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SUMMARY

Structuralmean models (SMMs) were originally formulated to estimate causal effects among those se-

been established that SMMs can identify these causal effects in randomized placebo-controlled trials under
fairly weak assumptions. SMMs are now being used to analyze other types of study where identification
depends on ano effect modificationassumption. We highlight how this assumption depends crucially on
the unknown causal model that generated the data, and so is difficult to justify. However, we also highlight
that, if treatment selection is monotonic, additive and multiplicative SMMs do identify local (or complier)
causal effects, but that the double-logistic SMM estimator does not without further assumptions. We
clarify the proper interpretation of inferences from SMMs by means of an application and a simulation
study.

Keywords: Causal inference; Complier average causal effects; Instrumental variables; Local average treatment
effects; Principal stratification.

1. INTRODUCTION

Robins (1989, 1994) introduced the class of semiparametric structural mean models (SMMs) and
“G-estimation” for inferences about the causal effects of treatment regimes on outcomes from random-
ized controlled trials affected by noncompliance. Noncompliance comes about in encouragement designs
where participants can choose treatments other than those to which they were randomized. Of most interest
are SMM estimators that allow for the effects of nonignorable noncompliance, that is, where participants
choose their treatments in a manner associated with their study outcomes, even after baseline (and pos-
sibly time-varying) covariates have been adjusted for. We note that alternative approaches for obtaining
causal inferences have also been proposed (e.g.,Goetghebeurand others, 1998).

The parameters of SMMs correspond to meaningful functions of expected potential outcomes for the
population of participants exposed to the treatment. For example, additive SMMs are specified in terms of
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lecting treatment in randomized controlled trials affected by nonignorable noncompliance. It has already
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average treatment (or causal) effects, and multiplicative SMMs in terms of causal risk ratios.Vansteelandt
and Goetghebeur(2003) developed the generalized SMM and we consider the important special case of
the logistic SMM and its “double-logistic” estimator for causal odds ratios (OR).Hernan and Robins
(2006) review additive and multiplicative SMMs and consider the relationship with econometric instru-
mental variable estimators;Goetghebeur and Vansteelandt(2005) review all of the SMMs considered
here.

In this paper, we consider the estimation of causal effects using SMMs from studies with binary out-
comes. More precisely, we consider the conditions under which each SMM estimator identifies its target
causal parameter, and the consequences arising if these conditions do not hold. Until recently, generalized
SMMs had mainly been applied to randomized placebo-controlled trials, for which the identification issue
is fairly straightforward. However, SMMs can be applied to other types of randomized controlled trial, and
more generally to the causal analysis of observational studies using instrumental variables. For these de-
signs,Hernan and Robins(2006) show that the usual identification assumption is “no effect modification
by randomisation” (NEM). We highlight how identification depends crucially on whether the unknown
data generating process satisfies the strong constraints imposed by NEM.

Another question we address is: what causal parameter is being identified if NEM does not hold?
As such, we highlight previous results showing that additive and multiplicative SMMs identify “local,”
or “complier,” causal effects under the alternative assumption that patients’ treatment selection is mono-
tonic (e.g.,Angrist and others, 1996;Frangakis and Rubin, 2002). However, we also highlight that the
double-logistic SMM does not identify the local odds ratio (LOR) under monotonic selection, and that an
alternative estimator for the LOR must be used instead.

The remainder of this paper is organized as follows. In Section2, we review the potential outcomes
causal framework within which SMMs are specified, and the three important SMMs considered in this
paper. In Section3, we consider the identification of each SMM’s causal effect for randomized placebo-
controlled trial designs, before going on in Section4 to consider identification for more general designs.
An alternative identification strategy based on monotonic treatment selection is considered in Section5.
Finally, in Section6, we consider a data example and present some numerical results to illustrate the
potential impact on results if NEM does not hold, before making our concluding remarks in Section7.

2. STRUCTURAL MEAN MODELS

2.1 Potential outcomes

Before introducing SMMs, we first set out the potential outcomes notation to be used throughout. To sim-
plify notation and highlight concepts, we consider only the simplest setup: a randomized controlled trial
with an encouragement design in which patients are randomized to a fixed treatment dose or to the control
group, which they comply with or not according to some nonignorable mechanism; the binary study out-
come is measured after some fixed follow-up period. The focus on this simple setup is done without loss
of generality, and our findings apply equally to situations including prerandomization covariates, variable
treatment dose, and treatment regimes involving repeated doses with time-varying covariates recorded.

Following Hernan and Robins(2006), letY, X and Z denote random variables representing the fol-
lowing observed quantities:Z is the randomization assignment indicator, withZ = 1 denoting treatment
and Z = 0 control; X ∈ {0,1} is the corresponding indicator for the actual treatment chosen by the pa-
tient, whereX 6= Z is possible due to noncompliance; andY ∈ {0,1} is the binary study outcome. It is
assumed throughout that the observed data{(yi , xi , zi ) : i = 1, ...,n} arei.i.d. realizations.

The potential outcomes can now be defined in the usual way. LetY(x, z) be the potential outcome
resulting from the treatment assignment being set toz and the treatment received tox by external inter-
vention, rather than by the trial process in which the patient chooses treatment following randomization.
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Similarly, let X(z) be the potential treatment the patient would choose if the treatment assignment was set
to z by external intervention.

