus, each flash may not excite more than

four of the 20 RCs. To obtain such a 20% excitation probability in

the simulation we used a comparably low light intensity of 400 W/

m2 for 0.1 milliseconds. The complete dark-adapted vesicle was

simulated for 0.4 seconds with the first flash occuring after 50

milliseconds. The cytochrome c oxidation state was again

determined from the c2 and the c1 of the bc1. The 40 iterations

plus the analysis took about 80 seconds on a PC using a simulation

timestep of 2 microseconds.

BC1: In addition to these experiments, we tested for each

parameter set the steady state throughput of the cytochrome bc1

complex against the experimentally observed maximal enzymatic

turnover at vanishing DW [32]. For this a single bc1 dimer was

simulated for 20 seconds using a timestep of 20 microseconds with

the pools of Q, QH2, and oxidized cytochrome c2 set to fixed

concentrations. After the simulation the number of reduced

cytochrome c2 was used to determine the turnover. This test,

which was labelled BC1, took about half of a second to perform.

The total time required to run all the scenarios A7, A8+9, B1,

B6, and BC1 for one parameter set was about three minutes.

Together with the numbers of the proteins, the geometric

properties of the vesicle, and the initial conditions, i.e., the initial
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pool occupation numbers, the model contains 44 rate constants

and parameters relevant for the kinetics. Out of these 44, we

selected 25 parameters for the optimization. These includes all

parameters of the LHC and the RC, respectively, 13 of the 19

parameters of the bc1 complex, two of the nine constants related

to DW, and one of the two parameters for the titratable residues.

These parameters are listed together with their optimized values

in table 1. Not included in the optimization were the fast

internal electron transfer reactions in the bc1, the weights of the

different types of charges contributing to DWcap, and the

number of titratable residues. Independent tests showed that

these parameters have only a very weak or no influence at all on

the dynamic behavior of the complete vesicle. Their (fixed)

values are listed in table S1. The ATPase was implemented as

described in reference [4] and did not have any adjustable

parameters.

Scoring the Parameter Sets. The quality of a given

parameter set was judged from the overall agreement between

the simulation results and the experiments. For this, an individual

score si was determined for each of the eight scenarios from the

normalized squared distance between the simulation results x(ti) at

equidistantly spaced time points ti and a fit function to the

experimental data at the same time points f(ti):

si~
CiP

x tið Þ{f tið Þð Þ2

For convenience, the normalization constants Ci were adjusted

such that the scores for the best parameter sets were on the order

of one for each of the experiments. However, their actual values

are not important, as the same Ci were used for all parameter sets.

They only affect the overall scaling of the scores without changing

their relative ordering. For scoring the individual simulations, we

used a fit to the experiment rather than the raw experimental data

points. This was done for two reasons. First, the experimental data

is noisy, i.e., each of the discrete data points has an unknown

deviation from the correct value. Continuous fit functions

composed from constant, linear, and exponential terms allowed

us to average a smooth curve through the noisy data. Second, the

data points are often measured at rather large or non-equal time

intervals. With the continuous fits the simulation could be scored

at the most convenient time intervals. The scoring functions for

the chosen experiments are listed in supporting Text S1.

The overall master-score S of a parameter set was then

determined as the product of the individual scores si. Multiplying

the individual scores ensures that a parameter set has to perform

well in all simulations in order to achieve a good overall score in

the optimization.

The optimal value for each individual parameter was then

determined by computing the logarithmic average ,P. and

variance s of a parameter P from the 1000 highest-scored

parameter sets among the 32800 different parameter sets:

SPT~exp Slog PT½ �

s2~S log P{Slog PTð Þ2T

Pmin~ exp Slog PT{s½ �

Pmax~ exp Slog PTzs½ �

With this logarithmic averaging, the sensitivity of the model with

respect to the value of a given parameter can be expressed as the

respective ratio of Pmin/Pmax.

Estimating the Number of bc1 Complexes
In the previous reconstruction of a typical chromatophore

vesicle [13] the steady state throughputs indicated that already

three cytochrome bc1 dimers could suffice to supply the ATPase

with enough protons to run at full speed. From wet lab

experiments, however, a ratio of about one bc1 dimer per dimeric

core complex was found, i.e., about ten bc1 complexes per vesicle

[5]. As the bc1 can only use the limited amount of energy stored in

the electron proton pairs on the QH2 to pump the protons against

the transmembrane potential DW, its throughput decreases with

increasing DW. Thus, in a steady state scenario it does not make a

difference whether the model includes only three or ten or even

more bc1 complexes as their turnover will be reduced once a

certain transmembrane potential is reached. In a dynamic

scenario, however, the response of DW to a rapid increase of the

illumination will be faster in a vesicle carrying more bc1 complexes.

Therefore, we first investigated how the number of bc1 dimers

affects the non-equilibrium dynamic response of a chromatophore

vesicle during the single flash experiment A7 introduced above [5].

This experiment monitored spectroscopically the electric contri-

bution DWcap to the transmembrane potential and the oxidation

Table 1. Optimized parameter values ,P. with their ranges
Pmin…Pmax.

