
RESEARCH ARTICLE

BinaryCIF and CIFTools—Lightweight, efficient

and extensible macromolecular data

management

David SehnalID
1,2,3☯, Sebastian BittrichID

4☯, Sameer VelankarID
3, Jaroslav KočaID

1,2,

Radka Svobodová1,2, Stephen K. Burley4,5,6,7, Alexander S. RoseID
4*

1 CEITEC, Central European Institute of Technology, Masaryk University, Brno, Czech Republic, 2 National

Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic, 3 Protein

Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute

(EMBL-EBI), Wellcome Genome Campus, Hinxton, UK, 4 RCSB Protein Data Bank, San Diego

Supercomputer Center University of California, San Diego, La Jolla, CA 92093, USA, 5 RCSB Protein Data

Bank, Institute for Quantitative Biomedicine, Rutgers The State University of New Jersey, Piscataway, NJ

08854, USA, 6 Cancer Institute of New Jersey, Rutgers The State University of New Jersey, New Brunswick,

NJ 08903, USA, 7 Skaggs School of Pharmacy and Pharmaceutical Sciences University of California, San

Diego, La Jolla, CA 92093, USA

☯ These authors contributed equally to this work.

* alex.rose@rcsb.org

Abstract

3D macromolecular structural data is growing ever more complex and plentiful in the wake

of substantive advances in experimental and computational structure determination meth-

ods including macromolecular crystallography, cryo-electron microscopy, and integrative

methods. Efficient means of working with 3D macromolecular structural data for archiving,

analyses, and visualization are central to facilitating interoperability and reusability in com-

pliance with the FAIR Principles. We address two challenges posed by growth in data size

and complexity. First, data size is reduced by bespoke compression techniques. Second,

complexity is managed through improved software tooling and fully leveraging available

data dictionary schemas. To this end, we introduce BinaryCIF, a serialization of Crystallo-

graphic Information File (CIF) format files that maintains full compatibility to related data

schemas, such as PDBx/mmCIF, while reducing file sizes by more than a factor of two ver-

sus gzip compressed CIF files. Moreover, for the largest structures, BinaryCIF provides

even better compression—factor ten and four versus CIF files and gzipped CIF files,

respectively. Herein, we describe CIFTools, a set of libraries in Java and TypeScript for

generic and typed handling of CIF and BinaryCIF files. Together, BinaryCIF and CIFTools

enable lightweight, efficient, and extensible handling of 3D macromolecular structural

data.

This is a PLOS Computational Biology Software paper.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008247 October 19, 2020 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Sehnal D, Bittrich S, Velankar S, Koča J,

Svobodová R, Burley SK, et al. (2020) BinaryCIF

and CIFTools—Lightweight, efficient and extensible

macromolecular data management. PLoS Comput

Biol 16(10): e1008247. https://doi.org/10.1371/

journal.pcbi.1008247

Editor: Dina Schneidman-Duhovny, Hebrew

University of Jerusalem, ISRAEL

Received: May 14, 2020

Accepted: August 14, 2020

Published: October 19, 2020

Copyright: © 2020 Sehnal et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The CIFTools

software implementations are available as follows.

The TypeScript implementation was developed on

GitHub as part of Mol� (github.com/molstar/

molstar), is made available as a package on NPM

(npmjs.com/package/molstar) and archived as 10.

5281/zenodo.3947316. The Java implementation is

also developed on GitHub(github.com/rcsb/

ciftools-java), available as a package on Maven

(search.maven.org/artifact/org.rcsb/ciftools-java/)

and archived as 10.5281/zenodo.3948501. The full

BinaryCIF specification is freely available on GitHub

https://orcid.org/0000-0002-0682-3089
https://orcid.org/0000-0003-3576-0387
https://orcid.org/0000-0002-8439-5964
https://orcid.org/0000-0002-2780-4901
https://orcid.org/0000-0002-0893-5551
https://doi.org/10.1371/journal.pcbi.1008247
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008247&domain=pdf&date_stamp=2020-10-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008247&domain=pdf&date_stamp=2020-10-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008247&domain=pdf&date_stamp=2020-10-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008247&domain=pdf&date_stamp=2020-10-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008247&domain=pdf&date_stamp=2020-10-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008247&domain=pdf&date_stamp=2020-10-29
https://doi.org/10.1371/journal.pcbi.1008247
https://doi.org/10.1371/journal.pcbi.1008247
http://creativecommons.org/licenses/by/4.0/
https://github.com/molstar/molstar
https://github.com/molstar/molstar
https://www.npmjs.com/package/molstar
https://doi.org/10.5281/zenodo.3947316
https://doi.org/10.5281/zenodo.3947316
https://github.com/rcsb/ciftools-java
https://github.com/rcsb/ciftools-java
https://search.maven.org/artifact/org.rcsb/ciftools-java/
https://doi.org/10.5281/zenodo.3948501

