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Abstract
Meta-analysis of single trait for multiple cohorts has been used for increasing statistical

power in genome-wide association studies (GWASs). Although hundreds of variants have

been identified by GWAS, these variants only explain a small fraction of phenotypic varia-

tion. Cross-phenotype association analysis (CPASSOC) can further improve statistical

power by searching for variants that contribute to multiple traits, which is often relevant to

pleiotropy. In this study, we performed CPASSOC analysis on the summary statistics from

the Genetic Investigation of ANthropometric Traits (GIANT) consortium using a novel

method recently developed by our group. Sex-specific meta-analysis data for height, body

mass index (BMI), and waist-to-hip ratio adjusted for BMI (WHRadjBMI) from discovery

phase of the GIANT consortium study were combined using CPASSOC for each trait as

well as 3 traits together. The conventional meta-analysis results from the discovery phase

data of GIANT consortium studies were used to compare with that from CPASSOC analy-

sis. The CPASSOC analysis was able to identify 17 loci associated with anthropometric

traits that were missed by conventional meta-analysis. Among these loci, 16 have been

reported in literature by including additional samples and 1 is novel. We also demonstrated

that CPASSOC is able to detect pleiotropic effects when analyzing multiple traits.

Introduction

For over a decade, genome-wide association studies (GWASs) have been a major tool for
detecting genetic variants underlying complex traits [1], including various anthropometric
traits. Anthropometric traits such as height and bodymass index (BMI) are highly heritable [2,
3], but the genetic loci that have been reported by large GWASs so far only account for a small
portion of heritability, suggesting additional variants still need to be uncovered. Up until now,
most GWASs were performed by examining a single trait association, although it has been
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frequently observed that the same variant or gene can be associated with multiple traits [4].
During the past decade, the number of meta-analysis of GWASs using multiple cohorts has
increased in order to maximize the statistical power in detecting significant genetic loci associ-
ated with a trait [5]. Several large-scalemeta-analyses have been conducted for anthropometric
traits, such as height, BMI, and waist-to-hip ratio (WHR) [6–11]. Among these three anthro-
pometric traits, height is a classic polygenic trait that has been heavily studied in order to
understand the genetic architecture of complex traits or diseases [9]. BMI is a convenient mea-
sure of overall adiposity as well as obesity, which is a risk factor for many diseases.WHR is a
measure of body fat distribution andWHR adjusted for BMI (WHRadjBMI) is positively asso-
ciated with mortality. Up until recently, 423, 97, and 49 loci have been identified to be associ-
ated with height, BMI, andWHRadjBMI in European populations, respectively [9–11].

Severalmultivariate analysis approaches for analyzing multiple phenotypes have been devel-
oped to further improve statistical power and provide biological interpretation of results, and
their pros and cons were well reviewed [4]. Statistical methods of integrating evidence from
summary statistics of multiple traits have recently been developed [12–14]. In traditional meta-
analysis studies, the samples from different cohorts are assumed to be independent. Over-
lapped or related samples between different cohorts and correlated traits within the same
cohorts would result in correlation among effect sizes, and both would lead to an inflated type I
error rate. However, this issue can be resolved by estimating the correlation of effect sizes using
summary statistics from genetic markers across the genome [12, 13, 15]. Solovieff et al. [4]
coined the association of a genetic variant with multiple traits as cross-phenotype (CP) associa-
tion. Zhu et al. demonstrated that power could be improved by testing multiple traits using
both simulated and real data [12, 16]. CP association implies potential pleiotropy where a vari-
ant is associated with multiple traits regardless of underlying causes. Thus, CP association is
more general than pleiotropy. Statistical software package for CP association analysis (CPAS-
SOC)was developed to meta-analyze association evidence of genetic variant with correlated
traits [12].