parameter units ,P. Pmin…Pmax

Pmin/
Pmax

LHC::s m2 W21 s21 6.22 6.02…6.42 0.94

LHC::N0 1 1.31 0.81 … 2.13 0.38

LHC::kD(E) s21 1.9 * 103 (1.1…3.8) * 103 0.29

RC::kon(E) s21 2.4 * 106 (1.2…4.5) * 106 0.27

RC::kon(H+) nm3 s21 1.4 * 108 (1.3…1.6) * 108 0.81

RC::kon(Q) nm2 s21 6.0 * 104 (4.4…8.1) * 104 0.54

RC::koff(QH2) s21 87 70…108 0.65

RC::kon(c2red) nm3 s21 9.2 * 105 (7.3…11.5) * 105 0.63

RC::koff(c2ox) s21 2.2 * 103 (1.6…3.0) * 103 0.53

bc1::kon(QH2@Qo) nm2 s21 1.2 * 104 (0.79…1.7) * 104 0.46

bc1::koff(Q@Qo) s21 28.3 26.3…30.4 0.86

bc1::ktr(Q:Qo = .Qi) s21 4.9 * 103 (3.6…6.7) * 103 0.54

bc1::kon(Q@Qi) mm2 s21 6.7 * 105 (4.5…10) * 105 0.45

bc1::koff(QH2@Qi) s21 86 68…110 0.62

bc1::ktr(QH2:Qi = .Qo) s21 3.8 * 103 (2.6…5.5) * 103 0.47

bc1::kon(c2ox) nm3 s21 9.4 * 106 (6.3…14) * 106 0.47

bc1::koff(c2red) s21 6.0 * 103 (3.3…11) * 103 0.30

bc1::koff(H+@Qo) s21 2.4 * 104 (1.3…4.3) * 104 0.30

bc1::ktr(FeS:b = .c) s21 3.9 * 103 (3.1…5.1) * 103 0.61

bc1::ktr(FeS:c = .b) s21 2.8 * 103 (2.2…3.6) * 103 0.61

bc1::ktr(e:bH = .Qi) s21 7.7 * 103 (5.0…12) * 103 0.42

bc1::W0 mV 102 83…114 0.73

DW::U0 mV/e 10.3 9.5…11 0.85

DW::DW0 mV/pH 10 7.6…13.7 0.55

PR::pK 1 4.84 3.9…5.9 0.66

The sensitivities of the complete set of simulations with respect to each of the
parameters are expressed via Pmin/Pmax. These values were determined from the
1000 best parameter sets as explained in the text.
doi:10.1371/journal.pone.0014070.t001
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state of all cytochrome c after a short flash in anaerobic cells of Rb.

sphaeroides PUFC/g mutants, which resemble the wild type (figures

7A and 7B, respectively, of [5]). In the dark adapted cells, DWcap

was initially zero and increased very fast with the flash with a

biphasic rise and a subsequent exponential decay. The first very

fast rise of DWcap is due to the electrons displaced in the RCs and

the second slower rise is due to the protons pumped into the vesicle

once the first QH2 arrive at the bc1s. Simultaneously, the

cytochrome c oxidation state showed a short peak that decayed

on the millisecond timescale of the second rise of DWcap.

We mimicked this experiment with varying numbers of bc1

dimers of Nbc1 = 3 … 14 in the simulations to optimize four

parameters and observe how their respective optimal values

changed with Nbc1. These four parameters are bc1::W0, which

describes the decrease of the bc1 pumping activity with increasing

total DW, the transmembrane voltage per DpH unit, DW::DW0, the

transmembrane voltage per unit charge in the vesicle, DW::U0, and

the pK value of the 80 titratable residues that are placed in the

vesicle, PR::pK. PR::pK and DW::U0 determine the buffering

capacity of the vesicle, whereas the number of bc1s and their cut-off

voltage bc1::DW0 determine the proton pumping rate of the bc1s.

The parameters DW::DW0 and DW::U0 finally control the chemical

and the electric contributions to the transmembrane potential

which are denoted by DWchem and DWcap, respectively. Together

with Nbc1, these four parameters thus determine how fast DWcap

and the cytochrome c oxidation state may change. All other kinetic

parameters of the proteins were based on the first version of the

stochastic model as reported in [4]. Later tests with the new

optimized kinetic parameters gave essentially the same results.

This means that at least for the parameters that are important for

this specific experiment our initial estimates were good enough to

identify a realistic Nbc1.

With this simulation setup, two sets of evolutionary parameter

optimizations were performed where Nbc1 was varied from 3 to 14.

In the first set, DW::U0, DW::DW0, and bc1::W0 were optimized. In

the second set, PR::pK was included as a fourth parameter. In

each individual optimization run, 21 iterations were performed

with 40 individuals per generation, i.e., 840 parameter sets were

tested for every Nbc1. In all optimizations, the scores converged

after about five iterations (see figure S1). For the analysis the

parameter sets were sorted according to their master score.

Average values of the master scores and of the four parameters

were determined from the 100 best of the 840 parameter sets. Both

optimization runs gave comparable scores and parameter values.

The resulting averaged scores increased from Nbc1$4 to Nbc1 = 8

and slightly decreased again for Nbc1$9 (see figure S2). This

means that based on the master scores alone Nbc1 = 8 would be the

optimal number of bc1 complexes for the modeled vesicle. Figure 3

shows how the optimal values for the four parameters DW::U0,

DW::DW0, bc1::W0, and PR::pK vary with Nbc1. For Nbc1 = 3,

DW::U0 is rather high and converges to lower values for larger

Nbc1. The decrease with Nbc1 means that the larger proton

pumping rate resulting from more bc1 complexes has to be

compensated by an increased electrical buffering capacity, i.e., a

smaller ratio of voltage change per unit charge. The convergence

for Nbc1$8 indicates that a larger number of bc1 dimers represents

a more favourable ‘‘stable’’ model in terms of kinetic constants.

The large standard deviations for DW::DW0 indicate that the

actual value of this parameter (which represents the conversion

factor from the pH gradient across the membrane into an

equivalent electrical potential with the same driving force) is rather

irrelevant for a good agreement between the experiment and the

respective simulation in this fast transient scenario. Instead of the

usually used 59 mV/DpH, the values ranged between 1 and

20 mV/DpH here. With these values, DWchem contributes less

than 30% to the total DW. In fact, simulations that completely

neglected DWchem, i.e. DW::DW0 = 0, could reproduce the exper-

imental data with comparable accuracy. As DW::DW0 increases

with Nbc1 from too small towards more realistic values, one would

choose Nbc1 as large as possible based on the behavior of this

parameter, too.

The third parameter, bc1::W0, regulates at which value of DW the

pumping rate of the bc1s is reduced. Its optimal value decreased

with increasing Nbc1. However, with the obtained values of

bc1::W0$80 mV, the throughput of the bc1s is only limited at larger

DW while still allowing for a fast proton pumping at low DW. To

prevent DW from rising too high during steady state situations, a

smaller bc1::W0 should be preferable, again suggesting to use a

larger Nbc1. The pK value of the titratable groups, finally, depends

only weakly on Nbc1. Its trend to increase with Nbc1 can again be

understood as increasing the effective buffering capacity of the

vesicle by an earlier onset of proton binding.

Based on these results, we chose to use ten cytochrome bc1

complexes for the typical vesicle in the further optimizations of the

kinetic parameters of the photosynthetic apparatus. This value

obtained from the dynamic simulations fits well with the

stoichiometries of approximately one bc1 dimer per two RCs

determined in wet-lab experiments [5] and is about three times

larger than the minimal number estimated from the steady state

throughputs [13].