Five important conditions for the identification of causal effects can now be stated as follows: the
“stable unit treatment value assumption” that each patient’s potential outcomes are unrelated to those of
any other patient; the existence of “causal effects” ofZ on X; the “consistency assumption”Y = Y(X, Z)
andX = X(Z), linking the observed and potential outcomes; the “exclusion restriction”Y(x, z) = Y(x)
constraining the effect of treatment assignment to affect the study outcomeonly through its effect on
treatment choice; and the “independence assumption” implying thatZ is independent of the potential
treatments and outcomes{X(0),X(1),Y(0),Y(1)} (e.g.,Angristand others,1996;Robins and Rotnitzky,
2004).

More generally,Z can be any instrumental variable (IV) satisfying these assumptions. The scope
of application for SMMs is thus far broader than just randomized controlled trials, and encompasses
observational studies too. However, it can be very difficult to find plausible candidates forZ because not
all of the conditions above can be justified on empirical grounds alone. Hence, to maintain focus, all these
assumptions will be taken to hold throughout this paper, and so we assume that a valid IV is available to
the analyst.

2.2 The additive and multiplicative SMMs

For the simple scenario just described, the additive SMM is:

E(Y|X, Z)− E {Y (0) |X, Z} = (ψ0 + ψ1Z)X,

whereY(0) is the treatment-free potential outcome. While this model is saturated or nonparametric, more
generally the right hand side is a parametric function incorporating the effect of prerandomization covari-
ates or variable treatment dose. The parameters of the additive model areψ0 = E{Y(1)− Y(0)|X = 1,
Z = 0} andψ0 +ψ1 = E{Y(1)− Y(0)|X = 1, Z = 1}, that is, the average treatment effect among those
who choose treatment but were assigned the control, and the effect among those who are assigned to and
chose treatment, respectively.

SMM estimators work by exploiting the conditional mean independence (CMI), or randomization,
assumption:

E {Y(0)|Z = 1} = E {Y(0)|Z = 0} , (2.1)

which follows from the conditions in Section2.1. Under the additive SMM, (2.1) can be rewritten as

E {Y − (ψ0 + ψ1)X|Z = 1} = E(Y − ψ0X|Z = 0), (2.2)

from which an estimating equation can be constructed.
The saturated multiplicative SMM for the same scenario is defined as:

E(Y|X, Z)

E {Y(0)|X, Z}
= exp{(θ0 + θ1Z)X} .

The parameters of the multiplicative SMM are the causal risk ratios among the same two subgroups as
before. Under the multiplicative SMM, the CMI assumption (2.1) leads to the moment condition:

E[Y exp{−(θ0 + θ1Z)X} |Z = 1] = E {Y exp(−Xθ0)|Z = 0} . (2.3)

It is clear that neither set of SMM parameters is identified by its corresponding moment condition
because both constitute systems with two unknowns and one equation. Therefore, further assumptions
are required to identify the SMM parameters.Hernan and Robins(2006) highlight the role of the no
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effect modification (NEM) byZ assumption. Each SMM has its own distinct NEM assumption: for the
additive SMM, it corresponds to constrainingψ1 = 0, and for the multiplicative SMM it corresponds
to θ1 = 0. Under NEM, there is only one unknown in (2.2) and (2.3) and the usual target parameters
are identified: for the additive SMM, the target becomes the average treatment effect among the treated
ψ0 = E {Y(1)− Y(0)|X = 1}; for the multiplicative SMM, it is the causal risk ratio among the treated
exp(θ0) = E {Y(1)|X = 1} /E {Y(0)|X = 1}.

Theestimators of the additive and multiplicative SMM target parameters can be written as

ψ̂0 =
E(Y|Z = 1)− E(Y|Z = 0)

E(X|Z = 1)− E(X|Z = 0)
, (2.4)

and

êxp(θ0) = 1 −
E(Y|Z = 1)− E(Y|Z = 0)

E {(1 − X)Y|Z = 1} − E {(1 − X)Y|Z = 0}
, (2.5)

respectively (e.g.,Angrist, 2001;Hernan and Robins, 2006). The additive SMM estimator has the same
form as the classical instrumental variable estimator (Angristand others, 1996); the numerator in both
expressions is the intention to treat estimator. More generally, the estimating equations under additive
and multiplicative SMMs based on (2.1) can be solved by G-estimation (Robins,1994). For example,
a multiplicative SMM G-estimator has been proposed for trials involving repeated binary outcomes and
exposure measures (Robins, Greenland,and others,1999).

2.3 The double-logistic SMM

Robins, Rotnitzky,and others(1999) proposed the logistic SMM with parameters corresponding to causal
OR among the treated for the same groups as above. The logistic SMM can be written as

logit {E(Y|X, Z)} − logit {E(Y(0)|X, Z)} = (ξ0 + Zξ1)X,

wherelogit(a) = log{a/(1 − a)} and NEM corresponds to the assumption thatξ1 = 0. Under NEM, the
parameter exp(ξ0) is not quite equal to the causal OR among the treated because of noncollapsibility, but
it can be viewed as a useful approximation.