In this paper, we hypothesized that genetic variants commonly underlying the three anthro-
pometric traits can be identified by combining all three traits when single trait analyses may
not have enough power to detect them. Since the three traits are correlated, conventional meta-
analysis assuming independencewill result in an inflated type I error. In addition, it is unclear
whether there are any overlapped or related samples among GIANT consortium studies, which
would lead to correlated summary statistics among cohorts. Findings frommeta-analysis
accounting for correlation among cohorts will result in a more accurate estimation of genetic
effects on traits. In this study, we compared the results of CPASSOC with that from conven-
tional meta-analysis of GIANT consortium studies when using the same discovery phase data
set.We performedmeta-analysis with summary statistics of height, BMI, and WHRadjBMI
obtained from the GIANT consortium [17] using the CPASSOC software.

Results

GIANT consortium provided sex-specific summary statistics for the three traits: height, BMI
andWHRadjBMI [17], which were downloaded from the GIANT consortiumwebsite (https://
www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files).The
correlations among the six cohorts were calculated using the summary statistics of common
SNPs after linkage disequilibriumpruning (Materials and Methods, S1 Table). The correlation
betweenmale and female summary statistics is 0.03, 0.096 and 0.0126 for WHRadjBMI, BMI
and height, respectively (S2 Table). The correlations for BMI and height are still high despite of
excluding the SNPs with absolute Z score larger than 1.96. The large correlations betweenmale
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and female summary statistics for height and BMI suggest that many genetic variants with small
effect sizes contribute both trait variations besides the possible overlapped or related samples.
The correlation was much smaller between traits than within traits (S2 Table). We next calculated
statistics SHom and SHet in CPASSOC (Materials andMethods). SHom makes an assumption that
genetic effect is homogenous across traits and cohorts while SHet assumes genetic heterogeneity.
Fig 1 presents the Q-Q plots for height, BMI, andWHRadjBMI individually as well as combined
together, using SHom and SHet. The genomic control values (λ) for statistics SHom, are 1.078, 1.079,
1.025 and 1.092 for height, BMI,WHRadjBMI and combining the three traits, respectively. For
SHet, the λ values are 0.998, 1.006, 0.994 and 0.992 for height, BMI,WHRadjBMI and combining
three traits, respectively. We did not observe any inflation for SHet but slight inflation was
observed for height and BMI for SHom. Both height and BMI have many causal variants, which
can inflate the corresponding λ values. In the original and the latest GIANT reports [18, 19], the
λ values were 1.42 for height and 1.526 for BMI. Our observedλ values for both SHom and SHet

are much smaller than that in GIANT reports. Thus, our observedassociation evidence is
unlikely due to the effects of population stratification.We observed that females have substan-
tially more genetic contribution than males for WHRadjBMI (Fig 1C). Table 1 compares the
number of significant loci (P< 5 × 10−8) detected by CPASSOC and conventional meta-analysis
by GIANT. For height, both conventional meta-analysis and SHom identified 116 loci and 3 of
themwere missed by either method, while SHet identified 89 loci. For BMI, SHom and SHet identi-
fied 20 and 17 loci, respectively, while the conventional meta-analysis detected 18 loci. For
WHRadjBMI, SHom and SHet identified 11 and 14 loci, respectively, whilemeta-analysis detected
11 loci. The detailed P-values and effect sizes for these variants in CPASSOC and conventional
meta-analysis are presented in S3 Table. P-values for combining the three traits, SHom and SHet

identified 55 and 129 loci, respectively, while conventional meta-analysis identified 122 loci for
three traits together. The detailed P-values and effect sizes for these variants in CPASSOC and
conventional meta-analysis are presented in S4 Table. The reason for substantially fewer variants
detected by SHom is due to different effect directions in the three traits.

The Manhattan plots for the trait specific analysis are presented in Fig 2. The three loci iden-
tified by SHom but not by conventional meta-analysis for height are rs4676386, rs2597513, and
rs8181166 (Table 2 and Fig 2A). Variants rs2597513 and rs8181166 were reported to be associ-
ated with height in meta-analyses combining discovery and follow-up phases [6], which had a
substantially increased sample size. The region of rs4676386 has been reported in [9], and the
reported variant rs4344931 was located 43,541 bp away from rs4676386. Those two variants
were in weak linkage disequilibrium (r2 = 0.18).