Introduction

Structural biologists are routinely using macromolecular crystallography (MX) and three-

dimensional (3D) electron microscopy (3DEM) to produce atomic-level structural models

(hereafter structures) of large biomolecular machines and depositing them to the single

global archive of macromolecular structure data, known as the Protein Data Bank (PDB)

[1]. Even larger and more complex 3D structures, such as the Nuclear Pore Complex

(PDBDEV_00000012 [2]), are now coming from integrative (or hybrid) methods (IM) [3] that

use multiple, complementary experimental and computational methods. These evolving and

emerging structure determination methods require many new data items to (i) describe the

state of the macromolecular system, (ii) to reflect the provenance, complexity, and quality of

the underlying experimental data, (iii) to enumerate the computational procedure(s) used for

3D structure modeling, and (iv) to provide assessments of the validity of the structural model

versus chemical reference and experimental data. With respect to file formats and data

exchange in general the growth of structural biology poses two challenges. First, larger struc-

tural models require larger coordinate files and larger experimental data packages (e.g., ribo-

somes or multiple models obtained from time-resolved serial femtosecond crystallography).

Second, larger molecular assemblies that are not resolvable at the atomic level require new

multi-scale descriptions (e.g., coarse-grained beads representing single amino acid residues or

irregular polygons representing protein domains or entire polypeptide chains).

The PDBx/mmCIF dictionary is an extensible data schema that describes macromolecular

complex structures and associated metadata in exquisite detail. It is maintained by the World-

wide Protein Data Bank organization (wwPDB; wwpdb.org and [4]) in collaboration with sci-

entific community working groups, including the PDBx/mmCIF Working Group (wwpdb.

org/task/mmcif), the Hybrid/Integrative Methods Task Force [5], and the Small Angle Scatter-

ing Task Force [6]. PDBx/mmCIF was adopted as the PDB archival format by the wwPDB

organization in 2014 [7]. Since mid-2019, PDBx/mmCIF format files have been mandatory for

all new MX structure depositions to the PDB [8]. Together, the PDBx/mmCIF data dictionary

[9] and the development version of the IM extension dictionary [10] provide complete descrip-

tion of the necessary data categories and items for describing the structure models and associ-

ated metadata in the PDB archive and the PDB-Dev [3] prototype system for IM structural

models.

Data compression techniques are implemented for many different data types including

text, images, video, audio, but also genome sequence, protein sequence, 3D atomic coordi-

nates, etc to address the challenge of efficiently transmitting large sets of data over the internet

so that they are easily accessible for anyone with a web-browser. To compress CIF formated

macromolecular data, we will build on our earlier experience with the MacroMolecular Trans-

mission Format (MMTF), which employed both lossy and lossless encoding strategies to

reduce data redundancy and dynamic range (entropy) [11, 12]. Universal adoption of the

MMTF format was never realized because it relied on a narrowly defined, non-standard data

schema for describing macromolecular structures. Our approach combines MMTF encoding

strategies with the global standard PDBx/mmCIF schema to create a compressed and extensi-

ble format. Instead of creating yet another file format, our approach involves compressible

serialization of CIF data. Previously developed serialization formats for PDB data have not

used CIF (e.g., PDBx/PDBML [13] support serialization of PDB structure data into XML by

defining correspondences between the PDBx/mmCIF dictionary and an XML schema). A

JSON based serialization format, PDBx/mmJSON [14, 15] (pdbj.org/help/mmjson) has also

been proposed but does not include bespoke compression.

PLOS COMPUTATIONAL BIOLOGY BinaryCIF and CIFTools

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008247 October 19, 2020 2 / 13

(github.com/molstar/BinaryCIF) and archived as

10.5281/zenodo.3947470.

Funding: ELIXIR CZ research infrastructure project

(MEYS grant no. LM2018131); European Regional

Development Fund-Project ELIXIR-CZ (no.

CZ.02.1.01/0.0/0.0/16 013/0001777). The RCSB

PDB is jointly funded by grants to SKB from the

National Science Foundation (DBI-1832184), the

National Institutes of Health (R01GM133198), and

the United States Department of Energy (DE-

SSC0019749). The Protein Data Bank in Europe is

supported by European Molecular Biology

Laboratory-European Bioinformatics Institute and

Wellcome Trust [104948]. The funders had no role

in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

http://wwpdb.org
http://www.wwpdb.org/task/mmcif
http://www.wwpdb.org/task/mmcif
https://pdbj.org/help/mmjson
https://doi.org/10.1371/journal.pcbi.1008247
https://github.com/molstar/BinaryCIF
https://doi.org/10.5281/zenodo.3947470

CIF is a lightweight, portable, and extensible format akin to JSON or CSV. Given appropri-

ate software tooling CIF can be used to conveniently store and access macromolecular infor-

mation, including data items that are not defined in the PDBx/mmCIF dictionary. To enable

this use case and to tackle both the size and the complexity challenges posed by advances in

structural biology, we created BinaryCIF, a binary compressed serialization scheme for CIF

files, and CIFTools, a set of libraries in multiple programming languages (currently Java and

TypeScript/JavaScript) for generic and typed access of CIF files.