The logistic SMM is considered separately here because it has been shown that no G-estimator exists
for ξ0 (e.g.,Robinsand Rotnitzky,2004).Vansteelandt and Goetghebeur(2003) developed the double-
logistic estimator by exploiting the result thatξ0 can potentially be identified if the researcher speci-
fies a parametric “association model”E(Y|X, Z) = mη(X, Z), which is indexed by parameter vector
η. The double-logistic estimator is based on specifyingmη(X, Z) to be logistic; the resulting moment
condition is:

E[expit{η0 + η2 + (η1 + η3 − ξ0)X} |Z = 1] = E[expit {η0 + (η1 − ξ0)X} |Z = 0], (2.6)

whereexpit(a) = exp(a)/{1 + exp(a)}. In practice, an estimate ofη = (η0, η1, η2, η3)
′ is obtained at the

first stage by fitting the saturated logistic association modelmη(X, Z) = expit(η0 + Zη1 + Xη2 + ZXη3)
andthen substituted into (2.6).Vansteelandtand others(2010) consider issues arising when the logistic
specification of both the SMM and the association model is uncongenial, but this poses no problem for
the simple logistic SMM considered here.

3. THE NO CONTAMINATION RESTRICTION

Thereis a wide scope for applications of SMMs to randomized placebo-controlled trial designs, such as
those considered byGreenland(2000),Nagelkerkeand others(2000) andVansteelandt and Goetghebeur
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(2003). In these designs, neither compliers nor noncompliers randomized to control can receive the
treatment because noncompliers (Z = 0,X = 1) receive only the placebo, equating to the condition
Pr(X = 0|Z = 0) = 1. Cuzick and others(2007) refer to this as a “no contamination” restriction,
which is a special case of the identifying assumptions for binary outcome SMMs described byRobins
and Rotnitzky(2004). To analyse placebo-control designs, an additional assumption of no placebo effect
is also needed that we herein take to hold.

Under the no contamination restriction, the SMM parametersψ0, θ0 andξ0 arenot defined because all
three are conditioned on the measure-zero event{X = 1, Z = 0}. Conversely,{X = 1} = {X = 1, Z = 1}
and soψ ≡ ψ0+ψ1 is the average treatment effect among the treated, exp(θ) ≡ exp(θ0+θ1) is the causal
risk ratio among the treated, and exp(ξ) ≡ exp(ξ0 + ξ1) is the causal OR among the treated. It follows
that these parameters are all identified because it can be shown that the crucialE{Y(0)|Z = 0} is equal to
E(Y|Z = 0) (e.g.,Clarke and Windmeijer, 2010, section3).

4. THE NEM ASSUMPTION

The role of NEM becomes crucial for more general designs. Each SMM has its own distinct NEM as-
sumption, which acts to constrain the causal effects among the treated to be equal for those randomized
to treatment and those randomized to control. To take just one example, recall that the additive NEM
assumption constrainsψ1 = 0 in the additive SMM, and thus

ψ0 = E {Y(1)− Y(0)|X = 1, Z = 0} = E {Y(1)− Y(0)|X = 1, Z = 1} = ψ0 + ψ1.

TheNEM assumptions for the multiplicative and logistic SMMs can be similarly expressed.
To investigate the validity of NEM for binary outcomes, we make a link between structural models

and potential outcomes by followingHernan and Robins(2006) and, less directly,Pearl(2000). Suppose
that the analyst is faced with data from a randomized controlled trial for which the no contamination
restriction does not hold. In an application, the observed data and all the counterfactual potential outcomes
and potential treatments are realizations from an unknown “nonparametric structural equation model” that
satisfies CMI and the constraints set out in Section2.1(noting that nonparametric here does not imply that
the true data generating process cannot be parametric, only that no constraints are placed on its unknown
form).

Using this link, the potential outcome can be written

Y(x) = I
{

f ∗
Y(x,U ) > 0

}
,

where indicator functionI (a) = 1 if a is true and 0 otherwise, andf ∗
Y(x,U ) is a function that de-

pends on the fixed value of treatment and the latent random variable/vectorU . It is usual to inter-
pret U as the combined effect of all unobserved confounding variables on the outcome, although it
also involves the contributions from other variables which are independent of the exposure selection
mechanism; to ensure independence ofZ andY(x) it follows thatU must be independent ofZ. The po-
tential treatment is similarly defined asX(z) = I

{
f ∗
X(z,V) > 0

}
, whereV is another latent random vari-

able/vector representing unobservable factors influencing treatment choice; it follows thatV andZ must
be independent.

If U andV are independent then noncompliance is ignorable, otherwise it is nonignorable. For fixed
x, it is U that determines whether the potential outcome is zero or one for a particular patient, withz and
V playing the same role forX(z). This setup straightforwardly extends to continuous potential treatments
by dropping the indicator function and specifyingX(z) = f ∗

X(z,V) (seeClarke and Windmeijer(2010),
appendix).

This class of structural models is extremely general becausef ∗
Y(x, u) canbe any function generating,

for example, nonlinear or heterogeneous treatment effects. However, it does not include models where the
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joint support ofU andV depends on other variables. For example, models likeY(x) = f ∗
Y(x) + U and

Y(x) = f ∗
Y(x)U , for which Y = f ∗

Y(X) + U andY = f ∗
Y(X)U , respectively, are excluded because in

both cases the support ofU clearly depends onX to ensure that the outcome lies in{0,1}. These models
are also structurally implausible because the support ofU depends on its causal antecedentX.