For BMI, SHom identified rs13078807, rs13107325, and rs3810291 and SHet identified
rs17806313, all of them were missed by conventional meta-analysis (Table 2 and Fig 2B).
Among these four variants, rs13078807, rs13107325, and rs3810291 were validated in the fol-
low-up stage [7] and rs17806313 was only significant in females [17] (Table 2).

For WHRadjBMI, both SHom and SHet identified rs9864077, which was missed by conven-
tional meta-analysis. SHet identified two additional loci (rs4684854, rs2301573, Table 2 and Fig
2C). Both rs4684854 and rs2301573 were not genome-wide significant in the combined analy-
sis of discovery and replication phases [8], but they were genome-wide significant in females
only (P = 2.36 × 10−08 and P = 9.93 × 10−11, respectively) (Table 2) [17].

When combining three gender specific traits, 7 independent variants were identified by
SHom and SHet but were missed by the conventional meta-analysis (Table 3 and Fig 3). Variants
rs9324162 and rs17391694 were detected by both SHom and SHet and were locatedmore than
500 kb apart. These two variants were in weak linkage disequilibrium (r2 = 0.4). Thus, we con-
sider them as two separate signals. Variant rs17391694 was reported to be associated with
height by the GIANT study using conventional meta-analysis when combining discovery and
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follow-up phase data [6] [17]. The remaining five variants in Table 3 were only identified by
SHet. SNP rs6441170 as well as rs13107325 were reported in later GIANT studies for height [9]
and BMI [10], respectively. Variant rs17806313 was significantly associated with BMI in

Fig 1. Q-Q plots of GIANT discovery result, CPASSOC SHom and SHet. (A) Height. (B) BMI. (C) WHRadjBMI. (D) Combining three traits.

doi:10.1371/journal.pone.0163912.g001
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females only (Table 3). SNP rs4488509 is in high linkage disequilibrium (r2 = 0.84) with
reported SNP rs4640244 in later GIANT studies for height [6], and they are located 450 bp
away. Variant rs7842858, has not been reported previously. SNP rs7842858 is located on TOX
(Fig 4), which has been reported to be associated with obesity and diabetes [20].

To compare the variants identified by SHom and SHet, we plotted the forest plots of the effect
sizes for the SNPs in Tables 2 and 3, which were missed by the conventional meta-analysis in
GIANT. We observed that the effect sizes were similar for variants only detected by SHom (Fig
5A, rs4676386, rs2597513, rs8181166, rs13078807, rs13107325, and rs3810291). All the vari-
ants detected by both SHom and SHet showed some degree of heterogeneity (Fig 5B, rs9864077,
rs9324162, and rs17391694). The variants detected only by Shet showed large amount of hetero-
geneity (Fig 5C, right panel of SNPs). In particularly, variants rs17806313, rs4684854 and
rs2301573 only have genetic effects in females for BMI andWHRadjBMI. Variants rs644170
and rs13107325 have positive effects on BMI but negative effects on height andWHRadjBMI.
Variant rs7842858 has a negative effect on height and WHRadjBMI in both genders, negative
effect on BMI in males, and positive effect on BMI in females (Fig 5). The effect of rs4488509 is
negative for height and positive for BMI andWHRadjBMI. The effect of rs17806313 shows
substantial heterogeneity betweenmales and females in each of the three traits.

Discussion

In this study, we performedCPASSOC analysis using the summary statistics available from a
GIANT consortium study [17]. Our results showed that CPASSOC was able to identifymost of

Table 1. The number of genome-wide significant loci identified by CPASSOC for height, BMI, and WHRadjBMI from sex-specific data of discov-

ery phase.

