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ABSTRACT

Objectives: While well-designed clinical decision support (CDS) alerts can improve patient care, utilization man-

agement, and population health, excessive alerting may be counterproductive, leading to clinician burden and

alert fatigue. We sought to develop machine learning models to predict whether a clinician will accept the ad-

vice provided by a CDS alert. Such models could reduce alert burden by targeting CDS alerts to specific cases

where they are most likely to be effective.

Materials and Methods: We focused on a set of laboratory test ordering alerts, deployed at 8 hospitals within

the Partners Healthcare System. The alerts notified clinicians of duplicate laboratory test orders and advised

discontinuation. We captured key attributes surrounding 60 399 alert firings, including clinician and patient vari-

ables, and whether the clinician complied with the alert. Using these data, we developed logistic regression

models to predict alert compliance.

Results: We identified key factors that predicted alert compliance; for example, clinicians were less likely to

comply with duplicate test alerts triggered in patients with a prior abnormal result for the test or in the context

of a nonvisit-based encounter (eg, phone call). Likewise, differences in practice patterns between clinicians

appeared to impact alert compliance. Our best-performing predictive model achieved an area under the re-

ceiver operating characteristic curve (AUC) of 0.82. Incorporating this model into the alerting logic could have

averted more than 1900 alerts at a cost of fewer than 200 additional duplicate tests.

Conclusions: Deploying predictive models to target CDS alerts may substantially reduce clinician alert burden

while maintaining most or all the CDS benefit.
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INTRODUCTION

Clinical decision support (CDS) is among the most powerful tools

health systems can deploy to optimize clinical decision-making, utili-

zation management, and population health.1–14 Hospitals will often

build CDS within their electronic health record (EHR) systems to

support laboratory and radiology test ordering and medication pre-

scribing.2–4,7–12,15 For example, common pharmacy-related CDS

targets include alerts around critical drug-drug interactions and

proper dosing of medications in the setting of renal insufficiency.5,16

Likewise, CDS may provide warnings when a clinician is attempting

to order a laboratory test that is inappropriate for the patient2,3,8,11–

13,17–21 or may assist clinicians in selecting the most appropriate im-

aging study for their patient.4 Other common CDS targets include

reminders regarding preventative care and notifications regarding

potentially overlooked diagnoses.22,23

While CDS has enormous value, health systems must deploy

CDS judiciously; every CDS intervention has costs in terms of clini-

cian alert burden.2,3,9,24–26 Excessive CDS alerts, and especially ir-

relevant ones, tend to lead to clinician annoyance and distract

precious time and attention away from critical patient-care activi-

ties.2,3,9,24–26 Eventually, clinicians, when faced with an endless

stream of alerts, will simply start to ignore alerts altogether, even

those related to critical patient-safety issues in a phenomenon de-

scribed as “alert fatigue.”24–26 A common approach to combating

alert fatigue is to minimize use of CDS and not build alerts around

many important, yet not top priority, clinical situations. However,

simply avoiding use of CDS, while perhaps effective in combatting

alert fatigue, has the obvious drawback that it limits the important

benefits of CDS. In this regard, informaticians and health systems

often view CDS implementation decisions in terms of a delicate

tradeoff between alert burden and CDS benefit.

In the initiative described in this manuscript, we considered that

a CDS alert that fires, but the clinician ignores, is essentially

“wasted”; such an alert produces costs in terms of alert burden with-

out a corresponding benefit in terms of a change in patient manage-

ment. Eliminating these wasted alerts would reduce alert burden

without trading off benefit. We hypothesized that we could develop

machine learning models to predict whether a clinician is likely to

accept or override a given alert. Such models might then be applied

to suppress alerts likely to be ignored (and only fire on those likely

to be accepted) thereby reducing alert burden while maintaining

most of the alert benefit.

To develop such an approach, we considered alerts surrounding

duplicate laboratory test orders.11,12,17,18 As the name implies, a

“duplicate” test occurs when the same test is repeated in the same

patient across a time interval that is too short to provide meaningful

new information.17 The acceptable time interval for repeating a test

varies by clinical circumstance and by analyte and may range from a

matter of minutes in select circumstances for blood gases to never

for germline genetic tests. Duplicate testing is common, particularly

when patients are seen by multiple clinicians, who may each order

the same test, not knowing about their colleagues’ orders.27 Collec-

tion, performance, and interpretation of duplicate laboratory tests

wastes laboratory, nursing, and physician resources.28 Duplicate

testing can also lead to false-positive findings and necessitate addi-

tional unneeded downstream testing.28 Most computerized provider

order entry (CPOE) systems include the capacity for duplicate alert-

ing but these systems may not be used due to the aforementioned

risk of alert burden and alert fatigue.25,29–32

In this report, we specifically considered duplicate laboratory

test alerts implemented across 8 hospitals and 115 different tests.

Using performance data from these alerts, we developed a series of

machine learning models to predict, based on clinical context,

whether a clinician will comply with the alert. Finally, we simulated

how predictive models might be used to drive “smart” alerting pro-

tocols intended to reduce alert burden while maintaining most of the

alerting benefit.

