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Abstract
Fake news spreading, with the aim of manipulating individuals’ perceptions of facts, is
now recognized as a major problem in many democratic societies. Yet, to date, little has
been understood about how fake news spreads on social networks, what the influence of the
education level of individuals is, when fake news is effective in influencing public opinion,
and what interventions might be successful in mitigating their effect. In this paper, starting
from the recently introduced kinetic multi-agent model with competence by the first two
authors, we propose to derive reduced-order models through the notion of social closure
in the mean-field approximation that has its roots in the classical hydrodynamic closure of
kinetic theory. This approach allows to obtain simplifiedmodels inwhich the competence and
learning of the agents maintain their role in the dynamics and, at the same time, the structure
of such models is more suitable to be interfaced with data-driven applications. Examples of
different Twitter-based test cases are described and discussed.
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1 Introduction

Since the 2016 U.S. presidential election, and more recently the COVID-19 infodemic, fake
news on social networks, intended to manipulate users’ perceptions of events, has been rec-
ognized as a fundamental problem in open societies. As fake news proliferate, disinformation
threatens democracy and efficient governance. In particular, there is empirical evidence that
fake news spreads significantly “ faster, deeper, and more widely” than real news [37]. In the
same study, it is also highlighted that the phenomenon is not due to robotic automatisms of
news dissemination but to the actions of human beings sharing the news without the ability
to identify misinformation.

It is therefore of fundamental importance the construction ofmathematicalmodels capable
of describing such scenarios and with a structure simple enough to be interfaced with data
available, for example from social networks, but still embedding the specific features related
to the ability of individuals in detecting the piece of false information.

In recent years, compartmental models inspired by epidemiology have been used fruitfully
to study spreading phenomena of rumors and hoaxes. For instance, following the pioneering
work of Daley and Kendall [11], in [23] SIR-type models are used in conjunction with
dynamical trust rates that account for the different spreading rates in a network. Those
traditional models were elaborated in [7], where the authors consider also the impact of
online groups in feeding the rumor growth once it has started.

Alongside these approaches there are more data-driven works. In this field, Twitter has
been gaining consensus as a powerful source of useful and structured information. A recent
example in this direction can be found in [27], that focuses on fake news dissemination on
the platform using a two-phase model, where fake news initially spread as novel news story
and after a correction time they are paired with a competitive narrative which describes the
news as fake in the first place.

Twitter data in conjunction with epidemiological models have already been used to study
the spread of rumors and fake news by several authors [10, 16, 17, 26], where SIS and SEIZ
compartmental models were employed to fit the data of the evolution of different news.
Mounting experimental evidence highlights the strong link between digital media literacy
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and possibility to reliably identify the quality of online information. This connection has
been early identified by communication scientists [20] and later confirmed by experimental
studies, see e.g. [22, 24].

In [19], starting from an agent-based model for the dissemination of fake news in presence
of competence, using the tools of kinetic theory, in the limit of a large number of agents,
novel mathematical models were proposed and discussed. Previously, kinetic models that
include the role of competence or knowledge had been proposed in [5, 29, 31]. The behavior
of a social system composed by a large number of interacting agents has been studied in the
case of opinion formation [3, 9, 14, 15, 34] and more recently epidemiological dynamics [1,
2, 12]. We refer to [28] for an introduction to the subject.

The compartmental structure of the model for fake-news spreading in presence of com-
petence introduced in [19] is composed by four groups of individuals: the susceptible (S)
agents—defined as the oneswho are unaware of the fake news; the exposed (E) agents—those
who know the news but still have not decide whether to spread it or not; the infectious (I)
agents—who actively divulge and finally the skeptical or removed (R) agents—those who are
aware of the news but choose to not spread it. On a population divided among such categories,
there is also a social structure based on an additional time evolving variable that measures
the competence level of the agents. Although the model has shown the capacity to correctly
describe the role of competence in the dynamics of fake-news, its mathematical structure
based on kinetic partial differential equations is generally too complex to be interfaced with
the available data.

In an attempt to address this problem, in the present work by exploiting the knowledge
of the equilibrium states of the corresponding mean-field model we derived reduced order
macroscopic models based on ordinary differential equations in which, however, the role of
competence continues to be present. The new social models, thanks to their simpler struc-
ture, are more suitable for data-driven applications. We emphasize that the methodology
here adopted is quite general and that in principle points the way to introducing additional
social characteristics of individuals into tractable mathematical models in terms of structural
complexity.

The rest of the manuscript is organized according to the following sections. In Sect. 2, we
recall the basic concepts of the kinetic model for describing the spread of fake-news in the
presence of competence. Next, in Sect. 3, using the local equilibrium states of the competence
we derive reduced order models that depend on the specific shape of the interaction function.
Section 4 is devoted to presenting a series of numerical experiments in which we first validate
the model and then consider data-driven applications based on Twitter. In the last section, a
series of final considerations are reported.

2 Kinetic models, competence and fake news spreading

In this section we present a model for the description of the spreading of fake news in a
society characterized by a heterogeneous competence of agents. Our starting point is the
compartmental kinetic approach recently proposed in [19]. We suppose that the system of
agents can be divided in the following epidemiologically relevant states: susceptible (S)
agents are the ones that are unaware of fake news, we further denote as exposed (E) the
agents that encountered the fake news but have still to spread them, infectious (I) agents
are the real spreader and, finally, the removed (R) agents are not actively engaged in the
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spread of misinformation. In the following we indicate with C = {S, E, I , R} the set of
epidemiological compartments.