Design and implementation

CIF Overview: The syntax used in CIF data files and dictionaries is derived from the STAR

(Self-defining Text Archive and Retrieval) grammar [16] and it has been revised to version 1.1.

In its simplest form, a CIF file looks like a paired collection of data item names and values,

where values can be numbers, text, lists, vectors, or tables. CIF uses data blocks to organize

related information and data. Each data block contains one or more categories. Each category

contains one or more columns. Each column within a category contains the same number of

rows. More formally, a CIF file can be described using the list of interfaces given in Code list-

ing 1, where the undefined value represents the dot (.) CIF token, the unknown value is

the question mark CIF token (?).

CIFTools: With the CIFTools library we created a simple non-opinionated interface to CIF

data. We do not impose a specific data representation onto users of the library. Instead, we

offer access to the data as it is laid out in the CIF files. Hence, the CIFTools expose a unified

interface to access data in CIF and BinaryCIF files as specified in Code Listing Listing 1. This

approach allows applications to have their own data structures optimized for particular use

cases. Given a schema, the CIFTools library provides fully typed data access and also supports

schema-less access to CIF files (e.g. for initial prototyping or when no schema is available).

Automatic code generation is available to create schema code from CIF dictionary definition

files. CIFTools have built-in support for schemas to represent mmCIF (including IM), CCD

(Chemical Component Dictionary) and BIRD (Biologically Interesting Molecule Reference

Dictionary) files provided by the wwPDB.

Listing 1. CIF/BinaryCIF file interfaces.

interface File {
getBlock(index: number): Block

}
interface Block {
header: string
getTable(name: string): Table| undefined

}
interface Table {
name: string
rowCount: number
getColumn(name: string): Column | undefined

}
interface Column {
name: string
getValue(rowIndex: number): Value

}
type Value = undefined | Unknown | Number | String

PLOS COMPUTATIONAL BIOLOGY BinaryCIF and CIFTools

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008247 October 19, 2020 3 / 13

https://doi.org/10.1371/journal.pcbi.1008247

Given an instance of a CIF file, the interfaces described in Code Listing 1 can be used to

access any value stored in the file. For example, to access the 3D position of the 10th atom

inside a standard mmCIF format file that stores a molecular structure, we could use the code

given in Code listing 2. Because both CIF and BinaryCIF files implement this interface, pro-

grams consuming the data can be oblivious to the source of the data. This approach means

that adapting existing software that currently supports CIF format for use with BinaryCIF is

very straightforward.

Listing 2. Access the 3D position of 10th atom inside a standard mmCIF file that stores a

molecule.

block = file.getDataBlock(0)
atom_site = block.getCategory(’_atom_site’)
x = atom_site.getColumn(’Cartn_x’).getValue(9)
y = atom_site.getColumn(’Cartn_y’).getValue(9)
z = atom_site.getColumn(’Cartn_z’).getValue(9)
BinaryCIF: The BinaryCIF format abstracts the structure of CIF formatted data and serializ-

ing it in a different way than text-based CIF files. Specific differences between BinaryCIF and

text-based CIF are that in BinaryCIF, data is stored binary-encoded and column-oriented. The

column orientation results in similar information being grouped together. In a text-based CIF

file a single line (i.e. a row) may provide information for a single atom in a molecule. Thus,

each row is a conglomerate of identifying information, 3D coordinates and other items; all of

different data types. BinaryCIF follows a column-centric orientation of this data and groups

similar information together while retaining the overall hierarchy of the original CIF file. This

approach permits creation of a single array of float values to describe a particular data item

(e.g., the x-coordinates of all atoms). Consequently, this arrangement of data enables more effi-

cient encoding versus standard means alone (such as gzip) and is also leveraged by PDBx/

mmJSON [14] and MMTF [12].

Each column is compressed separately using a combination of one or more of the compres-

sion methods enumerated in Table 1; many encodings are identical to MMTF [12] with the

addition of Interval Quantization and String Array encoding. By default, the BinaryCIF

encoder as implemented in CIFTools will determine the combination and parameters of

Table 1. Encodings types supported by the BinaryCIF format.