MATERIALS AND METHODS

Setting
We implemented duplicate test alerts (as described in detail below)

within the EHR at Partners HealthCare and monitored alert perfor-

mance during a study period consisting of 8 consecutive months in

2019. Partners is a multi-hospital, not-for-profit healthcare system.

We specifically evaluated data from 8 Partners HealthCare hospitals

(2 academic medical centers: Brigham and Women’s Hospital and

Massachusetts General Hospital; and 6 regional/community-based

hospitals: Brigham and Women’s Faulkner, North Shore Medical

Center, Newton Wellesley Hospital, Cooley Dickinson Hospital,

Martha’s Vineyard Hospital, and Nantucket Cottage Hospital). The

Partners HealthCare system used Epic version 2018 (Epic Clinical

Systems, Verona, WI) as its EHR system during the study period.

This project was completed as a quality improvement initiative,

and, as such, formal review by the institutional review board (IRB)

was not required, per IRB protocol.

LAY SUMMARY

Health systems often build clinical decision support (CDS) alerts into their electronic health records systems to help clini-

cians with decisions such as which laboratory tests to order. A common problem with CDS is that clinicians often see so

many alerts that they begin to reflexively overlook them, a phenomenon known as alert fatigue. In this article, we looked at

alerts designed to notify clinicians when they attempt to order a laboratory test on a patient who already had the test re-

cently. The so-called “duplicate” test orders subject to these alerts were often, but not always, placed in error. We devel-

oped a machine learning model to predict for each alert that fired whether the clinician seeing it would accept the alert (ie,

remove the duplicate test order) or conversely override it. We postulated that this model could be used to determine when

to fire an alert. Using our proposed approach, the electronic health record would only display alerts likely to be accepted,

thereby reducing the number of alerts that clinicians see (“alert burden”) with minimal impact on the number of duplicate

laboratory tests ordered. We simulated the impact of our model and proposed implementation strategy and show that it has

substantial potential utility.
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Duplicate test alerts
Within the EHR, we implemented interruptive alerts that prompted

providers to discontinue orders for testing considered to be duplica-

tive using standard Epic functionality. We defined test-specific

“lookback” periods (Supplementary Table S1) for 115 different tests

based on laboratory and clinician input. Alerts were set to fire when

a clinician selected a laboratory order for a test on a patient that had

a prior result for the same test within the look period. The trigger

for alert firing was the selection of a test order, either from the

results of a search or from selection from a predefined menu or order

set item. For example, the hemoglobin A1c duplicate check would

fire if a provider selected a hemoglobin A1c order on a patient with

a prior hemoglobin A1c within 30 days (30 days is the hemoglobin

A1c lookback period). These alerts were implemented as “soft

stops” as the alerts gave users the option to accept the alert’s advice

and discontinue the order or to bypass the alert and continue with

the order. A representative screenshot of an alert is provided as Fig-

ure 1.

Key characteristics surrounding the order, clinician, and patient

that triggered each alert (Table 1) and whether the alert was ulti-

mately accepted or overridden were derived from data extracted

from Epic using Epic Clarity reporting functionality. Although we

initially reviewed performance of alerts implemented across 115 dif-

ferent tests, we focused most of our analysis on 5 key tests: hemoglo-

bin A1c, ferritin, vitamin B12, 25 hydroxy vitamin D, and TSH. We

selected these 5 tests based on alert frequency, acceptance rate, and

a desire to include tests ordered across a range of settings. We ana-

lyzed outpatient alerting separately from inpatient/emergency de-

partment (ED) alerting (but considered inpatient/ED alerts together)

since outpatient care pathways and workflows tend to be quite dif-

ferent from those in the inpatient and ED settings.

Factors impacting alert acceptance
We used logistic regression to interrogate the impact of key clinical

and contextual predictor variables on alert compliance. For this

analysis, we trained separate models for each test.

Predictive models
For each of the 5 key tests, we randomly split the outpatient data

(excluding cases where a future expected date were set as discussed

further in the results) into training and testing partitions in an ap-

proximately 80:20 ratio. Using the training partition, we trained lo-

gistic regression models and evaluated model performance using the

testing partition. We did not build predictive models for the inpa-

tient/ED dataset since the compliance was high at baseline.

Impact of individual provider practice patterns
To evaluate whether differences in practice patterns between clini-

cians impacted alert compliance, we pooled outpatient data (exclud-

ing orders with an expected date set) across the 5 key tests. We then

trained 2 additional logistic regression models using the training

partition of this pooled data. One model, the “provider-independent

model” used only the predictors from Table 1. The other model, the

“provider-specific” model, included the specific provider as a fea-

ture, in addition to the predictors from the provider-independent

model (including the provider specialty). Thus, other factors being

equal, the provider-specific model would predict a lower likelihood

of alert compliance for a clinician who is generally less compliant

with alerts (and vice versa). The model would assess whether a clini-

cian is “generally” more or less likely to comply with alerts based on

the clinicians’ compliance in the training data, after adjusting for

other variables.