Aiming to incorporate the effects of personal competence on the fake news dynamics, we
stick to a simple mathematical setting where the state of the individuals in each compartment,
at any time t ≥ 0, is characterized by the sole competence level x ∈ R+. Hence, we denote by
fS = fS(x, t), fE = fE (x, t), f I = f I (x, t), and fR = fR(x, t) the distribution of compe-
tence at time t ≥ 0 of susceptible, exposed, infectious and removed individuals, respectively.
We neglect natality and mortality dynamics since we can consider a short time dynamic
where nobody enters or leaves it during the spreading of the fake news. This assumption
can be justified based on the average lifespan of fake news. Therefore, we can fix the total
distribution of competence of a society to be a probability density for all t ≥ 0

∫
R+

( fS(x, t) + fE (x, t) + f I (x, t) + fR(x, t)) dx = 1, t > 0,

Consequently, the quantities

S(t) =
∫
R+

fS(x, t) dx, E(t) =
∫
R+

fE (x, t) dx,

I (t) =
∫
R+

f I (x, t) dx, R(t) =
∫
R+

fR(x, t) dx

denote the fractions of the population that are susceptible, exposed, infected, or recovered
respectively at time t ≥ 0.We also denotewithmp

J (t) themoment of the distribution f J (x, t),
J ∈ C, of order p ≥ 0

mp
S (t) = 1

S(t)

∫
R+

x p fS(x, t) dx, mp
E (t) = 1

E(t)

∫
R+

x p fE (x, t) dx,

mp
I (t) = 1

I (t)

∫
R+

x p f I (x, t) dx, mp
R(t) = 1

R(t)

∫
R+

x p fR(x, t) dx .

Unambiguouslywewill indicatewithmJ (t), J ∈ C, themean values corresponding to p = 1.

2.1 Competence and learning inmulti-agent systems

Drawing inspiration from seminal models for multi-agent systems in presence of personal
competence [29, 31] we introduce a binary interaction term expressing two different pro-
cesses:

(i) learning processes by less competent agents that can learn from the more competent ones
(ii) the competence evolution depends by a social background in which individuals grow.

The dynamics described at point (i) can be easily sketched by the following process: if
two agents belonging to compartment H , J ∈ C and characterized by competence levels
x, x∗ ∈ R+ meet, their post-interaction competence is given by

{
x ′ = (1 − λH (x))x + λC J (x)x∗ + ηH J x

x ′∗ = (1 − λJ (x∗))x∗ + λCH (x∗)x + ηJ H x∗,
H , J ∈ C (1)
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where λH (·), H ∈ C, quantify the amount of competence lost by individuals of compartment
H by the natural process of forgetfulness and the parameter λCH , H ∈ C, models the
competence gained through the interaction with members of the class J , with J ∈ C. A
possible choice for λC J (x) is λC J (x) = λC Jχ(x ≥ x̄), where χ(·) is the characteristic
function and x̄ ∈ X a minimum level of competence required to the agents for increasing
their own skills by interactions. In (1) ηH J and ηJ H are centered iid random variable such
that, denoting by 〈·〉 their expectation, we have 〈

η2H J

〉 = 〈
η2J H

〉 = σ 2
H J .

We suppose that the process defined in (ii) takes place in a different time scale from the
one of interactions between agents. In particular, unlike [19] we assume that the time scale
of online interactions for competence formation is faster than interactions with the social
background. To this end, we will consider advection terms that will be defined in the next
section.

Remark 1 It is reasonable to assume that both the processes of gain and loss of competence
from the interaction with other agents in (1) are bounded by zero. Therefore we suppose that
if J , H ∈ {S, E, I , R}, and if λJ ∈ [λ−

J , λ+
J ], with λ−

J > 0 and λ+
J < 1, and λC J (x) ∈ [0, 1]

then ηH J may, for example, be uniformly distributed in [−1 + λ+
J , 1 − λ+

J ].

2.2 Fake news spreading in presence of a social feature

Following [19] we choose to describe the dissemination of fake news through a population of
agents via a kinetic compartmental model. In this setting the description of the sole spreading
dynamics can be illustrated by the following system of ODEs

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= −βSI + (1 − α)γ I

dE

dt
= βSI − δE

d I

dt
= (1 − η)δE − γ I

d R

dt
= ηδE + αγ I

S + E + I + R = 1.

(2)

Borrowing from the consolidated epidemiological tradition, we will refer to it as the SEIR
model. System (2) describes the evolution of themass fractions of the population that belongs
to each compartment J ∈ C for each time t ≥ 0. The parameters appearing in system (2)
are presented in Table 1. Also a schematic representation of system (2) is given in Fig. 1.
The last equation of system (2) translates the fact that—as specified at the beginning of the
Section—the total mass of the population is preserved.

The combination of the learningmechanisms presented in the previous subsection together
with the spreading of the fake news is described by the following kinetic model:
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Table 1 Parameters definition in the SEIR model (3)

Parameter Definition

β Contact rate between susceptible and infected individuals

1/δ Average decision time on whether or not to spread fake news

η Probability of deciding not to spread fake news

1/γ Average duration of a fake news

α Probability of remembering fake news

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ fS(x, t)

∂t
= −K ( fS, f I )(x, t) + (1 − α(x))γ (x) f I (x, t) + 1

ε

∑
J∈C

QSJ ( fS, f J )(x, t)

+ ∂

∂x
[(λSx − λBSmB) fS(x, t)] ,

∂ fE (x, t)

∂t
= K ( fS, f I )(x, t) − δ(x) fE (x, t) + 1

ε

∑
J∈C

QE J ( fE , f J )(x, t)

+ ∂

∂x
[(λE x − λBEmB) fE (x, t)] ,

∂ f I (x, t)

∂t
= δ(x)(1 − η(x)) fE (x, t) − γ (x) f I (x, t) + 1

ε

∑
J∈C

QIJ( f I , f J )(x, t)

+ ∂

∂x
[(λI x − λBImB) f I (x, t)] ,

∂ fR(x, t)

∂t
= δ(x)η(x) fE (x, t) + α(x)γ (x) f I (x, t) + 1

ε

∑
J∈C

QRJ ( fR, f J )(x, t)

+ ∂

∂x
[(λRx − λBRmB) fR(x, t)] ,

(3)
where the parameter ε describes the intensity of the interactions.

In (3) the functional

K ( fS, f I )(x, t) = fS(x, t)
∫
R+

κ(x, x∗) f I (x∗, t) dx∗ (4)

is the local incidence rate and κ(x, x∗) is a nonnegative contact functionmeasuring the impact
of competence in the spreading of fake news. This function is decreasing with respect to the
competences x, x∗ ≥ 0 of the population of susceptible and infected agents. In the following
we will investigate the macroscopic effects of the following two choices of κ(x, x∗)

(A) Strong competence-based contact function κ(x, x∗) = β/(x x∗), with β > 0,
(B) Weak competence-based contact function κ(x, x∗) = βe−x−x∗ , β > 0.

