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Abstract
The karyotypes of Allium, a genus that comprises many crops and ornamental plants, are relatively poorly studied. To extend our
knowledge on karyotype structure of the genus, the chromosomal organization of rRNA genes and CMA/DAPI bands was
studied. Fluorescence in situ hybridization using 5S and 35S rDNA probes and banding methods (silver staining and CMA3/
DAPI staining) were used to analyze the karyotypes of eight cultivated Allium L. species. Analyzed Allium taxa revealed three
different basic chromosome numbers (x = 7, 8, 9) and three different ploidy levels (diploid, triploid, and tetraploid). The rDNA
sites chromosomal organization is reported the first time for the six species (A. moly, A. oreophilum, A. karataviense, A. nigrum,
A. sphaerocephalon, A. porrum). The Allium species that were analyzed showed a high level of interspecies polymorphism in the
number and localization of the rDNA sites. The fluorescence in situ hybridization patterns of 35S rDNA sites were more
polymorphic than those of the 5S rDNA in the diploid species. Several groups of similar chromosomes could be distinguished
among the chromosomes that had rDNA sites in the polyploid species. Each of the groups had three chromosomes (triploid A.
sphaerocephalon L.) or four chromosomes (tetraploid A. porrum L.) suggesting their autopolyploid origin. In the genomes of
four of the analyzed species, only some of the 35S rDNA sites were transcriptionally active. Fluorochrome banding revealed that
the CMA3

+ bands were associated with the 35S rDNA sites in all of the species that were analyzed, except A. fistulosum L. in
which positive CMA3

+ bands were detected in the terminal position of all of the chromosome arms. The rDNA sequences,
nucleolar organizer regions (NORs), and CMA/DAPI bands are very good chromosome markers that allowed to distinguished
from two to five pairs of homologous chromosomes in analyzed Allium species. The karyotypes of the studied species could be
clearly distinguished by the number and position of the rDNA sites, NORs, and CMA/DAPI bands, which revealed high
interspecific differentiation among the taxa.
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Introduction

The genus Allium L. comprises more than 800 species (Fritsch
et al. 2010), thus making it one of the largest monocotyledon-
ous genus. Allium consists of 15 monophyletic subgenera
(Friesen et al. 2006). Species analyzed in this study belong
to subgen. Amerallium (A. moly L.), subgen. Allium (A.
porrum L., A. sativum L., and A. sphaerocephalon L.),
subgen. Cepa (A. fistulosum L.), subgen. Porphyroprason
(A. oreophilum C.A. Mey), and subgen. Melanocrommyum
(A. karataviense Regel; Gurushidze et al. 2010; Friesen et al.
2006). Allium is a variable group that is spread widely across
the Holarctic region from the dry subtropics to the boreal zone
(Li et al. 2010; Friesen et al. 2006). Many Allium species are
economically important plants, including, e.g., the common
onion (A. cepa L.), the bunching onion (A. fistulosum), leek
(A. porrum), garlic (A. sativum), and many ornamental species
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such as A. moly L. or A. sphaerocephalon L. (Fritsch et al.
2010). This genus exhibits a great diversity of various mor-
phological characters, particularly in life form, (bulbs or rhi-
zomes) and ecological habitat (Stearn 1992). Allium also dis-
plays a high level of diversity on the cytogenetic level: 10.64-
fold differences in genome size (from 7 pg/1C in A.
altyncolicum N. Friesen to 74.50 pg/1C in A. validum S.
Watson; Ohri et al. 1998; Ricroch et al. 2005) and chromo-
some number. Allium has three different basic chromosome
numbers x = 7, 8 (observed in most species) and x = 9 (Jones
and Rees 1968). This genus, except diploids, contains many
polyploid species, and the diversity in the ploidy level ranges
from 2x to 10x (Bennett et al. 2000; de Sarker et al. 1997).
Although the origin of most of the polyploids is not known,
both allopolyploids (e.g., A. sacculiferum Maxim.) and auto-
polyploids (e.g., A. porrum) have been reported to date (Seo
et al. 2007; Shibata and Hizume 2002; Stack and Roelofs
1996) as well as odd-ploidy plants (e.g., Allium × cornutum,
which is of a triparental hybrid origin; Fredotovic et al. 2014).