More specifically, the provider-specific model treated providers

as a fixed effect and thus the model assigned a unique intercept to

each clinician. The models treated each providers’ individual impact

as constant across all 5 tests. The impact of all other predictors (eg,

those in Table 1) was allowed to vary by test (ie, a separate coeffi-

cient was included for each test-predictor combination; each test

was also allowed a test-specific intercept, but providers were only

allowed a single intercept adjustment across all tests). The provider-

independent model was structurally identical, except for the absence

of provider-specific effects. The provider-specific model can be de-

scribed symbolically in Equation 1 as provided in the Supplementary

information.

Providers who saw fewer than 20 alerts within the training data

were assigned to a generic category of “other” and were not in-

Table 1. Predictor variables

Predictor variable Definition/derivation

Hospital type (academic vs community) Extracted the hospital associated with each alert and grouped hospitals

as academic (2 hospitals) or community (6 hospitals).

Department specialty (eg, neurology) The specialty of the clinician seeing the alert as defined in the EHR.

Specialty age (pediatric vs adult) Applied a custom grouper to the department specialties. Based on the

clinician’s primary specialty, not necessarily the patient age.

Provider type The type of provider seeing the alert. Used definitions from our EHR and

grouped into the categories attending, NP/PA, trainee, and “other.”

Prior result abnormal (yes or no) Based on whether the prior results for the test on which the alert fired

was within the laboratory’s normal reference range.

EHR: electronic health record; NP: nurse practitioner; PA: physician assistant.

Figure 1. Screenshot of duplicate test alert “soft stop.” The prior test result

value and date are shown, and the provider can decide to continue with the

duplicate order or cancel the order. Permission to use this image was

obtained from Epic Systems Corporation.
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cluded individually in the model. We chose to pool data across tests

for this analysis to obtain meaningful data regarding providers who

may not have seen the alert very many times for any given test but

did see the alert across tests a sufficient number of times.

Alert burden reduction
We simulated what would happen if we applied trained models to

determine whether to fire the alert. We assumed a model application

in which the alert would fire only if (1) the order was a duplicate

(per the criteria used in this study) and (2) the model predicted that

the clinician would accept the alert with a likelihood greater than a

predetermined probability threshold. By varying this probability

threshold, we considered both the additional duplicate tests that

would likely be ordered and the reduction in alert burden compared

to alerting criteria implemented during this study. We assumed that

the duplicate test would be performed if the alert did not fire (ie, the

model had predicted noncompliance was likely) and considered ac-

tual alert acceptance data to evaluate which duplicate tests were pre-

vented by the alert.

Predictor category groupings
Within categorical predictor variables, specific categories occurring

in fewer than 2.5% of the cases in the training data (or all data in

the analysis of predictor variable importance) were grouped into a

generic “other” category. For example, specialties seeing an alert for

a given test very few times were grouped together as “other”.

Data analysis
Data analyses and statistical evaluations were performed using the

R statistical scripting language33 with initial data preprocessing per-

formed using Microsoft Access and Excel. Logistic regression mod-

els were generated using functionally in the R stats package. We did

not apply any L1 or L2 penalties to the logistic regression because

we wanted our coefficients and models to be maximally interpret-

able (and we further found that regularization would not have been

particularly useful given the general concordance between training

and testing performance). Alert compliance rates were compared us-

ing the Fisher exact test. Models were evaluated using area under

the ROC curve (AUroC) and area under the precision-recall curve

(AUprC). Binomial confidence intervals were calculated using the

Wilson method as implemented in the R “binom” package. Plots

were generated using the R ggplot2 package.34

RESULTS

Alert characteristics
With input from laboratory leadership and following clinician re-

view, we defined health system-wide duplicate alerts for 115 indi-

vidual laboratory orders as discussed in the Materials and Methods

section and in Supplementary Table S1. A screenshot from a repre-

sentative alert is provided as Figure 1.

Across the 115 tests, the duplicate test alerts triggered 60 399

times during the 8-month study period across the 8 hospitals. Over-

all, 21.5% of the duplicate alerts were in the inpatient/ED setting

(11 027 inpatient and 1935 ED alerts out of the 60 399 total alerts).

78.5% of the alerts (47 437 out of 60 399) were in the outpatient

settings.

The overall compliance for the inpatient/ED duplicate order

alerts was 66.9% (95% CI, 66.1%–67.7%; 8670 orders removed

following 12 962 alerts). The overall compliance for the outpatient

duplicate order alerts was significantly lower (P<10�6) at 12.7%

(95% CI 12.4%–13.0%; 6038 orders removed following 47 437

alerts). The frequency of firing and the compliance rates for the top

Figure 2. Shown are the total number of duplicate alerts by test for outpatient encounters (bottom left) and inpatient/ED encounters (top left). Bar colors indicate

whether the clinician was compliant with the alert (did not proceed with the order) or was noncompliant. Percent compliance for outpatient (bottom right) and in-

patient/ED encounter (top right) represents the proportion of alerts for which the clinician did not proceed with the order. This analysis demonstrates that most

duplicate alerts are displayed on outpatient encounters; moreover, alerts displayed on outpatient encounters have a much lower compliance rate. The tests in-

cluded in this figure represent the 15 tests with the most duplicate alerts across both inpatient/ED and outpatient encounters. ED: emergency department.
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15 inpatient/ED alerts and the top 15 outpatient alerts by volume

are shown in Figure 2. In addition, Supplementary Table S2 provides

a comparison of inpatient/ED to outpatient alerting for 5 key tests.