Crucially, all the SMM parameters are functions ofE{Y(x)|X, Z} and so can be written in terms of
the underlying structural model as:

E {Y(x)|X = 1, Z = z} = Pr
{

f ∗
Y(x,U ) > 0| f ∗

X(z,V) > 0
}

.

An advantage of defining the class of models in this way is that all its members satisfy the CMI assump-
tion, which can be shown by expanding (2.1) and using the identity Pr

{
f ∗
X(z,V) > 0

}
= E(X|Z = z).

We can therefore focus on each of the NEM assumptions. For a specific example, consider the family
of simple parametric structural models with(U,V) a bivariate continuous random vector related to the
potential outcomes by

Y(x) = I (α + βx − U > 0), X(z) = I (γ + δz − V > 0), (4.1)

whereE(U ) = E(V) = 0 and(U,V) has distribution functionFρ(u, v), with “correlation” parameterρ
indexing all nonzero moments involving products ofUk andVk(k = 1,2, .....). In this case,

E {Y(x)|X = 1, Z} = Pr(U < α + xβ|V < γ + Zδ) = Fρ(α + xβ, γ + Zδ)/G(γ + Zδ),

whereG(v) is the marginal distribution function forV . Clearly, if noncompliance is ignorable, thenρ = 0,
and all three NEM assumptions automatically hold. However, ifρ 6= 0, then none of the NEM assump-
tions will necessarily hold. To see why, consider the “bivariate probit model” where (4.1) holds, andF is
the distribution function for a zero-mean, unit-variance bivariate normal distribution. If the data were gen-
erated from a model closely approximated by this, then NEM cannot hold for the additive, multiplicative
or the logistic SMM because, for example,

exp(ξ0 + ξ1) =
Fρ(α + β, γ + δ)/{G(γ + δ)− Fρ(α + β, γ + δ)}

F(α, γ + δ)/{G(γ + δ)− Fρ(α, γ + δ)}

6=
Fρ(α + β, γ )/{G(γ )− Fρ(α + β, γ )}

Fρ(α, γ )/{G(γ )− Fρ(α, γ )}
= exp(ξ0),

almosteverywhere. As such, none of the SMMs can identify the associated causal parametersψ0, exp(θ0)
or exp(ξ0).

Thebivariate probit example, for which NEM fails, is quite restrictive, but the class of all structural
models is broader even than the family of models defined by (4.1). In practice, a data set may have been
generated by a structural model that allows nonlinear effects of treatment and IV on the latent scale, or
multivariate latent variables with semicontinuous or discrete distributions, or any combination of these
features. The problem is that NEM places strong restrictions on the class of structural models, and it is
impossible to verify whether or not these restrictions hold.

To illustrate the restrictions imposed by NEM, we focus on the logistic SMM and its NEM assump-
tion. It is virtually impossible to write down this model in the same way as for the bivariate probit,
but data can be generated which satisfy both the logistic SMM and its NEM assumption without spec-
ifying the underlying model (Robins and Rotnitzky,2004; Vansteelandtand others, 2010). Data are
generated as follows: first, generateX as Bernoulli with success probability,E(X|Z) = expit(γ +
δZ); second, generate the treatment-free outcomes as Bernoulli with success probability,E {Y(0)|X, Z} =
expit(β0 + β1X + β2Z); and finally, generate observed outcomes using success probability,
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E(Y|X, Z) = expit{β0 + (β1 + ξ0)X + β2Z}, whereξ0 is the target parameter. Clearly this model satis-
fies the NEM assumptionξ1 = 0, but to identifyξ0, we additionally require that CMI holds and so must
constrain theβ-parameters to satisfy

expit(β0 + β1 + β2)E(X|Z = 1)+ expit(β0 + β2)E(1 − X|Z = 1)

= expit(β0 + β1)E(X|Z = 0)+ expit(β0)E(1 − X|Z = 0).

An example of a model satisfying this data generating process can be written as:

Y(x) = I (α + ξ0x + U > 0),X(z) = I (γ + δz + V > 0),

whereU = (β0 − α) + β1X + β2Z + W and(V,W) hasstandard logistic marginal distributions that
are both mutually independent and independent ofZ. This model does not fit into the structural setup
defined above becauseU and V are associated only indirectly throughX and Z, andU is clearly not
independent ofZ. However, it does show how restrictive the family of models satisfying the logistic
NEM is: the integral ofY = I { f ∗

Y(X,U ) > 0} with respect to the conditional distribution ofU given X
and Z (and an appropriate measure) must be a logistic function, whereas the class of structural models
we consider places no such restriction. The existence of other families is not merely a theoretical arti-
fact: the probit SMM (Goetghebeur and Vansteelandt, 2005) is often considered plausible but does not
satisfy NEM for the logistic SMM.Clarke and Windmeijer(2010, Appendix) discuss this issue in more
detail.

5. MONOTONIC SELECTION

We have argued that the families of models for binary outcomes and treatments satisfying the additive,
multiplicative, or logistic NEM assumptions are very restrictive, and establishing NEM holds (even ap-
proximately) depends on application-specific background knowledge that is extremely difficult—if not
impossible—to obtain. As such, we now discuss an alternative assumption to NEM, namely, monotonic
selection of treatment by patients, under which local, or complier, causal effects can be estimated.Angrist
and others(1996) highlight the importance of “monotonicity.” where patients’ selection of treatment is
monotonic if

X(1)> X(0) (5.1)

for some coding ofX, Z; in general, selection is monotonic ifz > z′ ⇒ X(z) > X(z′) (Imbensand
Angrist, 1994). For example, the simple structural model described in Section4 is monotonic because
X(1)= I (γ + δ − V > 0)> I (γ − V > 0)= X(0) if δ > 0.