GIANT Consortium Studiesb

Trait CPASSOC Methoda P < 5 × 10−8 P > 5 × 10−8 Total

Height SHom P < 5 × 10−8 113 3 116

P > 5 × 10−8 3 3

Total 116 3

SHet P < 5 × 10−8 89 0 89

P > 5 × 10−8 27 27

Total 116 0

BMI SHom P < 5 × 10−8 17 3 20

P > 5 × 10−8 1 1

Total 18 3

SHet P < 5 × 10−8 16 1 17

P > 5 × 10−8 2 2

Total 18 1

WHRadjBMI SHom P < 5 × 10−8 10 1 11

P > 5 × 10−8 1 1

Total 11 1

SHet P < 5 × 10−8 11 3 14

P > 5 × 10−8 0 0

Total 11 3

Note: CPASSOC (cross-phenotype association), GIANT (genetic investigation of anthropometric traits), BMI (body mass index), WHRadjBMI (waist-to-hip

ratio adjusted for body mass index)
aCPASSOC was applied to meta-analyze male and female data for each of the three traits.
bThe result of conventional meta-analyses of discovery phase data for each of the three traits.

doi:10.1371/journal.pone.0163912.t001
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the loci detected by conventional meta-analysis of GIANT consortium. CPASSOC was also
able to identify 17 loci reaching genome-wide significance (P< 5 × 10−8) that were missed by
conventional meta-analysis for a single trait analysis when using the same discovery phase
data. All 10 loci (Table 2) detected by CPASSOC that combine the effects of males and females
for height and BMI have been replicated by GIANT using either additional replication samples
or are significant in either males or female [6, 7, 11]. Our results showed that CPASSOC analy-
sis can improve statistical power over conventional meta-analysis by combining males and
females for individual traits.

When combining male and female summary statistics for height, the statistic SHet identified
fewer loci than either SHom or the conventional meta-analysis method, suggesting that there is
rare heterogeneity betweenmales and females for height. However, the current study only ana-
lyzed autosomal variants rather than variants on the sex chromosome.

When combining the three traits, SHom identified 55 loci while SHet identified 129 loci. The
substantial fewer number of variants detected by SHom suggests that many variants have differ-
ent effect directions in the three traits; therefore, the association evidence by SHom is diluted.
This result further indicates that the statistic SHom would be less powerful when combining
multiple different traits, where substantial heterogeneity exists (Fig 5). In our analysis of com-
bining height, BMI andWHRadjBMI, CPASSOC was able to identify additional 7 loci
(Table 3) that were missed by conventional meta-analysis (Table 3 and Fig 3). Five variants
(rs9324162, rs17391694, rs6441170, 13107325, and rs17806313) have been reported to be asso-
ciated with height, BMI or in gender-specific analysis by the GIANT consortium using addi-
tional data [6, 9, 10, 21]. CPASSOC also identified one novel locus (rs7842858) that has not
been reported to be associated with any of the three traits previously. This variant shows sub-
stantial heterogeneity among the three traits. In particular, variant rs7842858 has a positive
effect on the three traits in males but negative effect in females (Fig 5), which leads to the failure
of detection by either conventional single trait meta-analysis or combining the three traits by
SHom. SNP rs7842858 (8:58987111) resides within TOX (Fig 4), which has been reported to be
associated with Type 2 Diabetes in Chinese Han population [20]. It is possible that this variant
affects obesity variation and therefore indirectly contributes to Type 2 Diabetes. However, this
hypothesis requires further studies. The CPASSOC analysis of combining height, BMI and
WHRadjBMI also demonstrated pleotropic effects for all 7 loci (Fig 5). This is because the asso-
ciation evidence of these loci could not be detected by single trait analysis using the GIANT
discovery data. The association evidence could only be detectedwhen combining the three
traits. We also observed substantial genetic heterogeneity among these three traits. When pleo-
tropic effects exist, CPASSOC analyses of multiple traits clearly improve statistical power to
detect these genetic effects. In particular, statistic SHet is able to detect many variants with pleo-
tropic effects; however, it may lose power when there is no heterogeneity, as observed in single
trait analysis.