Given that outpatient alerts were generally ignored and given that

the outpatient setting represented the majority of the total duplicate

test alert burden, we decided to focus our subsequent analysis pri-

marily on outpatient alerting.

Impact of future expected date
In some outpatient situations, providers may be ordering tests that

are not intended to be drawn until a future date. For example, a pro-

vider might order a hemoglobin A1c during an office visit for the pa-

tient to have collected in 6 months, prior to the patient’s next visit.

To place an order for future collection within our EHR, the clinician

must first select the order and then subsequently add the expected

date. Since the duplicate alerts trigger on order selection, the alert

would trigger before the clinician has an opportunity to set the

expected date. Thus, clinicians intending to set an expected data will

often see an alert that is of little use. Indeed, 40.8% of the outpatient

alerts (19 335 out of 47 437) fired on orders where the clinician

went on to set an expected date. However, even if we eliminate the

alerts from our analysis where the clinician went on to set an

expected date, the overall compliance for the remaining outpatient

alerts was still only 21.5% (6038 out of 28 102). The 21.5% com-

pliance rate suggests that the alert was likely reducing duplicate test-

ing only modestly, and at a high cost in terms of alert burden. We

thus sought to develop a predictive model that could improve outpa-

tient alerting as will be described subsequently.

Factors impacting alert compliance
As a first step toward understanding factors that impact alert accep-

tance, we trained a series of logistic regression models for 5 key tests

(as discussed in the Materials and Methods section). We trained sep-

arate models for each test and encounter type. As shown (Figure 3),

having a prior abnormal result for the test was uniformly associated

with a lower likelihood of accepting the alert (though only statisti-

cally significant for some tests). Orders entered on outpatient

encounters in which the patient did not have a visit (eg, phone calls)

were uniformly associated with a trend toward lower alert compli-

ance that was statistically significant for all tests except ferritin.

Trainees, NPs/PAs, and other providers were in most cases more

compliant in the outpatient setting compared to attendings. The im-

pact of hospital type (academic vs community) varied by test as

shown in Figure 3. Specialist compliance as compared to primary

care physician (PCP) compliance varied by test and setting (Figure 3).

Predictive modeling
We trained logistic regression and random forest models for each of

the 5 key tests to predict whether outpatient alerts would be ac-

cepted or overridden. Our intention was to begin developing an al-

gorithm that could be applied prospectively to determine whether to

fire an alert. As described in the Materials and Methods section, we

Figure 3. Shown are odds ratios for each predictor variable based on logistic regression models (separate models trained for each test). Cell colors indicate the

odds ratio; shades of green indicate the predictor is associated with greater alert compliance (in comparison to the reference level shown to the right), while

shades of red indicate associations with lower compliance. White cells indicate that the specified predictor category was not represented in enough alerts to be

included in the model.

Table 2. Performance of initial outpatient alert compliance models

Test AUroC AUprC

Training Testing Training Testing

25-OH Vitamin D 0.72 0.68 0.81 0.79

Ferritin 0.75 0.78 0.94 0.94

Hemoglobin A1C 0.70 0.69 0.81 0.81

TSH 0.78 0.78 0.95 0.92

Vitamin B12 0.79 0.76 0.88 0.84

AUroC, area under the receiver operating characteristic (ROC) curve;

AUprC, area under the precision-recall curve.
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trained these models on a training partition and evaluated using a

randomly selected testing partition. The performance of each model

for each test is shown in Table 2. The models overall provided mod-

erate discriminative power (AUC 0.69–0.78, testing data) in predict-

ing alert acceptance.

Individual provider impact
Across the training and testing data, 1912 unique clinicians saw the

alerts; most of these clinicians saw the alert very few times (medians

alerts per clinician¼3; 1–6.25 interquartile range). However, some

clinicians frequently encountered this alert; for example, within the

training partition, 119 clinicians saw at least 20 alerts. We hypothe-

sized that these clinicians seeing the alert frequently may respond to

it differently than other clinicians. We further hypothesized that

these clinicians seeing the alert frequently may likewise demonstrate

interprovider variation in compliance rates.

To test these hypotheses, we trained 2 additional logistic regres-

sion models as discussed in the Materials and Methods section: a

“provider-independent model” using only the predictors considered

previously and a “provider-specific model” that considered who the

specific ordering clinician seeing the alert was for the 119 clinicians

who had seen the alert 20 or more times within the training data.

(The remaining clinicians were grouped into a reference class of

“other”.) We trained the models using data from the training data

pooled across the 5 tests (but allowed test-specific slopes and inter-

cepts for all predictors besides the specific clinician) and tested it on

testing data pooled across the 5 tests.