Optimized Parameter Values
After having fixed the stoichiometries of all proteins, we started

the actual optimization of the kinetic parameters for the

elementary reactions in the model vesicle. From the 44 parameters

of the model, we selected 25 (see table 1). Not included in the

optimization were, e.g., the numbers of protein copies which were

set to fixed values, the vesicle size, and the details of the fastest

reactions inside the bc1 complexes (see table S1). The parameters

were optimized in two main runs which considered subsets of 15

and 12 of the 25 parameters, respectively. The two parameters

DW::U0 and bc1::W0 were included in both optimization runs, in

which they converged to about the same values, differing by about

10%. These two main runs consisted of 41 generations of 800

individual parameter sets each. They were accompanied by several

smaller optimization runs where, e.g., only the parameters of a

single protein were optimized. In the smaller optimization runs the

population sizes were reduced to 100…150, but the number of

generations was kept the same. To within the statistical

uncertainties, these independent optimizations of the parameters

of the individual proteins confirmed the results from the two large

optimization runs. In all optimization runs, reasonable parameter

values were found within the first five to ten generations and

further optimized in the subsequent iterations (see figure S3).

To determine the optimal kinetic parameters for the individual

reactions, the obtained multi-dimensional distributions of the

master-scores were projected onto each of the individual

parameters as shown in figure 4 for three representative

parameters. According to panel A of figure 4 the good scores

above 0.068 of the best 1000 parameter sets can only be achieved

when the absorption cross section of the LHCs, LHC::s, has a

value very close to 6.3 m2 W21 s21. Even when this parameter

was chosen correctly, low scores were still found when one or more

of the other parameters were off their optimal values. On the other

hand, panel B of figure 4 shows the projection onto the decay rate

of unused excitons in the LHCs, LHC::kD(E), which could be

varied over more than two orders of magnitude while still reaching

scores above 0.068. Consequently, the actual value of this
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parameter plays a minor role for a good agreement between

simulation and experiment. Panel C of figure 4 finally shows the

distribution of bc1::ktr(FeS:c = .b), a parameter of intermediate

sensitivity. Here, scores above 0.068 were obtained with parameter

values varying within about one order of magnitude. In each case,

the peak of the distribution of the master score gives the optimal

value of this parameter, and the width of the distribution encodes

the importance (sensitivity) of this parameter for a correct in silico

description of the experiments.

The obtained optimal parameter values ,P. and their

sensitivities Pmin/Pmax are listed in table 1. When good, high-

scoring parameter values were found in a narrow range only, then

Pmin and Pmax are very close to each other and the ratio Pmin/Pmax

is close to one (cf. figure 4A). Most parameters have a sensitivity

Pmin/Pmax of around 0.5, whereas this ratio can even be below 0.1

for the less sensitive parameters (as in figure 4B). For the two

parameters DW::U0 and bc1::W0 which were included in both

optimization runs, table 1 lists the respective averages obtained

from the two runs. Generally, all parameter values that were

previously known from experiment were found within their

expected ranges which indicates that the optimization procedure

could recover the correct parameter values.

Reproducing the Experiments
With the optimized kinetic parameters (see table 1), the

remaining kinetic parameters that were not included in the

optimization process, and the stoichiometries of the proteins and

metabolites (see table S1), our molecular stochastic model of the

bacterial photosynthetic apparatus is now parametrized complete-

ly. In this section, we analyze how well the model with the

optimized parameter set reproduces the individual experiments

which span a kinetic range from the few milliseconds long signal of

the cytochrome c oxidation state in response to a single flash in

A7_cytc up to the three orders of magnitude slower quasi steady

state scenarios of A8_DW and A9_cytc.

Figure 5 compares the simulation results obtained with the three

best parameter sets, which were all very close to the optimized

values of table 1, to the respective experiments by Barz et al [5,6].

Due to the stochastic simulation algorithm even the traces

obtained from averaging over 40 individual simulations vary

between repeated runs. The variations between the three runs

shown in figure 5 are typical for the spread that is observed when

the optimized parameters are used repeatedly. The overall

agreement is quite remarkable. We will now discuss the individual

panels and the remaining deviations between the simulation results

and the experiments. These deviations mainly result from

simplifications of the model and the simulation setup.

In the single-flash experiment A7, the biphasic rise and

subsequent decay of DWcap is well reproduced (A7_DW, panel A

of figure 5). In this scenario, the decay of DWcap is very sensitive to

U0, i.e., to the electric capacitance of the vesicle. The

corresponding cytochrome c oxidation state, A7_cytc, on the

other hand, decays slightly too fast (panel C of figure 5). At first,

this suggests that the related rate constants are too fast. However,

the simulation only considered the photosynthetic apparatus

located in the vesicles, whereas the experiment was performed

on complete bacteria where the photosynthetic apparatus is also

found in the inner membrane together with the proteins of the

respiratory chain. Consequently, this fraction of the photosynthetic

apparatus works against the larger combined cytochrome c2 pool

Figure 3. Optimal Parameter Values vs. Number of bc1 Dimers. Average parameter values from the best 100 individuals (out of the 840
individual optimizations) vs. the number of bc1 complexes Nbc1. In the two optimizations shown, we simulated the course of the transmembrane
voltage DWcap and of the cytochrome c oxidation state during a single flash experiment with dark-adapted bacteria (see text for further explanations).
The black data points show the results from the first optimization round where DW::U0, DW::DW0, and bc1::W0 were optimized. In the second round
(red symbols) also PR::pK was considered.
doi:10.1371/journal.pone.0014070.g003
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of the photosynthetic and respiratory pathways, leading to a slower

decrease of the cytochrome c oxidation. Secondly, in the

simulation the light was switched on and off instantaneously while

in the experiment the flashbulb takes some finite time to reach its

maximal brightness before it cools down continuously. Without

knowing the characteristics of the original experimental setup of

Barz et al. [5,6], we can only speculate about the actual

illumination profile. A decay time of the flash on the millisecond

timescale would suffice as well to explain the slower decay in the

experiment.

For scenario A7_cytc panel B illustrates the stochastic nature of

the simulations. It compares the average of 40 typical individual

simulations with the optimized parameter values to the experiment

and shows 10 of the 40 individual simulations results. In

comparison to panel A, here the actual values of DWcap are given,

i.e., here the experimental data are scaled to the simulation instead

of rescaling the simulations to the experiments as during the

optimization process. The experiments were originially published

in arbitrary units. Generally, the first step of DWcap, which

originates from the electrons translocated in the RCs, was well

reproduced in all individual runs while the subsequent rise due to

the proton pumping of the bc1 exhibited strong variations from run

to run. In some runs the bc1 pumped so slow that the protons could

leave the vesicle via the ATPase before the additional contribution

to DW could develop. However, in other runs all bc1s immediately

pumped their two protons and the second rise of DW was as high

as the first step. A similar variability can be found in the other

scenarios, too.