The two functions are both decreasing but have strong differences for x, x∗ � 1. Indeed,
since (A) is not limited for small competences it enforces the spreading of fake news among
less competent agents compared with (B). Indeed, the function in (B) is bounded in R+. We
further remark that individuals have the highest rates of contact with people belonging to the
same social class, and thus with a similar level of competence.
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S E

R

I

β

(1−
η)δ

ηδ
α
γ

(1−
α)γ

Fig. 1 Dissemination dynamics for the SEIR model (2)

Remark 2 In (3) the parameters are considered to be dependent on the competence level x ,
in general. This is to reflect the fact that competence plays a role in the dissemination of fake
news.

Furthermore, the operators QH J ( fH , f J )(x, t), J ∈ C, describe the binary collisions
(1) and they determine the thermalization of the distribution of competence characterizing
the J th compartment. The advection terms in (3) come models the influence of the social
background on the competence dynamics. It is worth to observe that the evolution of mass
fractions J (t) obeys the classical SEIR model with reinfection (2) by choosing QH J ≡ 0
and κ(x, x∗) = β > 0. This would correspond in considering the spreading a fake news
independent of the competence level of a system of agents.

In more details, we will consider the operatorsQH J as integral operators that modify the
competence distribution through repeated interactions of type (1) among individuals. We can
fruitfully define the introduced operators in weak form as follows

∫
R+

ϕ(x)QH J ( fH , f J ) dx =
〈∫

R
2+

(
ϕ(x ′) − ϕ(x)

)
fH (x, t) f J (x∗, t) dx∗dx

〉
, (5)

where ϕ(·) is a test function and where the brackets 〈·〉 indicate the expectation with respect
to the random variables ηH J , η̃H J .

In the model (3) the function γ (x) > 0 determines the duration of the fake news and can
be strongly influenced by the competence level of the spreader. Furthermore, the function
δ(x) > 0 is related to the average time that an agent eventually spend before the diffusion of
a fake news such that people with high competence invest more time in checking information
reliability, and η(x) ∈ [0, 1] characterizes individuals’ decision to spread fake news. The
function α(x) ∈ [0, 1] describes the probability to remember fake news and can be thought
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less influenced by the competence variable. In Table 1 we summarize all the introduced
parameters.

2.3 Asymptotic states of the learning process

We focus now on the learning dynamics introduced in model (3) whose evolution is given by
the nonlinear operatorsQH J ( fH , f J ), H , J ∈ C, defined in (5). We concentrate in particular
on the analysis of asymptotic states of the learning dynamics undergoing elementary inter-
actions (1). We are therefore interested in the asymptotic distribution of the Boltzmann-type
model

d

dt

∫
R+

ϕ(x) fH (x, t)dx =
∑
J∈C

∫
R
2+
〈ϕ(x ′) − ϕ(x)〉 fH (x, t) f J (x∗, t) dx∗dx

= 1

2

∑
J∈C

∫
R
2+
〈ϕ(x ′) + ϕ(x ′∗)−ϕ(x)−ϕ(x∗)〉 fH (x, t) f J (x∗, t) dx∗dx .

(6)
It is easily observed that if ϕ(x) = 1 the mass is conserved in (6) corresponding to the
conservation of the total number of agents. If ϕ(x) = x in (6) we obtain the evolution of the
average competence in each compartment that is not conserved in time

d

dt
(H(t)mH (t)) =

∑
J∈C

∫
R
2+

〈
x ′ − x

〉
fH (x, t) f J (x∗, t)dx dx∗

= H(t)
∑
J∈C

J (t)(λC JmJ (t) − λHmH (t)),

and the total competence is conserved

d

dt

∑
H∈C

∫
R+

x fH (x, t)dx = 0.

Since the steady state solution of (6) is difficult to obtain, we can formally derive a
simplified Fokker–Planck model in which the study of the asymptotic properties is much
easier. To this end,we introduce the followingquasi-invariant scalingof the relevant parameter
of the binary scheme (1) given by

λH → τλH , λCH → τλCH , σ 2
H J → τσ 2

H J , (7)

with τ > 0. It is worth to mention that the introduced scaling is inspired by the so-called
grazing collision limit of the Boltzmann equation, see [6, 36]. In the context of multi-agent
systems this scaling has been introduced in [8, 33].

In the introduced regime of parameters the interactions become quasi-invariant, in the
sense that the post-interaction competences (x ′, x ′∗) are such that x ′ − x and x ′∗ − x∗ are small
for τ � 1. Hence, assuming ϕ ∈ C0, we can perform the following Taylor expansion

ϕ(x ′) − ϕ(x) = (x ′ − x)
d

dx
ϕ(x) + 1

2
(x ′ − x)2

d2

dx2
ϕ(x) + 1

6
(x ′ − x)3

d3

dx2
ϕ(x̄),
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with x̄ ∈ (min{x, x ′},max{x, x ′}). Hence, in the time scale t/τ we have

d

dt

∫
R+

ϕ(x) fH (x, t)dx

=
∑
J∈C

∫
R
2+
(−λH (x)x + λC J (x)x∗)

dϕ(x)

dx
fH (x, t) f J (x∗, t) dx∗ dx

+
∑
J∈C

σ 2
H J

2

∫
R
2+
x2

d2ϕ(x)

dx2
fH (x, t) f J (x∗, t) dx∗ dx +

∑
J∈C

Rϕ( fH , f J ),

where we exploited the fact that 〈ηH J 〉 = 0 and we have defined the sum of reminder terms

Rτ ( fH , f J ) = 1

2

∫
R
2+

τ(−λH (x)x + λC J (x)x∗)2
d2ϕ(x)

dx2
fH (x, t) f J (x∗, t)dx dx∗

+ 1

6

∫
R
2+

〈
(−λH (x)x+λC J (x)x∗+ηH J x)3

〉
τ

d3ϕ(x)

dx3
fH (x, t) f J (x∗, t)dx dx∗

We may observe that, assuming
〈|ηH J |3

〉
< +∞, then we may write ηH J = √

σ 2η̃H J ,
where we introduced the centered random variable η̃H J with unitary variance and such that〈|η̃|3〉 < +∞. Therefore,

〈|ηH J |3
〉 = (σ 2)3/2

〈|η̃H J |3
〉
and, under the scaling (7), we get〈|ηH J |3

〉 ∼ τ 3/2σ 3/2 . Hence, under the above assumption, proceeding as in [8] we can
prove that for τ → 0+

|Rϕ( fH , f J )(x, t)| → 0.