As shown in Figure 4, the provider-specific model outperformed

the provider-independent model (baseline model), suggesting that

knowledge of the specific clinician is useful in understanding alert

acceptance, even after adjusting for other factors. While we suspect

that this is due to differences in practice patterns between clinicians,

it is possible that in some cases, the clinician may be serving as a

confounder for clinical or contextual variables not otherwise cap-

tured in our predictive models. Figure 4 also plots the odds ratio of a

given provider against the significance (P-value) of that odds ratio

being different than 1. This analysis demonstrated that a substantial

number of providers are significantly more or less likely to comply

with alerts, again suggesting that provider practice patterns exert a

significant influence on provider alert acceptance rates.

Supplementary Table S3 provides specific characteristics of the

provider-specific model (built using pooled data across the 5 tests)

when applied at various probability cutoffs. Overall, this model

achieved an AUroC of 0.82 and an AUprC of 0.94 on the testing

data.

Achievable alert burden reduction
We analyzed the impact of using our provider-specific model to de-

cide whether to fire the alert. In particular, we considered a strategy

in which we only fire the alert if (1) the tests order is a duplicate

Figure 4. Shown (left) are ROC curves for logistic regression models. The base model (“provider-independent model”) includes as predictors general characteris-

tics of the order setting, prior result, department and specialty, paralleling the predictors included in the previously described models. The provider-specific also

includes as predictors the specific clinician seeing the alert, for all providers seeing at least 20 alerts. The provider-specific model outperformed the base model

on independent test data, suggesting the likelihood of difference between individual providers in alert compliance patterns, even after adjusting for other factors.

Shown (right) are the provider-specific odds ratios and corresponding P-values for individual providers.
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according to current duplicate flagging logic and (2) the provider-

specific model predicts a substantial likelihood that the clinician will

accept the alert. Compared to current state, such an approach would

reduce the number of alerts (alert burden) at the expense of some ex-

tra duplicate tests getting performed. However, as shown in Figure 5

by applying the model at a suitable sensitivity/specificity threshold,

such an approach could substantially reduce the alert firing rate

(alert burden) while only modestly increasing the number of tests.

As an example, at a “cost” of fewer than 200 extra tests, we could

avert more than 1900 alerts within the testing data. (The rate of

saved alerts and extra tests would presumably scale 5-fold if imple-

mented prospectively, since it could apply to all alerts, not just the

testing partition and would also scale over time.) This suggests that

a key to optimizing alerting and combating alert fatigue may not

simply be to reduce the number of alerts, but to use “intelligent”

models to decide when to fire them.

DISCUSSION

We provide an analysis of CDS alerts related to duplicate laboratory

test orders across 8 hospitals and 115 different tests. In addition, we

developed logistic regression and random forest-based predictive

models to predict whether a clinician will accept or override an alert

and illustrate how such models might be applied to a smart alerting

strategy intended to reduce alert burden and minimize alert fatigue.

We demonstrate overall high levels of alert compliance in the inpa-

tient and ED settings. In the outpatient setting, in contrast, we ob-

served a significant alert burden with variable, but overall poor

compliance. Key factors that impacted outpatient alert acceptance

varied by test.

The best-performing predictive model we developed (the

provider-specific model derived from data pooled across the 5 key

tests) achieved an AUroC of 0.82 and an AUprC of 0.94 in deter-

mining whether an outpatient alert would be accepted or overrid-

den. Moreover, we show that this model, if applied to determine

whether to fire the alert, could lead to a large reduction in alert bur-

den with only a modest number of additional tests. The additional

tests may be even fewer than predicted since reducing ineffective

alerts could make remaining ones more potent.

Of note, the predictive modeling results described in this manu-

script were all based on logistic regression models. Our primary mo-

tivation for focusing on logistic regression as opposed to other types

of machine learning models was that we wanted models that were

interpretable and would be feasible to implement. While we consid-

ered a variety of other common supervised machine learning

approaches including random forests, support vector machines, and

artificial neural networks, these more complex models in many cases

appear as a “black box” and can be difficult for end-users to intuit.

In contrast, logistic regression coefficients can be easily translated

into odds ratios to identify the impact of various factors in predict-

ing whether an alert will be accepted, and the overall logistic regres-

sion model can be understood by a person. Likewise, while

implementation of more complex machine learning models within

the EHR may be theoretically possible, implementing a logistic re-

gression model would generally be much more straightforward since

it can be encoded as arithmetic operations and if-then statements. In

earlier iterations of our analysis, we had tested use of random forest

models. However, the random forest models appeared to offer little

if any benefit in terms of improved performance and would have

had the limitations noted above.