Encoding How it works Useful for

Byte Array Directly store data Raw data that does not benefit from any

encoding

Fixed Point Multiply numeric value by a constant and store it as

an integer

Floating point values where precision can

be reduced (i.e. coordinate data)

Run Length Store repeating numeric elements as a tuple with the

value and the number of repeats

When combined with delta encoding,

useful for storing linear identifiers

Delta Instead of storing absolute values, store differences

between consecutive elements

Linear identifiers & when combined with

fixed point and integer packing,

coordinate data

Interval

Quantization

Store an interval quantized into 256 (8-bit) or 65536

(16-bit) uniformly distributed discrete steps (values

are rounded to the closest step)

Experimental (density) data

Integer Packing Represent large values using 8 or 16-bit numbers Sequences of data where most values are

small

String Array Store an array of strings by concatenating all unique

strings as pairs of substring indices into the

concatenated one. Effectively encodes repeating

substrings.

All string data, particularly annotations

such as residue names

https://doi.org/10.1371/journal.pcbi.1008247.t001

PLOS COMPUTATIONAL BIOLOGY BinaryCIF and CIFTools

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008247 October 19, 2020 4 / 13

https://doi.org/10.1371/journal.pcbi.1008247.t001
https://doi.org/10.1371/journal.pcbi.1008247

encodings (Table 1) that is optimal, resulting in the minimal number of bytes. Alternatively,

the user can specify encoding for specific columns (e.g., for 3D coordinate data requiring

Fixed Point encoding to convert float values to integers). For lossless encoding of the

Cartn_x, Cartn_y and Cartn_z mmCIF categories, values are multiplied by 1,000.

Smaller values can be specified for lossy encoding which reduces 3D coordinate precision real-

izing smaller file sizes. If present, the unknown (?) and undefined (.) values in a category

are handled by a dedicated mask that is an integer array describing for each row if the corre-

sponding value is present or absent. This array tends to be uniform for a large fraction of cases

and can be readily encoded with the previously described strategies (e.g. Run Length

encoding).

In summary, BinaryCIF is a map-like hierarchy that contains all information about the

employed encodings in a self-descriptive manner. This representation can be readily encoded

using MessagePack (msgpack.org). The resulting BinaryCIF file is self-descriptive vis-a-vis the

combination and parameters of encoding steps used.

String Array Encoding: String data in columns such as atom names or amino acid labels

tends to be highly repetitive. Such redundancy is addressed by a dedicated String Array encod-

ing which concatenates all unique occurrences of a string 1. An array of integer offsets

describes the positions where the original strings exist as substrings in the data string. Another

array of indices captures the order in which these substrings occurred in the original column.

Offsets and index arrays are encoded optimally by managing them as normal integer arrays.

Interval Quantization: Interval Quantization encoding is used to handle experimental 3D

electron density maps from MX or electric coulomb potential maps from 3DEM. It is lossy by

design, representing float values in an interval between minimum (min) and maximum (max)

values using a defined number of equally-sized bins. The lossy encoding stores the index of the

bin that optimally represents a value. Either 256 or 65,536 bins are used as these values capture

the maximal information in 1 or 2 bytes, respectively. A similar strategy can be used to omit

outliers if min and max values are chosen accordingly.

Established Encodings: Fig 1 illustrates encoding strategies employed in BinaryCIF. For

implementation details of previously developed encodings see earlier LiteMol [17] and MMTF

[11, 12] publications. Fixed Point encoding allows lossless representation of float values with n

decimal places by multiplying each value with 10n. Delta encoding stores only the change of a

numeric value with respect to its successor and is, for example, suitable for encoding 3D coor-

dinates of covalently bonded atoms [11]. Run Length encoding is suitable for repetitive values,

such as residue numbers, and collapses sequential repetitions of an integer into a tuple of the

value and the number of occurrences.

Combinations of these strategies enable efficient data encoding. For example, atom identifi-

ers that enumerate each atom with a unique integer value. Their value increases by 1 with each

row, thus Delta encoding yields a vector of 1s that can be collapsed by the Run Length codec to

the value 1 and the number of repetitions equal to the number of atoms. BinaryCIF implemen-

tations in CIFTools employ classifiers that determine the most efficient combination and

parameterization of encodings automatically. This classification scheme is generic, as it does

not require knowledge of the kind of data in a given column and thus works seamlessly for

arbitrary information added by a user or by future extensions of the PDBx/mmCIF schema.

Results

We assessed the performance of the BinaryCIF format together with its Mol� (TypeScript) and

Java library implementations in terms of archive size and read performance.

PLOS COMPUTATIONAL BIOLOGY BinaryCIF and CIFTools

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008247 October 19, 2020 5 / 13

https://msgpack.org
https://doi.org/10.1371/journal.pcbi.1008247

Archive Size: We obtained all mmCIF and MMTF files available from the PDB archive [4]

on 18 July 2019 and converted the mmCIF files to BinaryCIF, yielding 154,015 PDB structure

files in each format. BinaryCIF and mmCIF files were annotated with the chem_comp_bond
category using Mol� [18] (this information is present in MMTF but not the mmCIF files). The

MMTF schema retains only atomic coordinates and a small set of meta-information (see S1

Table); thus, pruned BinaryCIF and mmCIF files containing identical information were

created.