Our analysis applied a significance level 5 × 10−8, which is widely used in GWAS including
the original GIANT publications. This criterionmakes the results identified by CPASSOC
comparable with that from GIANT results. Alternatively, the methods by [22], which requires
genotype data, may result better genome-wide significance level. Since we only analyzed the
summary statistics obtained from GIANT website, we did not applied the method by [22].

Fig 2. Manhattan plots of conventional meta-analysis, SHom and SHet for three traits. The loci reaching

genome-wide significance by SHom and SHet but not by conventional meta-analysis are marked with

corresponding SNP names. (A) Height by conventional meta-analysis, SHom and SHet; (B) BMI by

conventional meta-analysis, SHom and SHet; (C) WHRadjBMI by conventional meta-analysis, SHom and SHet.

doi:10.1371/journal.pone.0163912.g002
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Fig 3. Manhattan plots of SHom and SHet for combining three gender specific traits. The loci reaching genome-wide significance by

SHom and SHet but not by the conventional meta-analysis are marked with corresponding SNP names. (A) SHom (B) SHet

doi:10.1371/journal.pone.0163912.g003

Multivariate Analysis of Anthropometric Traits Using Summary Statistics

PLOS ONE | DOI:10.1371/journal.pone.0163912 October 4, 2016 10 / 17



When we used a genome-wide significance level 1.0 × 10−7, we were able to identify additional
134 loci (S5 Table). These variants should be further examined in independent studies.

The CPASSOC [12] was designed to combine the association evidence across multiple,
sometimes seemingly distinct phenotypes. Cross phenotype association will increase statistical
power when analyzed traits share common variants or common genetic pathways, which may
reflect the relevance of pleiotropy [4]. Thus, cross phenotype association analysis is preferred
when a genetic variant affects more than one trait either through biologicalmediated pleiot-
ropy. For example, in genetic study of hypertension, different measurements of blood pressure
such as systolic, diastolic blood pressure, and hypertension status can be analyzed using CPAS-
SOC [12].The hypertension related traits can be analyzed together with cardiovascular traits
because of sharing potential common pathways. In the current study, we analyzed the anthro-
pometric traits by cross phenotype analysis because these traits are likely share common bio-
logical pathways. Many traits have demonstrates different biology betweenmales and females
[17]. Sex-specific analysis is able to detect specific variants to a sex group and therefore such
analysis should always be performed.On the other hand, males and female share common
biology and combined analysis will increase a study sample size and consequently increase sta-
tistical power for identifying variants shared by both males and females. Our results show that
CPASSOC analysis can detect sex-specific variants as well as the variants shared by both sexes.

We also observedmuch larger correlations betweenmale and female summary statistics for
height and BMI compared to that of WHRadjBMI (S2 Table), although we pruned SNPs with

Fig 4. Regional plots of the novel locus rs7842858 identified by SHet.

doi:10.1371/journal.pone.0163912.g004
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linkage disequilibriumand excluded SNPs with large summary statistics. These high correla-
tions for height and BMI may not be surprising because of the contributions of many genetic
variants with small effect sizes for both traits. In comparison, the lower correlation between
male and female summary statistics for WHRadjBMImay suggest that most of genetic contri-
bution is shared between BMI andWHR.

There are several recently developed statistical approaches in analyzing multiple traits at
summary statistics level, including the ASSET [23] and the Cross PhenotypeMeta-Analysis
(CPMA) [24]. The ASSET is suitable for identifying a subset of associated traits while CPAS-
SOC directly evaluates the aggregated association evidence between a SNP to multiple pheno-
types. CPASSOC is much faster than the ASSET computationally because ASSET has to search
all possible subsets.When the number of traits and studies increased, the number of possible
subsets can grow exponentially. The Cross PhenotypeMeta-Analysis (CPMA) was developed
to test whether there is association of a SNP to multiple phenotypes, or a true pleiotropy effect.