Therefore in the new time scale, for τ → 0+ and under the quasi-invariant scaling (7), we
can show that the solution of model (6) converges to

d

dt

∫
R+

ϕ(x) fH (x, t)dx

=
∑
J∈C

∫
R
2+
(−λH (x)x + λC J (x)x∗)

dϕ(x)

dx
fH (x, t) f J (x∗, t) dx∗ dx

+
∑
J∈C

σ 2
H J

2

∫
R
2+
x2

d2ϕ(x)

dx2
fH (x, t) f J (x∗, t) dx∗ dx . (8)

Integrating back by parts we have obtained

∂t fH (x, t) = ∂x

[
(λH (x)x −

∑
J∈C

λC J (x)J (t)mJ (t)) fH (x, t) + σ 2

2
∂x (x

2 fH (x, t))

]
,

(9)
with

∑
J∈C σ 2

H J = σ 2, coupled with the following boundary conditions

(λH (x)x −
∑
J∈C

λC J (x)J (t)mJ (t)) fH (x, t) + σ 2

2
∂x (x

2 fH (x, t))
∣∣∣
x=0

= 0,

and

σ 2

2
∂x (x

2 fH (x, t))
∣∣∣
x=0

= 0,
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for all H ∈ C. Assuming then λC J = λH = λ independent by x ∈ R+ for all J , H ∈ C the
steady states f ∞

H (x), H ∈ C are solution of

λ(x − m) f ∞
H (x) + σ 2

2
∂x (x

2 f ∞
H (x)) = 0,

where m = ∑
J∈C J (t)mJ (t) is a conserved quantity as we already observed. Hence, we

obtain that the large time distribution is an inverse Gamma

f ∞
H (x) = H

kμ

�(μ)

e−k/x

x1+μ
,

where

μ = 1 + 2λ

σ 2 , k = (μ − 1)m.

Now, we highlight that for t → +∞ we have fE (x, t), f I (x, t) → 0, which means that

f ∞(x) = f ∞
S (x) + f ∞

R (x).

In view of S∞ + R∞ = 1 we conclude that under the introduced assumptions

f ∞
S (x) = S∞ f ∞, f ∞

R = (1 − S∞) f ∞.

3 Reduced order models for fake news spread with competence

Oncewe have characterized the equilibrium distribution of the transition operatorsQH J (·, ·),
with H , J ∈ C, we can study the complete system (3). The aim of this section is the definition
of observable macroscopic equations of the introduced kinetic model.

Integrating both sides of (3) with respect to x ∈ R+ and recalling that the introduced oper-
ators are mass and momentum preserving, we obtain the following system for the evolution
of the mass fractions J (t), J ∈ C

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
= −

∫
R
2+

κ(x, x∗) fS(x, t) f I (x∗, t)dx dx∗ + (1 − α)γ I (t),

dE(t)

dt
=

∫
R
2+

κ(x, x∗) fS(x, t) f I (x∗, t)dx dx∗ − δE(t),

dI (t)

dt
= δ(1 − η)E(t) − γ I (t),

dR(t)

dt
= δηE(t) + αγ I (t),

(10)

whereas for the momentum we get
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d(S(t)mS(t))

dt
= −

∫
R
2+
xκ(x, x∗) fS(x, t) f I (x∗, t)dx dx∗ + (1 − α)γ I (t)mI (t),

d(E(t)mE (t))

dt
=

∫
R
2+
xκ(x, x∗) fS(x, t) f I (x∗, t)dx dx∗ − δE(t),

d(I (t)mI (t))

dt
= δ(1 − η)E(t)mE (t) − γ I (t)mI (t),

d(R(t)mR(t))

dt
= δηE(t)mE (t) + αγ I (t)mI (t).

(11)
We can observe that the obtained system is not closed since the evolution of mass fractions
J (t) and of themomentum depend on the evolution of the distribution functions f J (x, t). The
closure of the obtained system can be obtained by formally resorting to a limit procedure.
Indeed, assuming that the time scale involved in the process of competence formation is
ε � 1, we have a fast learning process of the system of agents with respect to the evolution
of the spreading of fake news. Therefore, for ε � 1 the distribution function f J (x, t) reaches
fast the inverse Gamma equilibrium with mass fractions J (t) and local mean values mJ (t).

In the following we obtain two different set of macroscopic equations in relation with the
considered contact rate function κ(x, x∗).

3.1 Social closure with a strong competence-based contact function

We consider the case (A) introduced in Sect. 2.2 corresponding to a strong competence-based
contact function defined by κ(x, x∗) = β

xx∗ , β > 0. We have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
= −βHS(t)S(t)HI (t)I (t) + (1 − α)γ I (t),

dE(t)

dt
= βHS(t)S(t)HI (t)I (t) − δE(t),

dI (t)

dt
= δ(1 − η)E(t) − γ I (t),

dR(t)

dt
= δηE(t) + αγ I (t),

(12)

where

HJ (t) =
∫
R+

1

x
f J (x, t) dx . (13)

Therefore, in the limit ε → 0+ we can plug f ∞
J (x) in (13) which becomes

HJ (t) = μ

μ − 1

1

mJ (t)
, (14)
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thanks to the properties of the inverse Gamma distribution, leading to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
= −β

(
μ

μ − 1

)2 S(t)I (t)

mS(t)mI (t)
+ (1 − α)γ I (t),

dE(t)

dt
= β

(
μ

μ − 1

)2 S(t)I (t)

mS(t)mI (t)
− δE(t),

dI (t)

dt
= δ(1 − η)E(t) − γ I (t),

dR(t)

dt
= δηE(t) + αγ I (t).