Molecular cytogenetic analysis has only been performed
for few species and these studies primarily focused onA. cepa,
A. fistulosum, and A. wakegi Araki (a diploid hybrid between
A. cepa and A. fistulosum; Shibata and Hizume 2002). The
chromosomal localization of several tandem repeats and dis-
perse repetitive sequences has been reported for these species
delivering good chromosome markers for the karyotype struc-
ture and evolution analyses as well as for breeding programs
(Do et al. 2001; Fajkus et al. 2016; Kirov et al. 2017; Shibata
and Hizume 2002). Although in several Allium species the
chromosomal patterns of the rDNA sites or C-banding pat-
terns have been analyzed, most often, the karyological studies
on Allium species have been focused on the number and mor-
phology of chromosomes (de Sarker et al. 1997; Dolatyari
et al. 2018; Murín 1964). Thus, there is a clear need to find
out more about the karyotype structure in the Allium genus.
Due to their abundance as Bhouse-keeping genes^ and their
relatively conserved nature, rDNA sequences are the chromo-
somal markers that are most often used, especially in non-
model organisms (Roa and Guerra 2015; Volkov et al.
2004). The nuclear ribosomal RNA genes encoding for 18S-
5.8S-25S (35S) and 5S ribosomal RNAs (5S rDNA) consist of
conserved genic regions and variably transcribed and non-
transcribed spacer regions that are arranged as tandem arrays
at one or more loci (Alvarez and Wendel 2003; Volkov et al.
2004). The 35S rDNA sequences are located in the nucleolar
organizer regions (NORs), whereas the tandem arrays of 5S
rDNA most often map independently of them (Heslop-
Harrison and Schwarzacher 2011; Volkov et al. 2004).
Fluorescence in situ hybridization (FISH) with 5S and 35S
rDNA sequences has provided useful landmarks for chromo-
some identification in many plant species and has been used to
construct physical maps of chromosomes as well as for phy-
logenetic studies in many plant species (Hasterok et al. 2006;

Jang et al. 2013; Kolano et al. 2013; Roa and Guerra 2015).
The mapping of ribosomal DNA through FISH is also often
used as an effective tool for accurately characterizing diverse
groups of germplasm materials, breeding lines, and cultivars.
For example, the FISH with rDNA sequences allowed to an-
alyze the genome re-structuring in long-termmicropropagated
tulips (Marasek-Ciolakowska and Podwyszynska 2008) or
allowed characterization of interspecific hybrids of
Passiflora (de Melo et al. 2017). The aim of this study was
to test if the rDNA sequences and banding methods are effi-
cient chromosome markers for karyotyping and chromosome
identification in cultivated Allium species. FISH was used to
obtain the patterns of the rRNA gene sites distribution, and
silver staining was used to reveal the transcriptional activity of
the 35S rDNA sites in selected cultivated Allium species.
Additionally, double staining with CMA3 and DAPI was used
to identify the spatial relationships between the rDNA sites
and the positive CMA3 bands.

Materials and methods

Plant material and chromosome preparation

Seeds of A. porrum L. and A. fistulosum L. cv. Krolland were
purchased from PlantiCo Zielonki (Stare Babice, Poland).
Bulbs of A. moly L., A. sphaerocephalon L., A. oreophilum
C.A. Mey., A. nigrum Sm., and A. karataviense Regel were
purchased from the Benex gardening company (Chrzypsko
Wielkie, Poland). Bulbs of A. sativum cv. Ornak were obtained
from MARKIE-POL (Biała, Poland). Three analyzed species
are well-known vegetable (A. sativum, A. porrum, and A.
fistulosum). The rest of the species are frequent ornamental
plant in European and North American gardens (Fritsch 2015).

Allium root tips 1.5–2 cm long were obtained from bulbs
grown in pots in the greenhouse of Silesian University. The
seeds were germinated on moist filter paper in Petri dishes.
Whole seedlings (approximately 2 cm long) and the root tips
that had been cut from the bulbs were pretreated with 2 mM 8-
hydroxyquinoline for 3–5 h and fixed in 3:1 ethanol/acetic
acid. The fixed material was washed in a 0.01 M citric acid-
sodium citric buffer (pH 4.8) and digested in a mixture of 20%
pectinase (Sigma P0690) and 2% cellulose (Onozuka R-10
Serva) for 1–1.5 h at 37 °C. A single root tip was washed in
cold distilled water and transferred into a drop of 45% acetic
acid on a microscope slide and squashed. The coverslips were
removed after freezing and the slides were air-dried.