Fig 5. The forest plots of the effect sizes for the SNPs presented in Table 2 and 3. (A): variants only detected by SHom; (B): variants detected by both

SHom and SHet; (C) variants only detected by SHet (right panel).

doi:10.1371/journal.pone.0163912.g005
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When one of traits is not associated with a SNP, CPMAwill not have statistical power. It will
be interesting to perform these two tests to search for the subsets of traits associated with a
SNP or to test for pleiotropy effect in the GIANT consortium.

In conclusion, CPASSOC identified 17 loci associated with anthropometric traits that were
missed by conventional meta-analysis for a single anthropometric trait in GIANT consortium
studies that used the same discovery phase data as we did. CPASSOC is also able to detect
pleiotropic effects when analyzing multiple traits.

Materials and Methods

Datasets

The summary statistics of height, BMI andWHRadjBMIwere downloaded from the GIANT
consortiumwebsite (https://www.broadinstitute.org/collaboration/giant/index.php/GIANT_
consortium_data_files).The downloaded data include sex-specific [17] and sex-combined [6–
8] GWASs meta-analysis summary statistics from the discovery phase. For discovery stage in
sex- specific studies, 46 studies (up to 60,586 males, 73,137 females) on height and BMI and 32
studies (up to 34,629 males, 42,969 females) onWHR were included [17]. In the discovery
phase of sex-combined studies, summary statistics were collected from 46 GWASs in a meta-
analysis of 133,653 individuals (60,587 males and 73,066 females) for height [6], 46 studies
with up to 123,865 individuals for BMI [7], and 32 studies with up to 77,167 individuals
(34,601 males and 42,735 females) for WHRadjBMI [8].

Cross-phenotype association analysis

We applied the CPASSOC package developed by Zhu et al. [12] to combine association evi-
dence of both sexes with height, BMI andWHRadjBMI. CPASSOC can integrate association
evidence from summary statistics of multiple traits. It uses summary-level data from single
SNP-trait association of GWASs to detect which variant is associated with at least one trait.
This method improves statistical power by analyzing multiple phenotypes and it can be exe-
cuted with the summary statistics from GWASs. CPASSOC provides two statistics, SHom and
SHet. SHom is similar to the fixed effectmeta-analysis method [25] but accounting for the corre-
lation of summary statistics among cohorts induced by potential overlapped or related samples.
In brief, assuming we have summary statistical results of GWAS from J cohorts with K pheno-
typic traits. In each cohort, single SNP-trait association was analyzed for each trait separately.
Let Tjk be a summary statistic for a SNP, jth cohort and kth trait. Let T = (T11,� � �,TJ1, � � �,T1K,� � �,
TJK)T represents a vector of test statistics for testing the association of a SNP with K traits. We

used a Wald test statistic Tjk ¼
b̂ jk
ŝ jk
, where b̂ jk and ŝjk are the estimated coefficient and corre-

sponding standard error for the kth trait in the jth cohort. SHom is then defined as

SHom ¼
eTðRW Þ� 1TðeTðRW Þ� 1TÞT

eTðWRW Þ� 1e
; ð1Þ

which follows a χ2 distribution with one degree of freedom,where eT = (1,. . .,1) has length J ×
K and W is a diagonal matrix of weights for the individual test statistics.We used the sample
sizes for the weights, i.e., wjk ¼

ffiffiffiffinj
p for the sample size nj of the jth cohort.

To define SHet, we first let

SðtÞ ¼
eTðRðtÞWðtÞÞ� 1TðtÞðeTðRðtÞWðtÞÞ� 1TðtÞÞT

eT WðtÞ� 1RðtÞ� 1WðtÞ� 1e
;
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where T(τ) is the sub-vector of T satisfying |Tjk|> τ for a given τ>0, and R(τ) is a sub-matrix
of R representing the correlation matrix, and W(τ) be the diagonal submatrix of W, corre-
sponding to T(τ). Here we let wjk ¼

ffiffiffiffinj
p
� signðTjkÞ. Then the test statistic is SHet = maxτ>0S

(τ).
The asymptotic distribution of SHet does not follow a standard distribution but can be evalu-