(15)

Next, looking at (11), recalling that under the hypothesis that λJ = λC J for J ∈ C, the
knowledge exchange operator also preserves momentum, we have the following system of
equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d[mS(t)S(t)]
dt

= −βS(t)
μ

μ − 1

I (t)

mI (t)
+ (1 − α)γmI (t)I (t) + λ(mB − mS(t))S(t),

d[mE (t)E(t)]
dt

= βS(t)
μ

μ − 1

I (t)

mI (t)
− δmE (t)E(t) + λ(mB − mE (t))E(t),

d[mI (t)I (t)]
dt

= δ(1 − η)mE (t)E(t) − γmI (t)I (t) + λ(mB − mI (t))I (t),

d[mR(t)R(t)]
dt

= δηmE (t)E(t) + αγmI (t)I (t) + λ(mB − mR(t))R(t),

(16)
which, using the fact that

d[mJ (t)J (t)]
dt

= J (t)
dmJ (t)

dt
+ mJ (t)

dJ (t)

dt
,

implies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dmS(t)

dt
= β

(
μ

μ − 1

)
I (t)

mI (t)

1

μ − 1
+ (1 − α)γ

I (t)

S(t)

[
mI (t) − mS(t)

]

+ λ(mB − mS(t)),

dmE (t)

dt
= β

(
μ

μ − 1

)
S(t)I (t)

E(t)mI (t)

[
1 − μ

μ − 1

mE (t)

mS(t)

]
+ λ(mB − mE (t)),

dmI (t)

dt
= δ(1 − η)

E(t)

I (t)
(mE (t) − mI (t)) + λ(mB − mI (t)),

dmR(t)

dt
= δη

E(t)

R(t)
(mE (t) − mR(t)) + αγ

I (t)

R(t)
(mI (t) − mR(t))

+ λ(mB − mR(t)),

(17)

that is, we obtained a closed system of eight ordinary differential equations (15), (17).
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3.2 Social closure with a weak competence-based contact function

If, instead, we consider the caseB) of Sect. 2.2, corresponding to the weak competence-based
contact function defined by κ(x, y) = e−xe−y , it is possible to write

H̃J (t) =
∫
R+

e−x f J (x, t)dx . (18)

As discussed in Sect. 3.1, in the limit ε → 0+ we may plug the asymptotic distribution f ∞
J

of the Fokker–Planck model (9) in (18) to obtain

H̃J (t) = 2(μ − 1)μ/2(mJ (t))μ/2
Kμ(2

√
(μ − 1)mJ (t))

�(μ)︸ ︷︷ ︸
:=Cμ(mJ )

,

whereKa(x) stands for the modified Bessel function of the second kind of order a evaluated
at x . Hence, if we consider system (10) under the assumption of weak competence-based
contact function we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
= −β H̃S(t)S(t)H̃I (t)I (t) + (1 − α)γ I (t),

dE(t)

dt
= β H̃S(t)S(t)H̃I (t)I (t) − δE(t),

dI (t)

dt
= δ(1 − η)E(t) − γ I (t),

dR(t)

dt
= δηE(t) + αγ I (t),

(19)

which becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
= −βCμ(mS)Cμ(mI )S(t)I (t) + (1 − α)γ I (t),

dE(t)

dt
= βCμ(mS)Cμ(mI )S(t)I (t) − δE(t),

dI (t)

dt
= δ(1 − η)E(t) − γ I (t),

dR(t)

dt
= δηE(t) + αγ I (t).

(20)

The next equation will help to close the system

∫
R+

x f ∞
J (t)e−k/xe−x dx = mJ (t)J (t)Cμ−1(mJ ), (21)

which is a straightforward consequence of the following property of the modified Bessel
functions of the second kind

x Kμ+1(x) − 2μKμ(x) = x Kμ−1(x), x ∈ R
+.
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Again under the assumptions that λJ = λC J = λ for J ∈ C, integrating with respect to x
Eq. (11), with the aid of Eq. (21), we get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d[mS(t)S(t)]
dt

= −βCμ−1,SCμ,k S(t)mS(t)I (t) + (1 − α)γmI (t)I (t)

+ λ(mB − mS(t))S(t),

d[mE (t)E(t)]
dt

= βCμ−1,SCμ,k S(t)mS(t)I (t) − δmE (t)E(t)

+ λ(mB − mE (t))E(t),

d[mI (t)I (t)]
dt

= δ(1 − η)mE (t)E(t) − γmI (t)I (t) + λ(mB − mI (t))I (t),

d[mR(t)R(t)]
dt

= δηmE (t)E(t) + αγmI (t)I (t) + λ(mB − mR(t))R(t),

(22)

which, using again the fact that

d[mJ (t)J (t)]
dt

= J (t)
dmJ (t)

dt
+ mJ (t)

dJ (t)

dt
,

leads to
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dmS(t)

dt
= −βCμ,I mS(t)I (t)

[
Cμ−1,S mS − Cμ,S

] + (1 − α)γ
I (t)

S(t)

[
mI (t) − mS(t)

]

+ λ(mB − mS(t)),

dmE (t)

dt
= βCμ,I

I (t)S(t)

E(t)

[
Cμ−1,S mS(t) − Cμ,S mE (t)

] + λ(mB − mE (t)),

dmI (t)

dt
= δ(1 − η)

E(t)

I (t)
(mE (t) − mI (t)) + λ(mB − mI (t)),

dmR(t)

dt
= δη

E(t)

R(t)
(mE (t) − mR(t)) + αγ

I (t)

R(t)
(mI (t) − mR(t)) + λ(mB − mR(t)).

(23)

4 Examples and applications

In this section we numerically validate the modeling framework proposed in (3) with local
incidence rate 4 in the settings (A)–(B). We stress that those form of contact functions
generate different macroscopic models that have been defined in (15), (17) and (20), (23),
respectively, for ε � 1. Once established the consistency of the approach, we proceed
by exploiting the macroscopic sets of equations for calibration purposes based on a freely
available repository for the spreading of hashtags linked to known fake news. The proposed
data-oriented approach is fundamental to experimentally observe the different impact of the
contact function in identifying impact of competence in the fake news dynamics.