In this setup, monotonic selection corresponds to the assumption that no patient will be a “defier”
(i.e., one whereX(0)= 1,X(1)= 0) with probability 1. Conversely, patients may be compliers (X(0)=
0,X(1) = 1 or X(1) > X(0)), “always-takers” (X(0) = X(1) = 1) or “never-takers” (X(0) = X(1) =
0). For these definitions to make sense, we can assume that all patients exist in two universes, one in which
they are randomized to control, and another in which they are randomized to treatment. Hence, the “no
defiers” assumption corresponds to saying that, while patients can disobey their treatment assignments
in one or other of these universes, they cannot disobey their assignments in both.Frangakis and Rubin
(2002) refer to the stratification of patients using intermediate outcomes in this way (treatmentX in this
example) as “principal stratification.”

While the NEM assumption does not generally hold, additive and multiplicative SMM estimators (2.4)
and (2.5) do identify local effects under monotonic selection. Specifically, consider estimator (2.4) based
on the additive SMM. As noted previously, it has the same form as the classical instrumental variable
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estimator, and so from the results ofImbens and Angrist(1994) it follows that it is consistent for the local
average treatment effect LATE= E {Y(1)− Y(0)|X(1) > X(0)}, which is also called the “complier
average causal effect.” (Note that no contamination can be seen as an extreme special case of monotonic
selection in whichX(1) > X(0) = 0 and the complier and treated groups are equivalent.) Similarly,
Angrist (2001) shows that estimator (2.5) based on the multiplicative SMM under NEM is consistent for
the local relative risk (LRR), which is defined as:

LRR =
E {Y(1)|X(1) > X(0)}

E {Y(0)|X(1) > X(0)}
;

see alsoGreenland(2000) andHernan and Robins(2006).
The LOR is defined in a similar way to the LRR. Our numerical examples below illustrate that the

double-logistic estimator based on (2.6) is biased for the LOR under monotonic selection.Clarke and
Windmeijer (2009, appendix 3) show that the double-logistic estimator is not consistent for the LOR
under monotonic selection unlessE {Y(1)|X(1)= X(0)= 1} = E {Y(1)|X(1) > X(0)}. Abadie(2003)
proposes a consistent estimator for the LOR. As noted byvan der Laanand others(2007), an estimator can
also be based on (2.5): first calculateêxp(θ0) asper usual, then recode the outcome variable asY∗ = 1−Y

andcalculateêxp(θ∗
0 ) replacingY by Y∗ in (2.5); the ratioêxp(θ0)/êxp(θ∗

0 ) is consistent for the LOR by
symmetry of the relative risk (RR). We herein refer to this as the “LOR estimator”.

6. NUMERICAL EXAMPLES

6.1 Dataexample

To summarize and make the implications of these results concrete, consider the following example of an
observational study to which instrumental variables have been used to obtain causal inferences. A study of
patients attending clinical practice was carried out to assess if the “Cox-2” inhibitor treatment performed
better than the standard, nonselective nonsteroidal anti-inflammatory (NSAID) treatment in preventing the
unwanted side effect of gastrointestinal bleeding after 60-day follow-up (Brookhartand others,2006). The
analysis here is based on a subset of 37 842 patients who took part in the original study, of which 26 407
were allocated Cox-2 and 11 435 allocated NSAID by their physicians (Brookhart and Schneeweiss, 2007;
Vansteelandtand others, 2010).

In our setup,Y is 1 if the patient experiences gastrointestinal bleeding within 60 days of being treated
and 0 otherwise; andX is 1 if the patient receives Cox-2, and 0 otherwise. The IVZ for each patient
is taken to be the treatment allocated by the prescribing physician to the preceding patient.Brookhart
and others(2006) originally proposed the use of physician preference for this study. We takeZ to be a
valid IV and refer the reader toHernan and Robins(2006) for a detailed discussion of how well physician
preference satisfies the conditions set out in Section2.1.

We fit the additive, multiplicative, and logistic SMMs to these data, along with the naive logistic
regression ofY on X, and estimate the LOR as described above; two-tailed 95% percentile confidence
intervals (CI) are also calculated based on 100 nonparametric bootstrap samples. The results are displayed
in Table1. The naive OR based on the logistic model is 1.032, indicating a negative effect of Cox-2 over
NSAIDs in the trial; the CI is(0.80− 1.37) and includes 1, which indicates that there is insufficient
evidence to reject the hypothesis that the treatments are the same.