In B1_Q (panel D of figure 5), the major differences between

measurement and simulation are the spikes directly after the flash

seen in the spectroscopic experiment. These are missing in the

simulation because here the flash does not interfere with the

determination of the number of bound QH. Consequently, we

only used the flat parts of the experimental signal for scoring the

simulation and neglected the intervals during the spikes. This

experiment is most sensitive to the quinone association and

dissociation rates at the RCs and, of course, to the light absorption

cross section LHC::s of the LHCs.

In the quasi steady state scenarios of A8_DW and A9_cytc
(panels E and G, respectively, of figure 5), the dynamics of the

cytochrome c oxidation were reproduced well. The only noticeable

difference is that at the onset of the nine seconds long continuous

illumination the oxidation of the initially fully reduced cytochrome

c takes place about twice as fast in the simulation than in the

experiment. The speed of this transition could have been slowed

down in the simulation by decreasing the light intensity, but we

chose to stick to the description of the experiment which states that

the light intensity was ‘‘saturating’’, i.e., that the RCs work at their

maximal speed [6]. With less light this could not have been

ascertained in the simulation for all values of the varied

parameters. Independent of the absolute value of the light

intensity also the re-oxidation of the cytochrome c2 at the end of

the illumination was too fast. The main reason for these differences

is that we simulated a single vesicle whereas the experiment was

performed on complete cells in which a large fraction of their

photosynthetic apparatus is located in the inner membrane

together with the respiratory chain. Especially the final slow

decay of the cytochrome c oxidation after t = 9 s in the experiment

points to a spatially extended pool of cytochrome c2 so that

diffusion must be considered explicitly (in contrast to the vesicle

interior where diffusion is so fast that it can be neglected). For the

complementing observation A8_DW, the differences between

simulation and experiment were more pronounced. In the

simulation, DWcap increased with two phases as in A7_DW and

then saturated within about one second as expected. In the

experiment, DW increased slower and then even began to decay

again while the light was still on. Barz et al. noted that they could

not explain this slow transient overshooting and they reported that

DW finally reached a steady state level after some 20 seconds of

continuous illumination [6]. Consequently, there must be some

slow charge relaxation processes present in the experiment which

were not identified and thus could not be included in our

simulation. On the other hand, the decay of DW after the

illumination took place with about the same time constant both in

the simulation and in the experiment.

For the multi-flash experiments B6_cytc and B6_P (panels F

and H, respectively, of figure 5), the main difference between the

experiments and the simulation is that the height of the flash-

induced spikes decreased during the first few cycles while their

amplitude was roughly constant in the experiment. This indicates

that either the flashes were too strong or that the turnovers of

either the RCs or of the bc1 were slightly too slow in the

simulations to sustain the re-reduction of the RCs. Here again,

some of the parameters related to the turnover of the RCs and the

bc1 complexes are a compromise that is too slow for the fast flash

experiments but too fast for the quasi steady state situations of

A8_DW or A9_cytc. Whereas the simulation reproduced the time

constant for the decay of the cytochrome c2 oxidation, the special

Figure 4. Extracting Optimal Parameter Values and Sensitivities. Projection of the master score on the values of three parameters: LHC::s,
the absorption cross section of the LHC (panel A), LHC::kD(E), the decay rate of excitons in the LHC (B), and bc1::ktr(FeS:c = .b), the kinetic rate for the
hinge motion of the FeS domain of the bc1 complex from the c1 to the b domain (C). For these plots the master scores were rescaled such that the
best score had a value of 1. For clarity, this best data point is not shown. In this figure, the best 1000 parameter sets had master scores $0.068, which
is indicated by the thin horizontal line. The respective intervals for the optimized parameters obtained from all parameter values with scores above
this threshold are denoted by the blue regions and the horizontal error bars.
doi:10.1371/journal.pone.0014070.g004
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pairs were reduced much too fast. This may be explained from the

actual implementation of the RC in the simulation model. There,

a reduced cytochrome c2 that is docked to an RC with an oxidized

special pair delivers its electron to the special pair in the next time

step after the c2 has bound, i.e., within less than one microsecond,

whereas in reality this transfer may take longer. In the future, a

separate rate constant for this electron transfer may lead to more

precise results.

Figure 5. Experiments vs. Simulations with the Best Parameter Sets. Comparison between the experimental data [5,6] (open crosses) and
the simulations with the three best scored parameter sets (red, green, and blue points). Also shown are the fit functions used for scoring the
respective observable (black lines, for details see supporting Text S1). For clarity, only a single simulation run is shown for B6_cytc and B6_P (panels F
and H). Here, the other two traces are indistinguishable from the ones shown. The variation between these three traces reflects the variability of the
results with the optimized parameters when the same scenario is simulated repeatedly. Panel B shows the statistical variations between individual
runs with the optimized parameter set. It shows ten individual traces and the average of 40 simulations as used during the optimization.
doi:10.1371/journal.pone.0014070.g005
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Overall, one can state that the experimental observations,

which cover a range of timescales spanning three orders of

magnitude, were reproduced well with the current model of the

photosynthetic apparatus with the optimized parameters. The

main difficulty, however, was that the experiments were partly

performed on isolated chromatophore vesicles and partly on

complete cells whereas our model consisted of a single chroma-

tophore only.

Biological Findings
From the systemically optimized parameter values we could

derive several interesting biological findings for the molecular level

of the model. Some of these findings confirm what had been

known previously whereas other conclusions could not have been

drawn from the experimental evidence alone.

LHC: we found that the decay of the excitons has to be

included in the description. The best agreement with the

experiments was achieved with a lifetime of about 0.5 ms.

However, the actual parameter value was not so important. Such

a lifetime is unrealistically long for the very fast kinetics of these

electronic excitations which take place on pico- and nanosecond

timescales. This shows one limitation of our model. In all other

proteins of the photosynthetic pathway real particles are

processed. Therefore a simulation timestep on the order of

microseconds is fast enough to resolve these processes and is still

numerically efficient enough. Because the exciton dynamics are

neither rate limiting nor could be resolved in the current set of

experiments, it was sufficient to use only three effective reactions to

describe the processes in the LHCs. These are the photon capture,

the bleaching at high light intensities, and a decay reaction which

prevents that unused excitons ‘‘pile up’’ in the LHCs. To

reproduce the fast flash experiments this effective reaction has to

be much faster than the combined turnover of the two RCs of the

dimeric core complex and, to achieve the high observed quantum

efficiency of $90% of the LHC-RC units, much slower than the

exciton transfer to the RCs. The exciton transfer, however, cannot

take place faster than one simulation timestep which is on the

order of a microsecond. This shows that when experiments that

can resolve the very fast internal dynamics of the LHC will be

added to our set of experiments the rates will become more

realistic as a much shorter timestep will then be required and most

probably more detail has to be included in the LHC model.