From the numerical point of view we will exploit an implicit structure preserving method
for the Fokker–Planck operator (9) based on the schemes presented in [32]. The advantage of
these methods relies on an arbitrarily accurate description of the steady state distribution of
the Fokker–Planckmodel of interest. Similar approaches have been investigated in a different
context also in [12, 13, 30].
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Fig. 2 Test 1. Left: numerical distribution obtained with SP implicit scheme at time T = 2 for several ε = 1,
10−1, 10−2, 10−4. Right: evolution of the L2 error ‖ f (x, T ) − f ∞(x)‖L2 . In all the tests we considered a

discretization of the domain [0, 4] obtained with Nv = 201 grid points and �t = 10−4

4.1 Test 1: Validation of the social closure

In this first test we compare the evolution of mass fractions J (t) and means mJ (t), J ∈ C,
obtained from direct integration of f J (x, t), solution to (3), with respect to the competence
x ∈ R+, with the macroscopic models (15), (17) and (20)–(23) for several regimes of ε > 0.
We start by outlining the procedure by which we solve the system of kinetic equations (3)
with Fokker–Planck interaction operators. Since ε > 0 is assumed to be small, we adopt
a time splitting procedure. In particular, upon introducing a time discretization tn = n�t ,
�t > 0 constant, we proceed as follows.

I. Fokker–Planck solver. At time t = tn , we determine the distributions fH (x, t) for all
H ∈ C solution to

⎧⎨
⎩

∂t FH (x, t) = 1

ε
Q(FH )(x, t), t ∈ (tn, tn+1/2]

FH (x, tn) = F0
H (tn, x),

whereQ( fH ) is the Fokker–Planck operator defined inSect. 2.3whose form, in the hypothesis
λH = λC J = λ, is given by

Q(FH )(x, t) = ∂x

[
λ(x − m)FH + σ 2

2
∂x (x

2FH (x, t))

]
.

In this step we take advantage of an implicit structure preserving (SP) scheme for Fokker–
Planck equations [32] and describes with arbitrary accuracy the steady state of the model. In
Fig. 2 we report for several ε = 1, 10−1, 10−2, 10−4 the numerical solution of the Fokker–
Planck model in the time interval [0, T ], T = 2, obtained from a discretization of the domain
[0, 4] with Nv = 201 grid points and with �t = 10−4. We may observe that the scheme is
capable to approximate the inverse Gamma analytical equilibrium f ∞(x). We also report the
evolution of the L2 numerical error computed as ‖ f (x, t)− f ∞(x)‖L2 in the time frame [0, 2]
from which we can observe how for sufficiently small values of ε we correctly approximate
the given equilibrium distribution.
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II. Advection-Reaction step. Hence, we consider the distribution obtained in the interac-
tion step as an input for the advection-reaction dynamics for t ∈ [tn+1/2, tn+1]⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂t fS(x, t) = −K ( fS, f I )(x, t) + (1 − α)γ f I (x, t) + λ∂x [(x − mB) fS(x, t)] ,

∂t fE (x, t) = K ( fS, f I )(x, t) − δ fE (x, t) + λ∂x [(x − mB) fE (x, t)] ,

∂t f I (x, t) = δ(1 − η) fE (x, t) − γ f I (x, t) + λ∂x [(x − mB) f I (x, t)] ,

∂t fR(x, t) = δη fE (x, t) + αγ f I (x, t) + λ∂x [(x − mB) fR(x, t)]

fH (x, tn+1/2) = FH (x, tn+1/2), H ∈ {S, E, I , R}.
In particular, we adopted a second order Lax-Wendroff scheme coupled with an explicit time
integration.

In the test of this subsection, unless otherwise specified, we prescribe as initial datum the
distribution

fH (x, 0) = H(t)
aa21

�(a2)
x−a2−1 exp{−a1/x}, H ∈ {S, E, I , R}, (24)

where a1 = 2(a2 − 1) and a2 = 1.25 with initial mass fractions

S(0) = 0.98, E(0) = 0.018, I (0) = R(0) = 0.001. (25)

We consider the choice of parameters m = ∑
H∈C H(0)mH (0), λ = 0.25 and σ = 0.01 for

(4.1). The fake news dynamics is regulated by the following choice of parameters α = 0.9,
β = 20, γ = 0.2, and δ = 0.05. For contact rates A)–B) we compared the evolution of
mass fractions and mean values obtained from the integration of (3) with the ones derived
in Sect. 3. We consider the time interval [0, T ], T = 12, a uniform time discretization with
�t = 10−4 and ε = 1, 10−4. In particular, Fig. 3 refers to the case κ(x, x∗) = β/xx∗ and
Fig. 4 to the case κ(x, x∗) = βe−x−x∗ . In both cases we may observe that for small values
of ε the obtained macroscopic models are accurate in describing the trends of observable
quantities of the kinetic field model. The macroscopic systems of coupled ODEs has been
solved through a RK4 numerical scheme with �t = 10−4.

4.2 Test 2: A data driven application to Twitter

In this test we focus on the spreading of the fake news by considering available Twitter
data from the repository TweetSets.1 In details, we analyzed the evolution from March to
November, 2020 of the hashtag #facemask related to the COVID-19 pandemic, and of the
hashtags #hurricaneflorence#fakenews both associated to the hurricane Florence
of September 2018 that caused catastrophic damages in USA, particularly in the states of
North Carolina and South Carolina.