The naive OR cannot be interpreted as a causal effect but only as a measure of association because
we hypothesize that physicians allocate Cox-2 treatment based on unobserved factors that could be asso-
ciated with the risk of gastrointestinal bleeding. Hence, we use SMMs in order to estimate causal effects
among those treated with Cox-2 inhibitors. To recap, for a specific SMM, we know that its associated
NEM assumption is required for identification of the causal effect, but in Section4, we showed that
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Table 1. Logistic regression, additive SMM, multiplicative SMM, LOR, and double-logistic SMM esti-
mates from an encouragement trial design comparing incidence of gastrointestinal bleeding in patients

choosing Cox-2 inhibitors compared to those choosing NSAIDs (Brookhart and others, 2006)

Estimator Estimate 95%CI

LogisticOR 1.032 0.80− 1.37
Add. SMM −0.0092 −0.017 to− 0.002
Mult. SMM −0.176 −1.56 to 0.81
LOR Estimator −0.174 −1.56 to 0.70
DL SMM 0.029 0.01− 0.73

95%CI calculated from 100 bootstrap samples.

it does not always hold. However, both the additive and multiplicative SMMs do identify local causal
effects if physicians’ treatment selection is monotonic. In this example, monotonicity corresponds to the
assumption that no physicians who prescribe Cox-2 for patients after prescribing NSAID for their previous
patients (X(0) = 1) would have prescribed NSAID for the same patients had they instead (counterfactu-
ally) prescribed Cox-2 to their previous patients (X(1) = 0). As such, unless we know that the additive
NEM or monotonicity assumption holds, we cannot know if the estimate based on the additive SMM
(ψ̂0 = −0.009) can be interpreted as the average treatment effect among the treated, or as the local treat-
ment effect. However, the effect itself is clearly indicating less risk of gastrointestinal bleeding as the CI
excludes 0.

The same scenario holds for the multiplicative SMM, but herêexp(θ0) = −0.176 and so is out of the
valid range for a risk ratio. Out of range estimates are not uncommon for moment-based estimators like
these. If the multiplicative NEM assumption holds, then this could be due to sampling variability: although
the sample size is large, the gastrointestinal bleeding event is rare (fewer than 250 patients have events)
and is sensitive to sampling variability. Alternatively, if the multiplicative NEM assumption has failed,
then the negative risk ratio may indicate a failure of the monotonicity assumption. The estimate again
indicates a positive effect of Cox-2 inhibitors because the CI does not include one.

The double-logistic SMM estimate (denoted DL SMM in Table1 and using the saturated association
model described in Section2.3) is êxp(ξ0) = 0.029(CI: 0.01− 0.73), which again indicates a positive
effect of Cox-2 inhibitors. Inferences can be made about exp(ξ0) only if the logistic NEM assumption
holds. If one is not prepared to believe that the logistic NEM assumption is even approximately correct,
an alternative is to assume monotonicity and use the LOR estimator from Section5. Here, it is estimated
to be−0.174, which is very close to the estimate for the multiplicative SMM and so again out of range.
(Note that we would expect these estimates to be close because the gastrointestinal bleeding event is rare
and so the OR approximates the risk ratio closely.) In this example, the out of range estimate again raises
some doubt as to whether treatment selection is monotonic; a more likely explanation, perhaps, is that the
logistic NEM assumption approximately holds and the double-logistic SMM estimate can be interpreted
as evidence of a substantial positive effect of Cox-2 inhibitors among the patients to which it was allocated.
The inherent problem is that these questions cannot be answered on the basis of the available data. Thus,
this should be interpreted as a sensitivity analysis in which we find some degree of robustness because a
positive effect of Cox-2 is inferred using all the causal estimators; in addition, we know that previously
conducted randomized controlled trials have also found positive effects of Cox-2 (Brookhartand others,
2006).

To demonstrate further the important role of NEM, we now conduct two Monte Carlo simulation
studies in which the true structural models generating the data are known. The aim of both studies is to
show the impact of misinterpreting inferences obtained using SMMs.
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6.2 Bivariate probit model simulation

The first illustration is based on structural model (4.1) from Section3, namely,

Y(x) = I (α + βx − U > 0) , X(z) = I (γ + δz − V > 0) ,

where here we set(U,V) to have the bivariate normal distribution
(

U

V

)
∼ N

{(
0

0

)
,

(
1 ρ

ρ 1

)}
,

and Pr(Z = 1) = 0.5. Note thatρ indexes the strength of nonignorability in the selection mechanism
determining compliance, withρ = 0 corresponding to ignorable compliance. For each set of parameter
values(α, β, γ, δ, ρ), we can calculate the corresponding values of the key causal parameters. We fix the
parameters in the outcome model toα = 0, β = 0.1 and look at how the causal parameters vary as a
function of(γ, δ, ρ).

Figure1 displays the values of average treatment effects, RRs, and ORs as a function ofρ for γ =
0 andδ = 0.5. In the first panel, ATE denotes the average treatment effectE{Y(1) − Y(0)}, and the
parameters of the additive SMM are denoted as follows:ψ0 + ψ1 = E{Y(1)− Y(0)|X = 1, Z = 1}
by ATEX1Z1,ψ0 = E{Y(1) − Y(0)|X = 1, Z = 0} by ATEX1Z0, and the average treatment effect
among the treatedE{Y(1)− Y(0)|X = 1} by ATEX1; LATE denotesE{Y(1)− Y(0)|X(1) > X(0)}. The
parameters are similarly defined in the second and third panel for the RR and OR, respectively (RRX1Z1 =
exp(θ0 + θ1), ORX1Z0 = exp(ξ0), LRR, etc.); for the OR, there is an additional parameter, denoted by
DL, corresponding to the estimand of the double-logistic SMM (2.6).