Compression performance

Fig 2 depicts the archive size in various formats, either in their original state or providing only

pruned information, and either uncompressed or compressed by gzip with default parameters.

Pruning roughly halves the archive size when applicable. The pruned, gzipped BinaryCIF

archive occupies 10.5 GB (marginally larger than the MMTF archive at 10.4 GB). When all

data is present in the BinaryCIF representation (something not possible using MMTF), the

Fig 1. Compression strategies of BinaryCIF. The BinaryCIF codec represents diverse data types in a standardized manner: The indices wherein particular

strings occur together with float values can be encoded as integer values. Interval Quantization is the only lossy encoding. For integer arrays the most efficient

combination of Run Length, Delta, and Integer Packing is detected. This approach allows management of arbitrary data and even columns that are not defined

by any schema. MessagePack is employed downstream of BinaryCIF encoding.

https://doi.org/10.1371/journal.pcbi.1008247.g001

PLOS COMPUTATIONAL BIOLOGY BinaryCIF and CIFTools

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008247 October 19, 2020 6 / 13

https://doi.org/10.1371/journal.pcbi.1008247.g001
https://doi.org/10.1371/journal.pcbi.1008247

compressed archive size is quite reasonable at 18.0 GB. As expected, binary formats store mac-

romolecular data with high efficiency. In all cases, gzipping individual archive files drastically

reduces their size; the effect is particularly pronounced for the text-based mmCIF format. The

original version of the archive in BinaryCIF greatly benefits from gzip compression because

the employed encoding strategies of each column are described as quite verbose strings (e.g.

StringArray) that can be compressed efficiently.

An important advantage of the BinaryCIF format is, that the larger the data is, the higher

compression factor that can be achieved with BinaryCIF. It is ideal for delivery and processing

of macromolecular data, because whereas the operation with small-and intermediate-sized

structures is relatively easy, work with enormous structures remains challenging making file

size reduction essential. We examined the efficiency of BinaryCIF and gzipped BinaryCIF on

four challenging structural biology data sets: The first contains only one structure of the

human immunodeficiency virus or HIV capsid (PDB ID 3j3q), the largest structure stored in

the PDB archive. The second data set contains the 1000 thousand largest structures found in

the PDB (S2 Table). Fig 3 summarizes achievable compression levels. For 3j3q, BinaryCIF pro-

vides approximately factor ten compression versus CIF files and approximately factor four

Fig 2. Archive sizes. Archive sizes for 154,015 files are given in GB (see S1 Text). Original refers to the content of the original structure files. Pruned resembles the set

of information provided by MMTF files (see S1 Table). Use of BinaryCIF yields an archive size similar to MMTF.

https://doi.org/10.1371/journal.pcbi.1008247.g002

PLOS COMPUTATIONAL BIOLOGY BinaryCIF and CIFTools

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008247 October 19, 2020 7 / 13

https://doi.org/10.1371/journal.pcbi.1008247.g002
https://doi.org/10.1371/journal.pcbi.1008247

versus gzipped CIF files. For the 1000 largest PDB structures, BinaryCIF files are about six

times smaller than CIF files, and gzipped BinaryCIF files are about 2.5 times smaller than

gzipped CIF files. The third data set consists of 137,543 structure factor files that include all

reflections used during x-ray structure determination (S1 Fig). Structure factors stored as

BinaryCIF are about three times smaller than CIF files, gzipped BinaryCIF files provide about

1.5 times smaller file sizes than gzipped CIF files. The fourth data set contains the 1000 largest

structure factor files (S2 Fig) and shows similar compression rates.

Read performance

After documenting that BinaryCIF enables efficient storage of macromolecular data, we

assessed read performance for the entire PDB archive (see S1 Text). Average run times are pro-

vided in Figs 4 and 5. Again, we used the pruned representation of the archive for objective

comparison. Pruning of information speeds up mmCIF and BinaryCIF parsing dramatically.

Efficient data delivery, therefore, can be accomplished by omitting information from files that

will not be required for the task at hand. For performance critical applications, such as search-

ing the entire archive, custom versions of the archive can omit data for which access is not

Fig 3. Large structures. BinaryCIF provides the most effective compression for the largest structures, enumerated in S2 Table.

https://doi.org/10.1371/journal.pcbi.1008247.g003

PLOS COMPUTATIONAL BIOLOGY BinaryCIF and CIFTools

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008247 October 19, 2020 8 / 13

https://doi.org/10.1371/journal.pcbi.1008247.g003
https://doi.org/10.1371/journal.pcbi.1008247

required. Creating such an archive is relatively straightforward using CIFTools (and the Binar-

yCIF/mmCIF specification).