In the following we will assume that the competence variable is strongly related to the
education level of a country. The data for the initial distribution of education has been extrap-
olated by the available Italian data from 2011 ISTAT census, and has been considered as
representative data of a prototypical Western country [21]. As underlined in [21] the cumu-
lative distribution of education exhibits a power-law type of tail. For this reason, as an
approximation of the competence distribution we considered an inverse Gamma of the form

g(x) = cc21
�(c2)

e−c1/x

x1+c2
, (26)

1 Justin Littman. (2018). TweetSets. Zenodo. https://doi.org/10.5281/zenodo.1289426.
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Fig. 3 Test 1. Evolution of mass fractions (left) and mean values (right) obtained from direct integration of
the kinetic model (3) in the case κ(x, x∗) = β/(x x∗), for ε = 1, ε = 10−4 together with the evolution of
mass fractions of the macroscopic model (15)–(17). In both cases we considered α = 0.9, β = 20, γ = 0.2,
δ = 0.05. The kinetic model has been solved through the scheme I–II over the domain [0, 4], discretization
obtained with Nv = 201 grid points and �t = 10−4. The initial distribution of the kinetic model has been
defined in (24)–(25)
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Fig. 4 Test 1. Evolution of mass fractions obtained from direct integration of the kinetic model (3) in the case
κ(x, x∗) = βe−x−x∗ , for ε = 1, ε = 10−4 together with the evolution of mass fractions of the macroscopic
model (15)–(17). In both cases we considered α = 0.9, β = 20, γ = 0.2, δ = 0.05. The kinetic model has
been solved through the scheme I–II over the domain [0, 4], discretization obtained with Nv = 201 grid points
and �t = 10−4. The initial distribution of the kinetic model has been defined in (24)–(25)
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Fig. 5 Test 2. Competence distribution and its inverse Gamma approximation f (x) (26) corresponding to
c1 ≈ 0.75, c2 ≈ 1.25 and leading to a mean competence background of mB = 3. Data refers to 2011 Italian
census and are used as representative of a prototypical Western country. On the x-axis we indicated with (1)
lower secondary education, (2) upper secondary education, (3) undergraduate, (4) master, (5) second level
master, (6) doctorate

with c1, c2 > 0 obtained by data fitting. More precisely, we measure the education level on
the scale [0, 6] where 6 represents the education of people with a PhD (see Fig. 5).

4.2.1 Test 2A: Fitting the model to data

Once we have obtained the initial competence distribution together with the value of mB

we can estimate the parameters of the models defined in (15)–(17) and (20)–(23). Several
approaches have been proposed in the literature, see e.g., [25]. It is worth to mention that
several uncertainties are present in data linked to news-monitoring. For example the total
population size is generally unknown and the total number of Twitter accounts represent an
upper bound over the real active users.

The approach adopted in [16], and subsequently in [17, 26], is to treat this quantity as
a parameter to be determined in the minimization process along with the parameters of
the models. To reduce the number of parameters to optimize we follow a different path. In
particular, as initial guess on the total population size, since the datasets that we used for
the fitting were based on U.S. hashtags, we considered that each fake-news spreader has in
average 453 followers.2 Hence, in average wemay expect that the total number of susceptible
is given by the total number of tweets multiplied by the average number of followers. To take
also into account both the number of bots on Twitter as found in [35] (and references therein)
and users whose activity could be not assiduous enough to matter during the lifespan of the
considered fake news, the initial guess was also reduced by a factor of 4.

Let us denote by Î (t) the number of active spreaders obtained from the data, while I (t)
is the number of infectious agents given by the macroscopic differential model. Hence, we
consider the following cost functional

F( Î , I ) =
∥∥∥∥
∫ t f

t0
Î (t)dt −

∫ t f

t0
I (t)dt

∥∥∥∥
L2([t0,t f ])

,

2 Kickfactory, link at https://kickfactory.com/blog/average-twitter-followers-updated-2016/, last accessed:
21th February 2022.
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Fig. 6 Test 2A. Top row: optimization results for #facemask. Bottom row: optimization results for
#florence#fakenews. From right to left: approximation of raw data on the number of tweets, cumulative
distribution and evolution of the mean competence for each compartment

where [t0, t f ] is the time-frame (in h) during which we solve the minimization problem

min
α,β,γ,δ∈R+

F( Î , I ), (27)

whereas η was kept fixed and equal to 0.5.
Since data for the evolution of compartments S, E, R are not at our disposal, as well

is not the initial means value for any of the compartments, we solved the ODE model on
[t�, t0], where t0 is the starting point of the spreading process and t� is a suitable unknown
time previous to t0 starting from single exposed, infectious and recovered individuals. The
idea is to simulate an initial situation for the spread of fake news to happen. Furthermore,
we considered initial mean values equal to the half of the mean background distribution of
competence, i.e. mJ (0) = 1.5.

In Fig. 6 we compare the evolution on the number of tweets regarding the hashtag
#facemask, from 3rd March 2020 to 22 November 2020, and the hashtag
#florence#fakenews, from 11th September 2018 to 4th October 2018, with the evolu-
tion of the model (15), (17). The obtained parameters are reported in Table 2.

In both cases, we may observe that the evolution of the mean competence levels are dif-
ferent in the four compartments and, in particular, that low competence levels are associated
to exposed and infectious agents, i.e., the active spreaders. The outcome reflects the intu-
itive idea that the disinformation could be driven by the lack of capability to recognize an
information as purposely false in the first place.

To better take into account the impact of a competence-based contact rate function
κ(x, x∗), we also computed the associated basic reproduction number Rt using the param-
eters β and γ estimated previously for both datasets, reported in Table 2. Following [4,
19], and omitting the details for brevity, we consider a generalized version of the classical
reproduction number defined as

R(t) =
∫
R+ K ( fS, f I )(x, t) dx∫

R+ γ f I (x, t) dx
, (28)
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Table 2 Test 2A. Estimated parameters for the entire datasets for the hashtags #facemask (second and third
column) and #florence#fakenews (fourth and fifth column)

Parameter #facemask #florence#fakenews
κ(x, x∗) = β/(x x∗) κ(x, x∗) = βe−x−x∗ κ(x, x∗) = β/(x x∗) κ(x, x∗) = βe−x−x∗

α 0.9995 0.9993 1.0000 0.9999

β 0.0122 0.2937 0.0901 0.9999

δ 0.0237 0.0336 1.0000 0.1930

γ 0.0046 0.0079 0.2127 0.9999

Fig. 7 Test 2A. Evolution of Rt in the first 24 h of datasets #facemask (left) and #florence#fakenews
(right) for the parameters estimated in Table 2 relative to the introduced contact functions κ(x, x∗)

where again we leveraged the structure preserving scheme proposed in [32] to perform the
calculations (see Fig. 7).