The observation that a substantial number of individual clini-

cians are significantly more or less likely to comply with the alerts

even after adjusting for key clinical factors is important. We postu-

late that this interclinician variation represents differences in prac-

tice, although we cannot exclude the possibility of confounding with

the clinician serving as a surrogate for important clinical or contex-

tual variables. To the extent that the clinician is serving as a surro-

gate for other unincluded variables, the interclinician variation

appearing in our models may represent an overestimate of the true

clinician impact. Interclinician variation in practice patterns would

be consistent with our prior observations from our institution as

well as reports from other hospitals regarding wide interclinician

variation in lab test ordering and other clinical care practices.3,4,35–

38 We plan to further explore this variation in future work; if the

clinicians who routinely ignore alerts do not have a sound clinical

foundation for doing so, it may be that a targeted educational strat-

egy could be more effective than simply exempting these clinicians

from seeing the alerts in many cases (as the models would effectively

Figure 5. Shown is a plot of the alert burden reduction that could have been achieved by using the provider-specific model to determine whether to fire alerts in

relation to additional tests that would have been performed. Paralleling the ROC curve, this analysis assumes alerts would only be fired if the predicted likelihood

of compliance exceeded a specified cutoff threshold; we constructed the curve shown by varying the cutoff threshold. For example, if we were to set the sensitiv-

ity/specificity of the model to eliminate 1900 alerts (y-axis), this would be expected to result in few than 200 (x-axis) additional tests being ordered. For compari-

son, we show a similar curve for a model that uses a random number generator to decide whether to fire an alert. The random number model (negative control)

as expected achieves poor performance in comparison to the trained model.
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do). We may also explore as future work the extent to which inclu-

sion of the clinician is simply serving as a surrogate for other varia-

bles that were not included in the model. In addition, future work

exploring the development of models incorporating a wider range of

features such as patient-diagnoses and problem lists may be useful in

optimizing model performance.

More generally, we anticipate that this concept of using predictive

models to determine alert firing may represent an important new para-

digm in combating alert fatigue. Considering that most “online” experi-

ences from internet search to advertisement display are customized to

individual users, it may make sense to use similar techniques to optimize

interactions between clinicians and their EHRs.

Szymanski et al39 recently published an analysis of inpatient dupli-

cate laboratory testing alerts with some findings similar to our find-

ings here. For example, they too found that alert compliance varied

by test, and provider specialty. They also identified significant predic-

tors of alert compliance including month of the year and overall clini-

cian alert burden, which we did not include in our analysis. However,

our analysis expands on the work of Szymanski et al in 2 key ways.

First, we focus on outpatient alerts, for which we found compliance

to be much lower. Second, we simulate the impact that a prediction

model might have on alert burden and test utilization. Likewise, a

few prior studies have used machine learning and other analytics to

examine alert compliance with the goal of alert suppression and re-

duction of alert future. For example, Chen et al40 model compliance

with a vaccine reminder alert and implement their model to suppress

selected alerts; their study demonstrated promising results. Other

prior studies (such as Wong et al41) examine factors related to deci-

sion support compliance. Moreover, numerous prior works have in-

corporated machine learning models trained based on a clinical

outcome (eg, will the patient develop sepsis) into alerting logic.42

However, few studies (Chen et al noted above being a rare exception)

have explored the development of a predictive model to determine

whether to fire a traditional rule-based alert as we do here. To our

knowledge, this is the first study to examine this approach in the con-

text of an alert related to laboratory or diagnostic test ordering.

Our study has several limitations. While we considered data

across 8 hospitals, they were all within the same health system with

each hospital using the same set of alerts and duplicate rules. Future

work at other health systems may further support the generalizabil-

ity of the approach. In addition, while we anticipate that similar

approaches may be useful for a variety of CDS alerts related not

only to laboratory testing but also many other areas of care, addi-

tional work will be needed to adapt and generalize to these other

applications. Another consideration is that even our best-performing

predictive model was only able to achieve moderate performance

(AUroC 0.82); nonetheless, as we show, even this moderate perfor-

mance could be sufficient to substantially reduce provider alert bur-

den. Our analytic dataset reflected the clinician’s response to each

alert and not the ultimate set of test orders that were in place at the

end of the encounter. Thus, in cases where clinicians accepted the

alert and then subsequently reordered the test or conversely rejected

the alert and then subsequently canceled the test order, our analysis

may not reflect the final test orders. However, we suspect that these

cases comprise a small proportion of the total and would not be par-

ticularly impactful with regard to the proposed application of our

models. Nonetheless, we may as future work quantifies the impact

of orders changes made subsequent to alert acceptance or rejection.

Finally, while we were able to model the impact of the predictive

algorithm-based alerting strategy we developed, future work apply-

ing this approach into practice will be needed to fully validate it.

CONCLUSIONS

Taken together, we present this work both to illustrate the factors

that impact compliance with CDS for duplicate testing and to dem-

onstrate that a predictive model may enable smart alerting that

reduces overall alert burden. We hope and anticipate that future

work will confirm and generalize our findings to a wide range of

CDS applications. With clinicians facing severe alert fatigue, sub-

stantial EHR-related time demands, a high level of overall adminis-

tration burden and in some cases, burnout, such strategy may be

critically important in optimizing patient care, improving clinician

efficiency, and enabling better patient and clinician experiences.