Gzip compression leads to a decrease in read performance for all runs with exception of

Mol� reading original BinaryCIF data. Potentially gzipping increases read performance on

conventional HDDs where IO is slower. For our setup using a SSD, the trade-off between

fewer IO operations and additional decompression CPU load is unfavorable.

mmCIF reading is slower due to larger data files and the need to parse the data. Read per-

formance of binary data is higher: additional decoding steps are required but the amount of

disk access is minimized and string parsing is avoided.

Availability and future directions

CIFTools: We created open source CIFTools implementations in two languages, TypeScript

and Java, and published them in common package repositories. Both implementations have

support for reading and writing BinaryCIF and text-based CIF files plus CIF dictionary/

schema management (for usage examples see S2 Text). The TypeScript implementation was

Fig 4. Read performance of JavaScript implementation. Average single-threaded parsing time for 154,015 PDB structures is given in minutes. Reading of binary data

(BinaryCIF and MMTF) can provide a dramatic speedup. Handling gzipped files slows down parsing in most cases. Read performance can be easily improved by

omitting less used meta-information as seen for the pruned bins.

https://doi.org/10.1371/journal.pcbi.1008247.g004

PLOS COMPUTATIONAL BIOLOGY BinaryCIF and CIFTools

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008247 October 19, 2020 9 / 13

https://doi.org/10.1371/journal.pcbi.1008247.g004
https://doi.org/10.1371/journal.pcbi.1008247

developed on GitHub as part of Mol� (github.com/molstar/molstar), is made available as a

package on NPM (npmjs.com/package/molstar) and archived as 10.5281/zenodo.3947316.

The Java implementation is also developed on GitHub (github.com/rcsb/ciftools-java), avail-

able as a package on Maven (search.maven.org/artifact/org.rcsb/ciftools-java/) and archived as

10.5281/zenodo.3948501.

BinaryCIF: The new format is stable at Version 1.0 and ready to be implemented by inter-

ested parties. The full BinaryCIF specification is freely available on GitHub (github.com/

molstar/BinaryCIF) and archived as 10.5281/zenodo.3947470. BinaryCIF was originally devel-

oped for use in LiteMol [17] including the CoordinateServer and DensityServer which have

been in production use at PDBe since 2017. The use of BinaryCIF for volumetric data provides

significant advantage over using the CCP4/MRC format by providing the ability to deliver

multiple volumes in a single request, including additional metadata, at negligible computa-

tional overhead (see supplementary information of [17]).

A number of software applications and libraries already include support for handling Binar-

yCIF data. The Mol� Viewer (molstar.org/viewer, [18]) implements full BinaryCIF support

and uses it for data delivery in its ModelServer and VolumeServer data delivery tools and to

load PDBx/mmCIF files encoded as BinaryCIF. The BioJava project (biojava.org) has support

Fig 5. Read performance of Java implementation. Average single-threaded parsing time for 154,015 PDB structures are given in minutes.

https://doi.org/10.1371/journal.pcbi.1008247.g005

PLOS COMPUTATIONAL BIOLOGY BinaryCIF and CIFTools

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008247 October 19, 2020 10 / 13

https://github.com/molstar/molstar
https://www.npmjs.com/package/molstar
https://doi.org/10.5281/zenodo.3947316
https://github.com/rcsb/ciftools-java
https://search.maven.org/artifact/org.rcsb/ciftools-java/
https://doi.org/10.5281/zenodo.3948501
https://github.com/molstar/BinaryCIF
https://github.com/molstar/BinaryCIF
https://doi.org/10.5281/zenodo.3947470
https://molstar.org/viewer
https://biojava.org
https://doi.org/10.1371/journal.pcbi.1008247.g005
https://doi.org/10.1371/journal.pcbi.1008247

for reading and writing macromolecular model BinaryCIF files using the ciftools-java package

(github.com/rcsb/ciftools-java). Jmol (github.com/BobHanson/Jmol-SwingJS) has support for

reading and writing electron density maps as BinaryCIF. The python-ihm package (github.

com/ihmwg/python-ihm) supports reading and writing BinaryCIF files containing IM

mmCIF data.

Discussion

Herein, we presented tools for lightweight, efficient and extensible handling of 3D macromo-

lecular structure data of ever-growing size and complexity. Our BinaryCIF serialization format

provides state-of-the-art compression, while maintaining full compatibility with current and

future CIF data schemas. For example, BinaryCIF is compatible with the PDBx/mmCIF format

required for all MX depositions to the PDB archive. It is also already compatible with the

emerging CIF schema for 3D structural models obtained from integrative methods. We

achieve compatibility by decoupling the ‘what-is-stored’ in a file from the ‘how-it-is-stored’.

BinaryCIF always stores the same data as its corresponding CIF file but it does so more effi-

ciently to support faster loading of smaller files. Performance can be further improved by cre-

ating CIF files tailored to specific tasks (e.g., atomic displacement parameters and deposition

details are not needed to compute structure alignments). The pruned mmCIF files provided

for comparison with MMTF illustrate this very well. Users have the flexibility to remove (or

add) data as they see fit.