RC: For the RCs we determined the steady state throughputs

with the optimized parameters. One RC then handles 12.5

photons per second, i.e., oxidizes 12.5 c2 per second. Interestingly,

after the optimization the rate limiting reaction was the proton

uptake from the cytoplasm. The rate limiting parameter was

identified by observing how the steady state throughput changed

when each parameter is scanned individually. At pH = 6.8 the

obtained RC::kon(H+) = 1.4 * 108 nm3 s21 translates into a proton

uptake rate of 14 s21. Consequently, at steady state the 20 RC can

reduce 125 QH2 per second which then allow the bc1 to pump 500

H+ s21. Even under strong illumination this is only slightly more

than the maximal turnover of the ATPase of 400 H+ s21.

For the unbinding of the oxidized cytochrome c2 two

experimental estimates of 270 s21 [33] and 800 s21 [34] exist

which are both slower than our optimized value of 2200 s21

indicating that the c2 are only loosely bound to the RCs. The

corresponding binding rate of 9.2 * 105 nm3 s21 ensures that even

when nearly all c2 are oxidized the supply with electrons from the

reduced c2 does not become rate limiting.

In the steady state reconstruction the unbinding of the QH2

from the RC was estimated to take 25 ms [35] which made it the

throughput-limiting process under steady state conditions, Here

the optimized value of 87 s21 is about twice as fast and the binding

of the Q is even faster with an 80% reduced quinone pool.

BC1: For the bc1 dimers one of the optimization criteria was

that the steady state throughput at vanishing DW is close to the

experimentally determined value of about 75 c2 reduced per

second [32]. Under such conditions the 10 bc1 dimers could

consequently pump up to 1500 protons per second into the vesicle.

For the bc1, the throughput-limiting reaction was found to be the

unbinding of the oxidized Q from the Qo site with a

bc1::koff(Q@Qo) = 28 s21. We also found that both the binding

and the unbinding of the quinols is two to three times faster at the

Qi site than at the Qo site. Additionally, most of the Q directly hop

over from the Qo to the Qi site and only a few of them unbind

from the bc1 back into the bulk. The same behavior was found for

the QH2 generated at the Qi site indicating that the direct transfer

between the Qi and the Qo sites of the dimers is important for an

efficient turnover as it effectively increases the local density of

substrates. When any of these rates related to quinone dynamics at

the Qo and Qi sites was scanned individually, the score changed

only very little or not at all with the parameter value when the

other rates were close to their optimal values. This occurs because,

for example, Q can arrive at the Qi site either from the Q pool in

the membrane or from the nearby Qo site of the other monomer.

If either of these two paths is shut down due to a too low rate

constant, the other path takes over and the bc1 continues to work.

In the systemic multi-parameter optimization, however, such

extreme settings are less favourable because they are more

sensitive to small parameter changes and therefore effectively

suppressed. This is why we obtained meaningful rates even for

these correlated parameters.

As an initial estimate we had set the cytochrome c2 association

and dissociation rates at the bc1 to the same values as at the RC,

but the optimized rates are much faster. The binding of the c2 to

the bc1 was about one order of magnitude faster than at the RC

and the unbinding was found to be three times faster.

Our model explicitly includes the conformational change of the

Rieske group between the b and the c1 domains associated with

the electron transfer to the c1 heme. Here we found that the

‘‘forward’’ swing from the b to the c1 domain was about 30%

faster than the corresponding motion back to the b domain. One

can speculate that this is due to the proton release into the vesicle

interior, which is gated by the Rieske domain, i.e., that when

there are two protons waiting to be released they are pressing

against the closed gate accelerating the opening conformational

change.

PR: We found that some representation of protonatable

residues (PR) must be present in the simulation. The optimal pK

was about 5, but it could be varied between below 4 and 6.5

without any noticable differences in the time courses. Also their

number was uncritical as long as it was above some 60 or 70

residues. This means that we considered on average a single

protonatable group per protein. More protonatable residues would

also mean that more protons can be pumped into the vesicle for

the same averaged pH increase. Their charges, however, are not

compensated for and the weight of DWcap relative to DWchem would

increase further.

DW: Interestingly, the optimization found an effective electric

capacitance close to the expected values, whereas the chemical

contribution was found to be rather unimportant for the small

vesicle with its protein-filled membrane. The small spread of good

DW::U0 values emphasizes the relatively high importance of the

charges for a faithful representation of DW, while in our

simulations the chemical contribution from the proton density

difference could have even be neglected completely.
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Relative Importances of the Experiments
As already mentioned above, experiments probing different

setups and different kinetic regimes are sensitive to different

parameters. This is illustrated in figure 6 which shows the

projections of the individual scores from the three scenarios

A8_DW, A9_cytc, and B1_Q onto the value of DW::U0 analogous

to the distributions of the master score shown in figure 4. The

individual score for the quasi-steady state scenario A8_DW is

nearly independent of the electric capacitance with only a slight

preference for larger values (red points in figure 6). According to

this individual score, the respective sensitivity Pmin/Pmax equals

0.336 from the 1000 best parameter values. Such a broad

distribution with a low Pmin/Pmax ratio denotes that this

experiment is less important for the overall parameter determina-

tion. This correlates with the fact that buffering capacities do not

play an important role under steady state conditions. However, a

constant illumination of nine seconds length is not yet a true steady

state. Indeed, the complementing measurement A9_cytc, which

has the same illumination profile, shows a preference for values of

DW::U0<10 mV/e with a higher sensitivity of 0.667. In the third

example, B1_Q, good scores are only obtained with DW::U0 close

to its optimal value. This comes somewhat unexpected because

this experiment with its wide-spaced flashes and the focus on the

QB dynamics does not seem to probe the proton buffering capacity

of the complete vesicle. Actually, with a value of 0.690, the

sensitivity from the best 1000 parameter values is only slightly

larger than for the apparently broader distribution from A9_cytc.