ated using simulation. SHet is an extension of SHom but power can be improved when the genetic
effect sizes vary for different traits. The distribution of SHet under the null hypothesis can be
obtained through simulations or approximated by an estimated beta distribution.We first
applied both SHom and SHet to combine sex-specific summary statistics for each of the three
traits and compared the results with those from conventional meta-analysis of the same discov-
ery phase data in GIANT consortium studies [6–8]. We next applied both SHom and SHet for
combining all the sex-specific summary statistics of the three traits: height, BMI and
WHRadjBMI.We hypothesized that meta-analyzing multiple traits would allow us to identify
additional variants that are likely to be missed by the conventional meta-analyses for a single
trait.

To performCPASSOC analysis, a correlation matrix is required to account for the correla-
tion among phenotypes or induced by overlapped or related samples from different cohorts.
Zhu et al. [12] suggested using a set of SNPs in linkage equilibrium to estimate the correlation
coefficients.We selected the SNP set based on linkage disequilibrium (LD) pattern in the ARIC
European American (EA) data (downloaded from dbGaP http://www.ncbi.nlm.nih.gov/gap).
In brief, the ARIC EA cohort includes 9,707 individuals with approximately 840,000 SNPs gen-
otyped on the AffymetrixArray 6.0 [26, 27]. We first applied pairwise LD pruning with r2

threshold of 0.2 using the software PLINK (http://pngu.mgh.harvard.edu/purcell/plink/). SNPs
with large effect sizes may represent true association, and consequently may inflate correlation
among summary statistics. Therefore, we removed SNPs whose summary statistics Z scores
were greater than 1.96 or less than -1.96. The final SNP sets for correlation estimation include
81,322 SNPs for height, 82,012 SNPs for BMI, and 81,130 SNPs for WHRadjBMI.We chose
the common sets of SNPs for both sexes and three traits that can bemapped to dbSNP human
Build 142 to perform the CPASSOC analyses. The numbers of SNPs used in this study are pre-
sented in S1 Table.

We reported loci that reached genome-wide significance (P< 5 × 10−8) by CPASSOC from
sex-specific data [17], but not by sex-combined conventional meta-analysis [6–8] when using
the same samples from the discovery phase. Here we applied the same significant level
P = 5 × 10−8 as in GWAS because CPASSOC performs the same number of tests althoughmul-
tiple traits are analyzed. To do this, for a SNP reaching P< 5 × 10−8 by either SHom or SHet, we
examined the region within 500 kb of each side of the SNP. The SNP was considered to be
identified only by CPASSOC if no SNPs that are genome-wide significant with conventional
meta-analysis from the discovery phase data were found in the 1.0 Mb region, and it is not in
LD with the index SNPs of the GIANT studies. We performedmeta-analysis by combining
male and female data for each trait separately, as well as by combining all the three traits and
both sexes.

Supporting Information

S1 Table. The number of SNPs mappable to dbSNP human Build 142, which were used in
meta-analysiswith CPASSOC. aSNPs used for conventional meta-analyses of sex-combined
discovery phase data in the GIANT consortium studies. bIntersection set of SNPs used for con-
ventional meta-analyses of sex-specific discovery phase data in the GIANT consortium studies.
cIntersection set of SNPs between sex-combined and sex-specific study. dIntersection set of
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SNPs among height, BMI, and WHRadjBMI.
(DOCX)

S2 Table. Correlations betweenmale and female cohort for each trait and those between
combinations of sex and trait.
(DOCX)

S3 Table. SNPs representing identified through either conventional meta-analysis (sex
combined and sex-specific)or CPASSOC for height, BMI, andWHRadjBMI.
(XLSX)

S4 Table. SNPs representing identified through either CPASSOC for combining 3 sex-spe-
cific traits or conventional meta-analysis of GIANT consortium (sex-combined and sex-
specific) in discoveryphase data.
(XLSX)
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SOCwhen combining three traits.
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