The CIFTools libraries (presently available for Java and TypeScript) provide an efficient

mechanism way for developers to add support for reading and writing Binary and CIF files

alike to their programs without imposing any specific data model for providing access to all

the data categories and items in the file. With respect to the ever changing field or structural

biology it is important for file formats to keep up with changes necessary for describing and

managing new data items while maintaining backwards compatibility. The mmCIF dictionary

has proven readily extensible, with many new biologically crucial data categories added since

its inception. The mmCIF schema is also versatile enabling automatic transformations into

XML (PDBx/PDBML) and JSON (mmJSON). Our work adds transparent binary serialization

and state-of-the-art compression to the CIF toolbox.

Supporting information

S1 Fig. Size of structure factors. Snapshot of 137,543 files as of 8 July 2020.

(PDF)

S2 Fig. Size of largest structure factors.

(PDF)

S1 Table. The mmCIF categories used for the reduced representation.

(PDF)

S2 Table. The 1000 largest entries in the PDB archive.

(XLSX)

S1 Text. Benchmark details.

(PDF)

S2 Text. Usage examples.

(PDF)

PLOS COMPUTATIONAL BIOLOGY BinaryCIF and CIFTools

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008247 October 19, 2020 11 / 13

https://github.com/rcsb/ciftools-java
https://github.com/BobHanson/Jmol-SwingJS
https://github.com/ihmwg/python-ihm
https://github.com/ihmwg/python-ihm
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008247.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008247.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008247.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008247.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008247.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008247.s006
https://doi.org/10.1371/journal.pcbi.1008247

Acknowledgments

We thank Lukáš Pravda, Karel Berka, and Bob Hanson for helpful discussion. We gratefully

acknowledge contributions from members of the RCSB PDB and PDBe and our other wwPDB

partners.

Author Contributions

Conceptualization: David Sehnal, Sebastian Bittrich, Alexander S. Rose.

Funding acquisition: Sameer Velankar, Jaroslav Koča, Radka Svobodová, Stephen K. Burley.

Software: David Sehnal, Sebastian Bittrich, Alexander S. Rose.

Supervision: Sameer Velankar, Jaroslav Koča, Radka Svobodová, Stephen K. Burley, Alexan-

der S. Rose.

Visualization: David Sehnal, Sebastian Bittrich, Alexander S. Rose.

Writing – original draft: David Sehnal, Sebastian Bittrich, Alexander S. Rose.

Writing – review & editing: David Sehnal, Sebastian Bittrich, Sameer Velankar, Jaroslav

Koča, Radka Svobodová, Stephen K. Burley, Alexander S. Rose.

References
1. Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic acids

research. 2018; 47(D1):D520–D528.

2. Kim SJ, Fernandez-Martinez J, Nudelman I, Shi Y, Zhang W, Raveh B, et al. Integrative structure and

functional anatomy of a nuclear pore complex. Nature. 2018; 555(7697):475. https://doi.org/10.1038/

nature26003 PMID: 29539637

3. Burley SK, Kurisu G, Markley JL, Nakamura H, Velankar S, Berman HM, et al. PDB-Dev: a prototype

system for depositing integrative/hybrid structural models. Structure. 2017; 25(9):1317–1318. https://

doi.org/10.1016/j.str.2017.08.001 PMID: 28877501

4. Berman H, Henrick K, Nakamura H. Announcing the worldwide protein data bank. Nature Structural &

Molecular Biology. 2003; 10(12):980. https://doi.org/10.1038/nsb1203-980

5. Sali A, Berman H, Schwede T, Trewhella J, Kleywegt G, Burley S, et al. Outcome of the First wwPDB

Hybrid/Integrative Methods Task Force Workshop. Structure. 2015; 23(7):1156–1167. https://doi.org/

10.1016/j.str.2015.05.013. PMID: 26095030

6. Trewhella J, Hendrickson W, Kleywegt G, Sali A, Sato M, Schwede T, et al. Report of the wwPDB

Small-Angle Scattering Task Force: Data Requirements for Biomolecular Modeling and the PDB. Struc-

ture. 2013; 21(6):875–881. https://doi.org/10.1016/j.str.2013.04.020. PMID: 23747111

7. Berman HM, Kleywegt GJ, Nakamura H, Markley JL. The Protein Data Bank archive as an open data

resource. Journal of computer-aided molecular design. 2014; 28(10):1009–1014. https://doi.org/10.