4.2.2 Test 2B: Forecasting under data uncertainties

To analyze the impact of uncertainties in data and parameters we consider a 3D random
variable z = (z1, z2, z3)with distribution ρ(z). We will suppose that the random vector z has
independent components, i.e. ρ(z) = ρ1(z1)ρ2(z2)ρ3(z3). Taking into account parametric
uncertainties, we consider the estimated model parameters as follows

β(z1) = β0(1 + cβ z1), γ (z2) = γ0(1 + cγ z2), δ(z3) = β0(1 + cδz3), (29)

where we supposed z1, z2, z3 ∼ U([−1, 1]) and cβ, cγ , cδ > 0. As a result, the macroscopic
quantities describing the evolution of compartments result affected by the introduced uncer-
tainties increasing their dimensionality J (z, t),mJ (z, t), J ∈ C. In order to handle efficiently
the introduced uncertainties in the dynamicswe adopt a stochastic collocation approach based
on stochastic Galerkin methods, we refer the interested reader to [38] for an introduction and
to [2, 39] for applications in compartmental modelling of epidemic dynamics. This class of
methods allows to accurately quantify the propagation stochasticity in a parametric differ-
ential model when information on the uncertainties’ distribution are available. We remark
that fast convergence properties hold under suitable regularity assumptions on the problem’s
solution. In details, we construct a 3D sample {zi,k}Mk=0, i = 1, 2, 3, obtained in a collocation
setting through Gauss–Legendre polynomials with M = 5 nodes.
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Fig. 8 Test 2B. Top row: comparison between 14 days (May 3rd–May 14th, 2020) and 7 days (May 3rd–May
10th, 2020) predictions of #facemask based on the model (15), (17) with uncertain parameter (29) with
cβ = 200β0, cγ = 2γ0, cδ = 2×104δ0. Bottom row: comparison between 24 h (September 18th–September
19th, 2018) and 48 h (September 18th–September 20th, 2018) predictions of #florence#fakenews based
on the model (15), (17) with uncertain parameter (29) with cβ = 0.2β0, cγ = γ0, cδ = 2 × 104δ0

In Fig. 8 we display the dynamics of the considered fake-news with respect to available
data. In details, for #florence#fakenews we consider the period from September 11th
2018 to September 21st 2018. We consider two successive prediction horizons respectively
of 1 day, i.e. the parameters of the models are calibrated taking into account data until
September 19th, and a 2 days prediction horizon, where the calibration is based only on data
until September 18th. Regarding #facemask we considered the period from March 3rd to
May 17th. Also in this case we consider two successive prediction horizons of 1 week, i.e.
the parameters of the models are calibrated taking into account data until May3rd, and a two
weeks prediction horizon, where the calibration is based on data until May10th.

We highlight in dashed black and magenta the expected value of the predicted number
of tweets E[I (z, t)] = ∫ 1

0 I (z, t)ρ1(z1)ρ2(z2)ρ3(z3)dz1dz2dz3. Together with the expected
trends we plot the 95% confidence intervals (CI) with respect to the random parameters
β(z1), γ (z2), and δ(z3). The blue shaded band is relative to the variability in γ (z2), the green
shaded to the variability in δ(z3)whereas the shaded red is relative to the variability in β(z1).

4.3 Test 3: Competence background inmisinformation

In this test we perform a retrospective analysis to study how the background could influence
the dissemination of fake news as a result of a different learning process. We recall that the
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Fig. 9 Test 3. Total number of infectious agents for the hashtags #facemask (left) and
#florence#fakenews (right) as a function of the competence background. In both cases, we employed
the parameters reported in Table 2

background modifies through a learning dynamic the effectiveness of the level of knowledge
in identifying fake news. As a consequence high values of the background correspond to a
high level of effectiveness of the competencewhile low valueswill make it difficult to identify
the fake-news. Indirectly, the background acts as a control term which limits the spread of
the misinformation. This can also be interpreted as a process of education specific to the
identification of fake news that allows to limit the so-called knowledge neglect phenomenon
[18].

Weconsider the twodatasets for the hashtags#facemask and#florence#fakenews
with the estimated parameters reported in Table 2 and we increase the value of the compe-
tence level attained by the background, i.e., mB , while keeping fixed the parameters during
the dynamics defined by (15), (17) and (20), (23).

Hence, we performed the test with both choices of a strong and weak competence based
contact function; the results are summarized in Fig. 9. In all cases, we see how increasing
the competence of the background reduces the spread of fake news, leading to a decrease
in the cumulative number of tweets of infectious agents proportional to the increase in the
value of mB . Indeed, we can observe how increasing the competence of the background, we
obtain an evident decrease in the overall misinformation for both the examples considered
#facemask and #florence#fakenews.

Concluding remarks

Despite the digital transformation of governments and the modernization of public adminis-
tration, a global decline in democracy is occurring around the world. The spread of fake news
created for the purpose of polarizing society in certain directions poses a risk to democratic
institutions. The role of individuals’ knowledge and the ability to use it in identifying false
information is deemed of paramount importance.

In this paper starting from a model for the description of fake-news dissemination in the
presence of heterogeneous agents with different levels of competence, through the tools of
kinetic theory, reduced-order models have been derived that allow to keep the effects of the
of competence in the dynamics and that, thanks to their simplified structure, can be interfaced
with data.
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The starting model is inspired, as in much of the literature related to fake-news, to the
epidemiology, so it is based on a compartmental structure. The introduction of competence
allows to analyze complex phenomena of great relevance in contemporary society, such as
the effectiveness of control actions taken to limit the spread of fake news and the role of
knowledge neglect in misinformation.

The methodology adopted in this article is fully general and depends closely on the equi-
librium state of the social variable and the social interaction function at the basis of fake-news
spreading. As a consequence, additional social variables that play a key role in the spread
of misinformation may be embedded in the dynamics using similar arguments. The ability
to have a model that can be interfaced with the available data allowed us to present some
preliminary examples of applications to the case of fake-news spreading on Twitter.
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