For each of the scenarios we determined an ‘‘importance score’’

by summing up the sensitivities Pmin/Pmax of all relevant

parameters. The resulting scores, listed in table 2, show that

A9_cytc, B6_cytc, and A7_DW were most important for the

parameter optimization. Interestingly, the quasi-steady state

experiment A9_cytc was even more important than the many-

flash scenario B6_cytc with its fast transients. In comparison, their

respective companion experiments A8_DW and B6_P contribute

far less to the parameter determination. On the other end of the

spectrum is A7_cytc with its very fast single flash kinetics. B1_Q

and BC1 both have low scores because they only probe a subset of

the proteins of the complete vesicle. However, summing up their

non-overlapping parameter coverages gives a rather good score of

9.3 indicating that both experiments performed better within their

respective parameter subsets than their importance scores would

indicate.

Difficulties in the Modelling Process
One of the major uncertainties when setting up the simulations

was the exact time course of the illumination during the single-

and multiple-flash scenarios. We used a profile where the light was

switched on and off instantaneously. In reality, however, the

brightness of a flash bulb increases and then decreases again

continuously with possibly two different time constants. This may

explain why in the simulated flash experiments (A7_cytc, B6_P,

and B6_cytc) the oxidation states of the cytochrome c and of the

special pair decay faster than in the experiments. These

simulations are also sensitive to the peak value of the intensity

which we could not determine from the description of the

experimental setup. The best we could do was to estimate the

intensity based on the verbal description as ‘‘single turnover

flashes’’. The same uncertainty applies to the steady state scenarios

A8_DW and A9_cytc. Here the intensity was described as

‘‘saturating’’ which is true for any intensity above some 20 W/

m2. However, the steady state is reached faster with a higher light

intensity and this would have been a way to tune the results of

A8_DW and A9_cytc.

Starting from the optimized parameter values of table I, we also

performed scans where only a single parameter was varied.

Probing LHC::s showed that its narrow distribution was

essentially due to B1_Q alone. All the other individual scores

only showed minor variations when LHC::s was changed by up to

an order of magnitude in either direction (see figure S4). To

achieve semiquinone oscillations in B1_Q, the probability for an

electron transfer in the RC during a flash has to be close to one. It

is determined by the product of light intensity and absorption cross

section which are therefore probed simultaneously. Any error in

the description of the light intensity during the flash results in a

wrong estimate for LHC::s. On the other hand, our value for

LHC::s is close to the previously estimated value of

4.9 m2 W21 s21 [13] indicating that our guesses for the flash

intensities worked quite well.

Another source of deviations is that we only simulated a single

chromatophore, i.e., the parameters and simulation conditions

were exactly the same for all repeated runs, whereas the

experiments were performed on a collection of similar but non-

identical chromatophores. To correctly account for the variations

found in a real bacterium, one could run combined simulations

with different chromatophore configurations, i.e., vesicles with

different stoichiometries, sizes, and possibly leaks, using the same

values for the individual rate constants. Along this line, one could

in the future also investigate the effects of variations of the rate

constants from protein to protein.

Closely related is the issue that the rate constants were

optimized for a fixed vesicle size and stoichiometry. The

determination of Nbc1 had shown that varying the relative

stoichiometries can easily change the dynamic behavior of the

model. On the other hand, when the complete system is scaled

such that all copy numbers are, for example, doubled, and the

pools sizes are rescaled by the same factor, then the dynamic

behavior remains unchanged. When only the vesicle diameter is

increased then the surface area grows quadratically with the

diameter and the inner volume with the third power. Conse-

quently, the copy numbers of the transmembrane proteins and the

Figure 6. Different Experiments yield Different Sensitivities in
the Parametrization. Projection of the individual scores of A8_DW
(red points), A9_cytc (green points), and B1_Q (blue points) onto the
value of the effective inverse capacitance of the vesicle DW::U0,
illustrating that different scenarios may show different sensitivities
with respect to a given parameter. The sensitivities for DW::U0 in these
three experiments are 0.336 (A8_DW), 0.667 (A9_cytc), and 0.690 (B1_Q)
from the respective 1000 best parameter sets.
doi:10.1371/journal.pone.0014070.g006
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volume of the quinone pool would increase with the same ratio,

whereas the volume of the cytochrome c and proton pools grows

faster. To recover the optimized binding probabilities, which are

determined from the product of the association rate and the

number of metabolites per pool volume, the association rates for

protons and cytochrome c have to be rescaled accordingly. The

rates for dissociation or internal conversion reactions remain

unchanged because they do not depend on the respective pool

volumes.

Our model is also incomplete in a kinetic sense as this study is

focussed on the dynamic behavior of the photosynthetic apparatus

in anaerobic cells of Rb. sphaeroides on time-scales from milliseconds

up to a few seconds. Processes that only occur on longer time-

scales were not included in the model such as regulatory effects on

gene expression due to adaption to changes in the environmental

conditions as, e.g., from aerobic to anaerobic growth. Also not

considered were charge or redox relaxations in response to

external buffers. Such exchange reactions have to be much slower

than the turnover of the photosynthetic apparatus in order not to

degrade its performance by acting like a shortcut to proton or

redox gradients. However, an externally set redox poise in the

experiments was considered in the simulations via appropriate

initial redox states of the cytochrome c2 and quinone pools.

Scenario A8_DW allows to derive an estimate for the time scales of

such redox or charge relaxation processes. In this experiment

DWcap overshoots and relaxes again within less than one minute.

For comparison, the ATPase can phosphorylate about 6000 ADP

molecules during this time. Unfortunately, the description of the

experiment does not state whether this is a reversible or an

irreversible relaxation process.

Conclusions
We have shown for the well understood model system of the

photosynthetic apparatus of the purple bacterium Rhodobacter

sphaeroides that the kinetic parameters for a dynamic model of a

metabolic system can be reliably determined by simultaneously

fitting the results from stochastic dynamics simulations against a

number of time-dependent experiments. After determining an

optimal set of kinetic and biophysical parameters for the chosen

experiments with an evolutionary algorithm, our molecular

stochastic simulation model can now reproduce the observed

dynamics over a wide kinetic range from millisecond long single-

flash experiments up to quasi steady state conditions. For this, we

included 25 of the 44 parameters of the model in the optimization

procedure. The few remaining deviations can be traced back to

simplifications of the model and missing information about the

experiments. With this approach we have thus successfully

combined a detailed microscopic model built from molecular

biological data and a systems biological parameter optimization by

comparing the completely assembled system to macroscopic

experimental observations. To be able to reproduce the time

dependent experiments we first had to amend our model which

had worked well for steady state scenarios before. The two main

changes with respect to our previous model were the treatment of

the transmembrane potential with the explicit contribution of the

charges of the protons and the much more detailed model of the

bc1 dimer which now allows to probe its internal states, too. After

the systemic optimization we could then interpret the obtained

optimal parameter values in the molecular realm. Thus, the two

approaches were connected in both directions: molecular data lead

to a systemic description and the behavior of the complete system

identified important components of the molecular description.