FUNDING

This work received no extramural funding. It was undertaken as an internal

quality improvement initiative.

AUTHOR CONTRIBUTIONS

Data extraction and/or assembly: JMB, ASD, and DM. Statistical

analysis: JMB. Project conception and analytic approach: JMB and

ASD. Data interpretation: JMB, RH, and ASD. Manuscript drafting:

JMB and ASD. Manuscript revision: all authors.

SUPPLEMENTARY MATERIAL

Supplementary material is available at Journal of the American

Medical Informatics Association online.

CONFLICT OF INTEREST STATEMENT

Dr. JMB is a computational pathology consultant for Roche Diag-

nostics; however, this manuscript does not directly relate to his

work with Roche.

DATA AVAILABILITY

The raw patient data underlying this article cannot be shared as do-

ing so would compromise patient privacy and would violate institu-

tional policies and legal requirements.

REFERENCES

1. Bennett P, Hardiker NR. The use of computerized clinical decision sup-

port systems in emergency care: a substantive review of the literature. J

Am Med Inform Assoc 2017; 24 (3): 655–68.

2. Baron JM, Dighe AS. Computerized provider order entry in the clinical

laboratory. J Pathol Inform 2011; 2 (1): 35.

3. Baron JM, Dighe AS. The role of informatics and decision support in utili-

zation management. Clin Chim Acta 2014; 427: 196–201.

4. Weilburg JB, Sistrom CL, Rosenthal DI, et al. Utilization management of

high-cost imaging in an outpatient setting in a large stable patient and pro-

vider cohort over 7 years. Radiology 2017; 284 (3): 766–76.

5. Payne TH, Hines LE, Chan RC, et al. Recommendations to improve the

usability of drug-drug interaction clinical decision support alerts. J Am

Med Inform Assoc 2015; 22 (6): 1243–50.

6. Middleton B, Sittig DF, Wright A. Clinical decision support: a 25 year ret-

rospective and a 25 year vision. Yearb Med Inform 2016; 25 (Suppl 1):

S103–16.

7. Monteiro L, Maricoto T, Solha I, Ribeiro-Vaz I, Martins C, Monteiro-

Soares M. Reducing potentially inappropriate prescriptions for older

8 JAMIA Open, 2021, Vol. 00, No. 0



patients using computerized decision support tools: systematic review. J

Med Internet Res 2019; 21 (11): e15385.

8. Baron JM, Lewandrowski KB, Kamis IK, Singh B, Belkziz SM, Dighe AS. A

novel strategy for evaluating the effects of an electronic test ordering alert

message: optimizing cardiac marker use. J Pathol Inform 2012; 3 (1): 3.

9. Bates DW, Kuperman GJ, Wang S, et al. Ten commandments for effective

clinical decision support: making the practice of evidence-based medicine

a reality. J Am Med Inform Assoc 2003; 10 (6): 523–30.

10. Krasowski MD, Chudzik D, Dolezal A, et al. Promoting improved utiliza-

tion of laboratory testing through changes in an electronic medical record:

experience at an academic medical center. BMC Med Inform Decis Mak

2015; 15 (1): 11.

11. Procop GW, Keating C, Stagno P, et al. Reducing duplicate testing: a com-

parison of two clinical decision support tools. Am J Clin Pathol 2015; 143

(5): 623–6.

12. Procop GW, Yerian LM, Wyllie R, Harrison AM, Kottke-Marchant K.

Duplicate laboratory test reduction using a clinical decision support tool.

Am J Clin Pathol 2014; 141 (5): 718–23.

13. Jackups R Jr. The promise-and pitfalls-of computerized provider alerts for

laboratory test ordering. Clin Chem 2016; 62 (6): 791–2.

14. Sutton RT, Pincock D, Baumgart DC, Sadowski DC, Fedorak RN,

Kroeker KI. An overview of clinical decision support systems: benefits,

risks, and strategies for success. NPJ Digit Med 2020; 3 (1): 17.

15. Page N, Baysari MT, Westbrook JI. A systematic review of the effective-

ness of interruptive medication prescribing alerts in hospital CPOE sys-

tems to change prescriber behavior and improve patient safety. Int J Med

Inform 2017; 105: 22–30.

16. Vogel EA, Billups SJ, Herner SJ, Delate T. Renal drug dosing. Effective-

ness of outpatient pharmacist-based vs. Prescriber-based clinical decision

support systems. Appl Clin Inform 2016; 7 (3): 731–44.

17. Jha AK, Chan DC, Ridgway AB, Franz C, Bates DW. Improving safety

and eliminating redundant tests: cutting costs in U.S. hospitals. Health Aff

(Millwood) 2009; 28 (5): 1475–84.

18. Magid S, Forrer C, Shaha S. Duplicate orders: an unintended consequence

of computerized provider/physician order entry (CPOE) implementation:

analysis and mitigation strategies. Appl Clin Inform 2012; 3 (4): 377–91.