Forα = 0 andβ = 0.1, the marginal expectations areE{Y (1)} = 8(0.1) = 0.540 andE{Y (0)} =
8(0) = 0.5,and so ATE= 0.540− 0.5 = 0.040, RR= 1.080 and OR= 1.173. Likewise, asγ = 0
andδ = 0.5 thenE{X (1)} = 8(0.5) = 0.692 andE{X (0)} = 8(0) = 0.5, indicating a large degree of
noncompliance in the control arm. The proportion of compliers in the population is Pr{X(1) > X(0)} =
E{X (1)− X (0)} = 0.192.

Figure 1 shows the differences between the local parameters that are identified by the SMM esti-
mands, LATE and LRR, and the respective parameters for each in the treated group, ATEX1 and RRX1.

Fig. 1. A comparison of relevant population causal parameters for data generated by randomisation indicatorZ and
the bivariate probit model defined in Section6.2 with α = 0, β = 0.1, γ = 0, δ = 0.500: (left to right) for the
additive SMM; the multiplicative SMM; and the logistic SMM. The NEM assumption does not hold for any of these
SMMs but selection is monotonic.
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Clearly, the differences are increasing functions ofρ. We take ATEX1 and RRX1 as the comparison here
because these are the SMM estimands if the corresponding NEM assumptions hold. The differences are
quite substantial for largeρ: for example, ifρ = 0.5 then LATE equals 0.046 and ATEX1 is equal to
0.040, a difference of 14%. In terms of risk ratios, LRR minus 1 equals 0.063 and RRX1 minus 1 equals
0.103, a 62% difference. The magnitude by which NEM is violated is indicated by the difference between
ATEX1Z1 and ATEX1Z0 for the additive SMM, and between RRX1Z1 and RRX1Z0 for the multiplica-
tive SMM. Both are relatively small indicating a minor failure of NEM, but the local parameters take quite
different values. For the odds ratio, LOR and ORX1 are quite close: for example, ifρ = 0.5 then LOR
minus 1 equals 0.202 and ORX1 minus 1 equals 0.193, a small difference of only 4.8%. Interestingly,
the estimand of the double-logistic SMM estimator, DL, tracks OR quite closely here, but not LOR or
ORX1: atρ = 0.5, DL minus 1 equals 0.175, a 10% difference from ORX1 and a 15.6% difference from
LOR.

Figure2 displays the same plots forγ = −1 andδ = 0.615. We now haveE{X(0)} = 0.159, so
there is more compliance in the control group, while the complier proportion remains 0.192. Here, we
find values of LATE and ATEX1 atρ = 0.5 of 0.042 and 0.034, respectively, a difference of 21%. For the
LRR and RRX1 (minus 1), the respective values are 0.064 and 0.046, a difference of 40%. In contrast, the
LOR and ORX1 are virtually identical in this case for allρ, with DL now tracking both quite closely.

In Figure3, we setγ = −1 andδ = 1.208 to giveE{X(0)} = 0.023. These parameter values generate
data for which no contamination might be expected to provide a good approximation. As expected, the
local parameters LATE and LRR are very close to ATEX1Z1 and RRX1Z1, respectively, and to ATEX1
and RRX1 too. The LOR and DL are in this case identical to ORX1Z1 and ORX1.

6.3 Mixed logistic model simulation

Didelezand others(2010) consider a more complex logistic structural model for generating nonignorable
noncompliance. Using our notation, this model is written

X(z) = I (α1 + zα2 + Hα3 + zHα4 + V > 0), (6.1)

Y(x) = I (β1 + xβ2 + Hβ3 + x Hβ4 + U > 0), (6.2)

Fig. 2. A comparison of relevant population causal parameters for data generated by randomization indicatorZ and
the bivariate probit model defined in Section6.2 with α = 0, β = 0.1, γ = −1, δ = 0.615: (left to right) for the
additive SMM; the multiplicative SMM; and the logistic SMM. The compliance rate is higher among the controls
than in Figure2. The NEM assumption does not hold for any of these SMMs but selection is monotonic.
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Fig. 3. A comparison of relevant population causal parameters for data generated by randomization indicatorZ and
the bivariate probit model defined in Section6.2 with α = 0, β = 0.1, γ = −2, δ = 1.208: (left to right) for the
additive SMM; the multiplicative SMM; and the logistic SMM. The compliance rate is very small among controls
and so approximates a no contamination restriction.

whereU and V are independent standard logistically distributed random variables, andH is unob-
served. Equivalent expressions to (6.1–6.2) areE{X(z)|H = h} = expit(α1 + zα2 + hα3 + zhα4) and
E{Y(x)|H = h} = expit(β1 + xβ2 + hβ3 + xhβ4), respectively. Both models contain interaction terms
allowing the effect of latentH to vary depending onz andx. There are heterogeneous treatment effects
on the latent scale ifβ4 6= 0, but this poses no problems as SMMs do not constrain treatment effects to
be homogeneous, or indeed place any constraints on the form of treatment effect heterogeneity. More im-
portantly, however, the monotonicity assumptionX (1) > X (0) holds only ifα4 = 0, and monotonicity
is crucial for identification of local effects.