Remarkably, only about one third of the stoichiometries, rate

constants, and parameters of the model, which are all related to

the kinetic behavior of the chromatophores, have sofar been

determined experimentally. For the others only estimates were

available. It was therefore not clear a priori whether a parameter

determination would actually succeed in simultaneously narrowing

down such a large number of parameters so that a reasonable

agreement between the experiments and the simulation could be

achieved. In fact, the evolutionary optimization found reasonable

parameter sets already within the first ten iterations. During the

next 30 iterations, the quality of these parameter sets was further

increased. The evolutionary optimization not only gives the best

parameter values but also, via the spread of the ‘‘good’’ solutions,

allows to judge the importance of each parameter and of each

experimental scenario used for the comparison. In the largest

optimization run 54400 parameter sets were tested, optimizing 25

parameters simultaneously. The same number of data points on a

25 dimensional grid would mean less than two grid points per

dimension. Consequently, a systematic scan for appropriate

parameter values over intervals spanning several orders of

magnitude each would have been absolutely impossible. On the

other hand, the convergence of the scores when optimizing 25

parameters was not much slower than the convergence of the next

smaller runs with 15 and 12 variable parameters, respectively.

This indicates that optimization runs appear feasible using this

approach where up to 25 parameters are optimized simultaneous-

ly. We suggest that the underlying fitness landscape has a funnel

shape such as for protein folding which may explain why the

stochastic dynamics of the evolutionary optimization successfully

recovered the ‘‘native state’’ in such a high-dimensional space.

The most efficient strategy for systems where less prior knowledge

is available than for the very well-studied bacterial photosynthesis

is therefore to first search within really wide parameter ranges and

then iteratively confine the search space to those parameter

regions where good scores were obtained. An evolutionary

optimization algorithm quickly finds ‘‘good’’ solutions but the

convergence is relatively slow. Therefore, this iterative refinement

of the parameter ranges is more efficient than trying to obtain

converged results from a single optimization step.

In total we spent more than 10 single-CPU-years of computing

time on the optimizations presented here. For such a simple

Table 2. Importance scores and correlation coefficients between the master score and the respective individual scores of the
experimental scenarios denoting the relative importance of each of the experiments for the parameter value optimization.

experiment A7_cytc A7_DW A8_DW A9_cytc B1_Q B6_P B6_cytc BC1

importance score 4.4 7.7 5.8 9.7 3.8 5.2 8.9 5.5

correlation 0.09 0.44 0.22 0.38 0.83 0.17 0.31 0.41

The importance scores are determined as the sums of the sensitivities of all relevant parameters against the individual scores (see table S2 for all the individual values).
The correlation coefficients are obtained from a linear fit of the master score against the respective individual score.
doi:10.1371/journal.pone.0014070.t002
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system, this may sound like a prohibitive amount of resources.

However, with the experience from this project subsequent

optimizations can be performed much more efficiently. For

example, we used a very conservative short time step and

relatively long initial equilibration phases. The last optimizations

that we performed during this project could already be performed

about three times faster than the first tests. Also the simulation

code can be further optimized or parallelized to make efficient use

of GPUs. Consequently, at least ten times larger systems can be

optimized already now and even larger ones in the near future.

However, for these larger and more interesting systems the

bottleneck will not be the computational resources but the amount

of available experimental data which is required to parametrize

the many kinetic constants. Therefore it might actually be a more

promising approach to parametrize the enzymes individually

before they are plugged together. Such optimizations can already

now be performed overnight on an average desktop computer.

The good agreement is remarkable also when considering that

the experiments used as reference were not designed for a

quantitative analysis of the photosynthetic apparatus but to

elucidate the role of a specific protein, PufX. They were therefore

not all performed under the very same external conditions. Also,

some basic details such as the light intensities inside the samples or

the actual intensity profiles of the flashes, which are crucial for the

simulations, were not reported because they were not relevant for

the questions asked. Based on the current results we expect that an

even more reliable parameter determination and a more stringent

verification of the simulation model could be performed with a set

of experiments specifically designed for reproducible, quantitative

measurements. Some of these experiments would be routine tests

like applying the same dynamic illumination profiles under varying

external redox or pH conditions. For the optimization presented

here, only four different observables were measured, but over a

wide range of timescales. This then allowed to reliably determine

even parameters that are some reactions steps away from the

measured quantities. It is therefore crucial that the set of

experiments covers a wide range of the kinetic regime accessible

to the system under consideration. Based on the experiences of this

study, we suggest that one needs about N/5 independent kinetic

experiments to be able to narrow the room of solutions for a

cellular system with N reactions to a single basin of attraction.

More work on other systems is certainly required to substantiate

this claim.

During the optimization we did not find any unexpected

parameter values, which would have indicated that our model was

partly incorrect or not complete enough. For the wellknown

bacterial photosynthesis we could set up the proteins from agreed

upon biochemical models, but for less thoroughly studied systems

the implementation might actually require the decision which of

the available models to choose. Then, such a systemic parame-

terization can be also used to test which of the presented models

behave correctly and potentially even to figure out why a certain

model fails.

The obtained fully parametrized model gave important

biological insights about the complete electron transport chain,

especially about the central cytochrome bc1 complex and the

quinones. Most importantly, we obtained values for the initially

missing two thirds of the kinetic parameters of the model. For the

bc1 complex we found that the quinones and quinols are

exchanged preferentially between the two halves of the dimer in

a local micro-environment with more favorable effective quinone

oxidation states than in the bulk. However, the model of the

bacterial photosynthetic apparatus as presented here is by no

means complete. The design citeria for the individual proteins was

to be able to reproduce the selected experiments which focus on

the enzymatic functions of the proteins. Explicitly excluded are

therefore all regulatory processes, while some of the very fast

exciton and electron kintics inside the proteins could be modeled

sufficiently well with effective reactions. When new experiments

are added to the current set it is straightforward to update the

current protein ‘‘templates’’ to the then required level of detail and

thus to test these improved models for different observables and on

a wider range of timescales.

Here we used the well established photosynthetic apparatus of

Rb. sphaeroides to show that molecular data can be compiled with

our pools-and-proteins approach to obtain consistent systemic

answers. In this case of a well understood biological system wrong

or inappropriate results can be identified a posteriori. However, the

success indicates that the methodology can also be applied to other

more complex or less well understood cellular subsystems. The

next logical step at a higher level of complexity would be the

bioenergetic processes of an entire bacterium or mitochondrium.