1007/s10822-014-9770-y

8. Adams PD, Afonine PV, Baskaran K, Berman HM, Berrisford J, Bricogne G, et al. Announcing manda-

tory submission of PDBx/mmCIF format files for crystallographic depositions to the Protein Data Bank

(PDB). Acta Crystallographica Section D. 2019; 75(4):451–454. https://doi.org/10.1107/

S2059798319004522

9. Westbrook JD, Bourne PE. STAR/mmCIF: An ontology for macromolecular structure. Bioinformatics.

2000; 16(2):159–168. https://doi.org/10.1093/bioinformatics/16.2.159

10. Vallat B, Webb B, Westbrook JD, Sali A, Berman HM. Development of a Prototype System for Archiving

Integrative/Hybrid Structure Models of Biological Macromolecules. Structure. 2018; 26(6):894–904.e2.

https://doi.org/10.1016/j.str.2018.03.011.

11. Valasatava Y, Bradley AR, Rose AS, Duarte JM, Prlić A, Rose PW. Towards an efficient compression

of 3D coordinates of macromolecular structures. PLOS ONE. 2017; 12(3):e0174846. https://doi.org/10.

1371/journal.pone.0174846

12. Bradley AR, Rose AS, Pavelka A, Valasatava Y, Duarte JM, Prlić A, et al. MMTF—An efficient file for-

mat for the transmission, visualization, and analysis of macromolecular structures. PLOS Computa-

tional Biology. 2017; 13(6):e1005575. https://doi.org/10.1371/journal.pcbi.1005575 PMID: 28574982

PLOS COMPUTATIONAL BIOLOGY BinaryCIF and CIFTools

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008247 October 19, 2020 12 / 13

https://doi.org/10.1038/nature26003
https://doi.org/10.1038/nature26003
http://www.ncbi.nlm.nih.gov/pubmed/29539637
https://doi.org/10.1016/j.str.2017.08.001
https://doi.org/10.1016/j.str.2017.08.001
http://www.ncbi.nlm.nih.gov/pubmed/28877501
https://doi.org/10.1038/nsb1203-980
https://doi.org/10.1016/j.str.2015.05.013
https://doi.org/10.1016/j.str.2015.05.013
http://www.ncbi.nlm.nih.gov/pubmed/26095030
https://doi.org/10.1016/j.str.2013.04.020
http://www.ncbi.nlm.nih.gov/pubmed/23747111
https://doi.org/10.1007/s10822-014-9770-y
https://doi.org/10.1007/s10822-014-9770-y
https://doi.org/10.1107/S2059798319004522
https://doi.org/10.1107/S2059798319004522
https://doi.org/10.1093/bioinformatics/16.2.159
https://doi.org/10.1016/j.str.2018.03.011
https://doi.org/10.1371/journal.pone.0174846
https://doi.org/10.1371/journal.pone.0174846
https://doi.org/10.1371/journal.pcbi.1005575
http://www.ncbi.nlm.nih.gov/pubmed/28574982
https://doi.org/10.1371/journal.pcbi.1008247

13. Westbrook J, Ito N, Nakamura H, Henrick K, Berman HM. PDBML: the representation of archival mac-

romolecular structure data in XML. Bioinformatics. 2004; 21(7):988–992.

14. Bekker GJ, Nakamura H, Kinjo AR. Molmil: a molecular viewer for the PDB and beyond. Journal of Che-

minformatics. 2016; 8(1):42. https://doi.org/10.1186/s13321-016-0155-1

15. Kinjo AR, Bekker GJ, Wako H, Endo S, Tsuchiya Y, Sato H, et al. New tools and functions in data-out

activities at Protein Data Bank Japan (PDBj). Protein Science. 2018; 27(1):95–102. https://doi.org/10.

1002/pro.3273 PMID: 28815765

16. Hall SR. The STAR file: a new format for electronic data transfer and archiving. Journal of Chemical

Information and Computer Sciences. 1991; 31(2):326–333.

17. Sehnal D, Deshpande M, Vařeková RS, Mir S, Berka K, Midlik A, et al. LiteMol suite: interactive web-

based visualization of large-scale macromolecular structure data. Nature Methods. 2017; 14(12):1121–

1122. https://doi.org/10.1038/nmeth.4499 PMID: 29190272

18. Sehnal D, Rose A, Koca J, Burley S, Velankar S. Mol*: Towards a Common Library and Tools for Web

Molecular Graphics. In: Byska J, Krone M, Sommer B, editors. Workshop on Molecular Graphics and

Visual Analysis of Molecular Data. The Eurographics Association; 2018.

PLOS COMPUTATIONAL BIOLOGY BinaryCIF and CIFTools

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008247 October 19, 2020 13 / 13

https://doi.org/10.1186/s13321-016-0155-1
https://doi.org/10.1002/pro.3273
https://doi.org/10.1002/pro.3273
http://www.ncbi.nlm.nih.gov/pubmed/28815765
https://doi.org/10.1038/nmeth.4499
http://www.ncbi.nlm.nih.gov/pubmed/29190272
https://doi.org/10.1371/journal.pcbi.1008247