We generate data according to models (6.1) and (6.2), setting the parametersα1 = 0, α2 = 0.5,
α3 = 2, β1 = 0, β2 = 0.3,β3 = 2, and specifyingH ∼ N (0,1) andP (Z = 1) = 0.5. Table2 contains
Monte Carlo estimates, based on 1000 replications. For the additive and multiplicative SMMs, we use
(2.4) and (2.5). We further present estimation results for the consistent estimator of LOR described in
Section5 and for the double-logistic SMM, DL SMM. To minimize the impact of finite sample bias and
maintain our focus on consistency, we generated samples of size 500 000. The population parameters ATE,
ATEX1, etc. are defined as above, but are here calculated to a high order of approximation by averaging
over 1000 replicated data sets. The column denoted SD contains the Monte Carlo standard deviations of
the estimators.

The results forα4 = β4 = 0 are given in column 1 and are similar to the results found in the first
example above. When we introduce an extra source of treatment heterogeneity by settingβ4 = 1 (column
2), we see again that the additive, multiplicative, and LOR SMM estimators are very close to the local
parameters. For the OR, it can also be seen that treatment effect heterogeneity has here exacerbated the
difference between the local and treated group ORs, LOR and ORX1 being 1.175 and 1.369 respectively;
the double-logistic SMM estimator DL SMM is close to the OR in this case.

When the monotonicity assumption is violated by further settingα4 = 1 (column 3), we see that
the three SMM estimates diverge from the local parameters, with the LOR estimator especially poorly
behaved. In this example, the divergence between the target parameters, the causal effects in the treated
group, and the estimates of the local treatment effects gets more pronounced. The DL SMM estimator
overestimates all of the causal treatment effect parameters.
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Table 2. A comparison of relevant population causal parameters together with the estimands for each
SMM and local effect estimator; the data are generated by randomisation indicator Z and the mixed logis-
tic model defined in Section6.3with α1 = 0,α2 = 0.5,β1 = 0,β2 = 0.3,β3 = 2: (1) for α4 = β4 = 0
selectionis monotonic and the treatment effect is constant on the logistic scale; (2) forα4 = 1,β4 = 0

thetreatment effect is heterogeneous; and (3) forα4 = β4 = 1 selectionis nonmonotonic

(1) (2) (3)
α4 = β4 = 0 α4 = 0,β4 = 1 α4 = 1,β4 = 1

Mean SD Mean SD Mean SD

ATE 0.045 0.034 0.034
ATEX1Z1 0.046 0.062 0.071
ATEX1Z0 0.044 0.066 0.066
ATEX1 0.045 0.064 0.068
LATE 0.057 0.040 0.092
Add. SMM 0.057 0.0179 0.040 0.0181 0.114 0.023

RR 1.091 1.069 1.069
RRX1Z1 1.068 1.094 1.101
RRX1Z0 1.063 1.094 1.094
RRX1 1.066 1.094 1.098
LRR 1.122 1.085 1.138
Mult. SMM 1.122 0.040 1.086 0.040 1.152 0.033

OR 1.199 1.148 1.148
ORX1Z1 1.238 1.346 1.445
ORX1Z0 1.242 1.398 1.398
ORX1 1.239 1.369 1.423
LOR 1.259 1.175 1.580
LOR estimator 1.261 0.090 1.178 0.085 2.214 0.366
DL SMM 1.220 0.077 1.142 0.069 2.039 0.261

1000Monte Carlo replications of sample size 500 000; the population parameters were calculated by averaging over each generated
data set.

7. CONCLUSIONS

We have highlighted that causal effects on binary outcomes in studies with nonignorable non-compliance
are not always identified by SMMs. Additional assumptions about the causal process generating the ob-
served data are required, but in practice these are difficult to verify. The simulation study examples above
show that failure of these assumptions can lead to misleading inferences.

An exception to this rule is when the study design satisfies the no contamination restriction that the
control group has no access to treatment (e.g., randomized placebo-controlled trials). However, SMMs are
now being applied to observational studies whereZ is an instrumental variable (Vansteelandtand others,
2010), including applications using genetic instruments that exploit the “Mendelian randomization” hy-
pothesis (e.g.,Didelez and Sheehan, 2007). For these designs, a no contamination restriction is unlikely
to hold, as was the case in our data example.

An alternative assumption is to assume that the mechanism by which patients select treatment is
monotonic. Under monotonicity, the additive and multiplicative SMM estimators are valid for local causal
effects, but these can be quite different from treatment effects for the treated. Caution is therefore required
when interpreting SMM estimates for binary outcomes if patients in the control group can receive treat-
ment, with the issues of monotonicity and the interpretation of local/complier average effects paramount.
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When the NEM assumption fails, we find that the double-logistic estimator is not consistent for the LOR
under monotonicity, but point out that an alternative estimator is available that is consistent.

If the practitioner is agnostic about any of the above as reasonable working assumptions, then we
would recommend he/she performs a sensitivity analysis. In addition to the SMMs discussed here, various
causal estimators for binary outcomes based on instrumental variable estimators have been proposed in
the literature; see reviews byVansteelandtand others(2010),Clarke and Windmeijer(2009) andDidelez
and others(2010). Each estimator makes alternative identifying assumptions, and assessing robustness to
these different assumptions should be regarded as essential.

Finally, we note that recent work byvan der Laanand others(2007) proposes alternative modelling
strategies to those developed byVansteelandt and Goetghebeur(2003) andRobins and Rotnitzky(2004),
but this approach is not yet widely used.
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