Also signalling processes are good candidates for such a bottom-up

molecular stochastic description together with the systemic

evolutionary parametrization. In the case of the respiratory

system, some of the proteins, namely the cytochrome bc1 complex

and the ATPase, can be taken unaltered from the current model of

photosynthesis together with their optimized parameters. Model-

ing and parametrization of other biological systems can thus be

started from the already known proteins. By this, a library of

protein models can be built up, with which finally the complete

metabolism of an entire cell could be simulated. The resulting

models at the molecular scale can also be used to test or verify

under which conditions simplifications may be applied to reduce

the complexity of larger models without changing their dynamic

response. Correspondingly, we expect exciting progress in this area

in the near future.

The molecular stochastic simulation framework with all

currently implemented proteins can be obtained from the authors

at http://service.bioinformatik.uni-saarland.de/vesimulus free of

charge for academic use.

Methods

Evolutionary Parameter Optimization
The automated parameter optimization was performed with an

evolutionary algorithm as introduced by Rechenberg [36] which is

based on the biological ideas of repeated selection and mutation

among a set of solutions, called a generation. An evolutionary

optimization strategy can deal well with a high-dimensional

search, for which no derivatives of the objective function are

available and even multiple good solutions of comparable quality

may exist. The algorithm is sketched in figure 7. It starts from a

randomly initialized generation of N parameter sets. For this, the

parameter values were distributed equally on a logarithmic scale

within a priori chosen boundaries. From this initial generation of

parameter sets, a set of input files for the simulation engine was

generated from the template input files. Each of the templates

describes one simulation setup corresponding to one of the

experiments. Then, for each individual parameter set the set of

stochastic simulations was run and the master score was

determined as explained in the results section. For the next

iteration, the N/4 parameter sets of the current generation with

the best scores were retained unchanged (operation ‘‘keep’’ in

figure 7). These simulations were repeated once more to ensure

that their parameter sets did not score so well by chance due to

stochastic fluctuations. Another N/4 individuals were generated as

modified (mutated) copies of the best individuals by randomly
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changing each of the parameters considered in the optimization

within a range of 635%. The next N/4 new parameter sets were

‘‘cross-bred’’ by randomly selecting two sets from the best and

taking the arithmetic average of their parameters (operation

‘‘mix’’). The remaining N/4 slots were filled up with randomly

initialized parameter sets. Again, a set of input files for the

simulations was generated from the templates, and the parameter

sets were scored by running and analyzing the respective

simulations. This mutation-scoring-selection process was iterated

until the scores converged. Limits for the parameter values were

imposed only for the random initialization, but not for the

subsequent mutations where they were allowed to take arbitrary

values. However, in the optimizations performed here, the optimal

values for the parameters were always found within the a priori

estimated intervals.

To increase the convergence of the evolutionary optimization

and to prevent that a complete generation gets stuck in a single

local optimum, we extended the standard algorithm by two

distance constraints between the parameter sets. For the first

global constraint, all parameter sets that had been considered so

far, including the ones in the latest generation, were saved in a

global history. Each newly generated parameter set, be it from the

averaging or from the random initialization, then had to differ by a

predefined distance dglobal from any of these already considered

parameter sets. This distance d was calculated as a normalized

Euclidian distance between the vectors of parameter values p1 and

p2:

d2~
1

N

XN

i

p1i{p2i

p1i{p2i

� �2

If a newly created parameter set was within dglobal of any of the

previously scored parameter sets, it was discarded and replaced by

a new randomly chosen parameter set—which was again tested.

This approach avoided rerunning the relatively expensive

simulations for a region of the parameter space that had already

been examined previously. For the mutations, no such distance

criterion was applied to allow for arbitrarily small improvements.

A second local distance constraint was applied when selecting

the best N/4 from a generation. Starting from the parameter set

with the best score, the next best set was only considered when its

parameter vector was further away than dlocal from any of the

already selected sets. If not, it was skipped and the next best

parameter set was tested until enough good parameter sets were

collected. With this criterion we could avoid that all parameter sets

chosen for the next iteration were located in the same local

optimum. Obviously, dlocal should be chosen at least as large as

Figure 7. Sketch of the Evolutionary Algorithm Used to Optimize the Kinetic Parameters. The optimization algorithm and its
modifications are described in detail in the main text.
doi:10.1371/journal.pone.0014070.g007
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dglobal. The benefits of using these two criteria were confirmed by

testing them with specially crafted test cases which contained

multiple maxima of different widths and heights. Currently, the

minimal distances between two parameter sets are independent of

the actual parameter values or the scores achieved in a certain

region of the parameter space. In a more sophisticated

implementation, they could be related to the scores of the

parameter sets and increase the minimal distance for low scores,

while allowing for smaller distances where the scores are good.

Thus, the regions of parameter space where the experiments

cannot be reproduced at all would be sampled more sparsely than

the interesting regions.

Because all parameter sets of a given generation are scored

independently, the parameter optimization with an evolutionary

algorithm can be conveniently parallelized by running the

simulations for different parameter sets on different nodes of a

compute cluster.

Parameter Search Ranges
For the random initialization of new parameter sets we had to

specify a range for each parameter to be optimized. These

intervals should be wide enough so that the optimal parameter

value is inside the interval. On the other hand, the convergence of

the optimization is faster when a smaller interval is used. For the

well known bacterial photosynthesis we estimated the search

ranges from various sources of information. For some of the

parameters like the dissociation constant of the c2 from the RC

experimental values were available around which the interval

could be centered. Often, a lower limit for a parameter could be

estimated from the steady state throughput of the respective

protein. Alternatively, we ran tests where a single parameter was

varied manually to get an estimate of the required range. With this

first set of intervals the two main parameter optimization runs

were performed. These ranges are listed in table S3.

To validate that the chosen intervals, which for some

parameters spanned only one order of magnitude, were indeed

wide enough, we also ran optimizations with very wide intervals

for the initial values which spanned four to six orders of magnitude

(see table S3). With these wide intervals optimization runs were

performed where 25 parameters were optimized simultaneously.

Due to the higher dimensionality and the incresed size of the

parameter initialization intervals, the size of the multidimensional

search space increased tremendously and the resulting score

distributions could not be analyzed reliably anymore. However, by

looking at the projected score distributions we were able to

estimate the most important regions for each of the parameters.

These ranges, which are also given in table S3, confirmed our

initially chosen search ranges for the two main optimization runs.

For some of the parameters we even found the same well defined

optimal values as with the initial smaller ranges (see figure S5).
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