19. Rubinstein M, Hirsch R, Bandyopadhyay K, et al. Effectiveness of practi-

ces to support appropriate laboratory test utilization: a laboratory medi-

cine best practices systematic review and meta-analysis. Am J Clin Pathol

2018; 149 (3): 197–221.

20. Rudolf JW, Dighe AS. Decision support tools within the electronic health

record. Clin Lab Med 2019; 39 (2): 197–213.

21. Kwon JH, Reske KA, Hink T, Jackups R, Burnham CD, Dubberke ER.

Impact of an electronic hard-stop clinical decision support tool to limit re-

peat Clostridioides difficile toxin enzyme immunoassay testing on test uti-

lization. Infect Control Hosp Epidemiol 2019; 40 (12): 1423–6.

22. Baron JM, Cheng XS, Bazari H, et al. Enhanced creatinine and estimated

glomerular filtration rate reporting to facilitate detection of acute kidney

injury. Am J Clin Pathol 2015; 143 (1): 42–9.

23. Peiffer-Smadja N, Rawson TM, Ahmad R, et al.. Machine learning for

clinical decision support in infectious diseases: a narrative review of cur-

rent applications. Clin Microbiol Infect 2020; 26 (5): 584–95.

24. Chaparro JD, Hussain C, Lee JA, Hehmeyer J, Nguyen M, Hoffman J. Re-

ducing interruptive alert burden using quality improvement methodology.

Appl Clin Inform 2020; 11 (1): 46–58.

25. Ash JS, Sittig DF, Campbell EM, Guappone KP, Dykstra RH. Some unin-

tended consequences of clinical decision support systems. AMIA Annu

Symp Proc 2007; 2007: 26–30.

26. Carroll AE. Averting alert fatigue to prevent adverse drug reactions.

JAMA 2019; 322 (7): 601.

27. Bazari H, Palmer WE, Baron JM, Armstrong K. Case records of the

Massachusetts General Hospital. Case 24-2016. A 66-year-old man

with malaise, weakness, and hypercalcemia. N Engl J Med 2016;

375 (6): 567–74.

28. Huck A, Lewandrowski K. Utilization management in the clinical labora-

tory: an introduction and overview of the literature. Clin Chim Acta 2014;

427: 111–7.

29. Ancker JS, Edwards A, Nosal S, Hauser D, Mauer E, Kaushal R, with the

HITEC Investigators. Effects of workload, work complexity, and repeated

alerts on alert fatigue in a clinical decision support system. BMC Med In-

form Decis Mak 2017; 17 (1): 36.

30. Lam JH, Ng O. Monitoring clinical decision support in the electronic

health record. Am J Health Syst Pharm 2017; 74 (15): 1130–3.

31. Kane-Gill SL, O’Connor MF, Rothschild JM, et al. Technologic distrac-

tions (part 1): summary of approaches to manage alert quantity with in-

tent to reduce alert fatigue and suggestions for alert fatigue metrics. Crit

Care Med 2017; 45 (9): 1481–8.

32. Yoshida E, Fei S, Bavuso K, Lagor C, Maviglia S. The value of monitoring

clinical decision support interventions. Appl Clin Inform 2018; 9 (1):

163–73.

33. R Core Team. R: A Language and Environment for Statistical Computing.

Vienna, Austria: R Foundation for Statistical Computing; 2013.

34. Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York,

NY: Springer-Verlag; 2016.

35. Lipitz-Snyderman A, Sima CS, Atoria CL, et al. Physician-driven variation

in nonrecommended services among older adults diagnosed with cancer.

JAMA Intern Med 2016; 176 (10): 1541–8.

36. Shahbazi S, Woods SJ. Influence of physician, patient, and health care sys-

tem characteristics on the use of outpatient mastectomy. Am J Surg 2016;

211 (4): 802–9.

37. Doctor K, Breslin K, Chamberlain JM, Berkowitz D. Practice pattern vari-

ation in test ordering for low-acuity pediatric emergency department

patients. Pediatr Emerg Care 2018; doi: 10.1097/

PEC.0000000000001637.

38. Nguyen LT, Guo M, Hemmelgarn B, et al. Evaluating practice variance

among family physicians to identify targets for laboratory utilization man-

agement. Clin Chim Acta 2019; 497: 1–5.

39. Szymanski JJ, Qavi AJ, Laux K, Jackups R Jr. Once-per-visit alerts: a

means to study alert compliance and reduce repeat laboratory testing.

Clin Chem 2019; 65 (9): 1125–31.

40. Chen J, Chokshi S, Hegde R, et al. Development, implementation, and

evaluation of a personalized machine learning algorithm for clinical deci-

sion support: case study with shingles vaccination. J Med Internet Res

2020; 22 (4): e16848.

41. Wong A, Amato MG, Seger DL, et al. Prospective evaluation of

medication-related clinical decision support over-rides in the intensive

care unit. BMJ Qual Saf 2018; 27 (9): 718–24.

42. Baron JM, Kurant DE, Dighe AS. Machine learning and other

emerging decision support tools. Clin Lab Med 2019; 39 (2):

319–31.

JAMIA Open, 2021, Vol. 00, No. 0 9