Staining methods

Double fluorescent staining with chromomycin A3 (CMA3)
and 4′,6-diamidino-2-phenylindole (DAPI) was used, as de-
scribed by Kolano et al. (2013). The transcriptional activity of
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the 35S rRNA gene sites was determined using silver staining.
The slides were incubated in a borate buffer (pH 9.2), air-
dried, and then several drops of freshly prepared 50% (w/v)
AgNO3 (Merck) in re-distilled water were applied. The slides
were covered with a nylon mesh (Nylbot) and incubated in a
moisture chamber for 50–70 min. at 42 °C, washed in re-
distilled water, air-dried, and mounted in DPX (a mixture of
distyrene, a plasticizer, and xylene; Fluka).

Fluorescent in situ hybridization

The probe that was used to detect the 35S rRNA gene sites
was a 2.3-kb fragment of the 25S rDNA coding region from
Arabidopsis thaliana (L.) Heynh (Unfried and Grurndler
1990), which was labeled with fluorescein-12-dUTP (Roche,
Switzerland). In order to detect the 5S rDNA sites, a 410-bp
clone that had been isolated from Triticum aestivum L.
(Gerlach and Dyer 1980) was amplified and labeled with
dioxygenin-11-dUTP. Both DNA probes were labeled using
nick translation (Roche, Switzerland).

FISH was performed according to the protocols described
by Schwarzacher and Heslop-Harrison (2000). Briefly, a hy-
bridization mixture consisting of 100 ng of a labeled DNA
probe, 50% formamide, 2xSSC, 10% dextran sulfate, and
0.1% SDSwas denatured for 10min at 85 °C and then applied
to the chromosome preparations. The slides and hybridization
mixture were denatured together at 75 °C for 5 min in an in
situ thermal cycler (Thermo Hybaid, Franklin, USA) and
allowed to hybridize overnight in a humid chamber at 37 °C.
Stringent washes (twice in 0.1xSSC at 42 °C) were followed
by the detection of digoxigenin using the rhodamine-
conjugated primary anti-digoxigenin antibody (Roche Basel,
Switzerland). The signal was amplified with the Texas Red-
conjugated anti-sheep secondary antibody (Jackson
ImmunoResearch, Suffolk, UK). The preparations were
mounted in a Vectashield antifade solution (Vector
Laboratories, Peterborough, UK) containing 2 μg/ml of
DAPI.

Results

The Allium species that were analyzed revealed three different
basic chromosome numbers x = 7, 8, 9. Six of the analyzed
species were diploids, one species was a triploid (A.
sphaerocephalon), and one species was a tetraploid (A.
porrum). Studied Allium karyotypes mostly contained meta-
centric chromosomes; however, submetacentric or
subtelocentric chromosomes were also observed. The karyo-
type formulas for each of the analyzed species are presented in
Table 1.

The distribution of the rRNA gene sites was analyzed using
FISH with 5S and 25S rDNA as probes. The analyzed Allium

showed a high level of variability in the number and localiza-
tion of the rDNA sites, and each species showed a different
pattern of the rDNA sites. The 35S rDNA is expressed as a
house-keeping gene with at least one pair of sites that is tran-
scriptionally active. Silver staining was only performed for the
species that had more than one pair of 35S rDNA sites. Most
often, the 35S rDNA sites were colocalized with the positive
CMA3 (CMA3

+) bands. Most of the species only had negative
DAPI (DAPI−) bands that were colocalized with the CMA3

+

bands. The results of the double-target FISH to the mitotic
metaphase of the Allium species are presented in Figs. 1, 4,
and S1, and the total numbers of 5S rDNA and 35S rDNA
sites are summarized in Table 1. Homologous chromosome
pairs could be identified for most of the diploid species and the
tetraploid A. porrum, and therefore, only one chromosome
from the homologous chromosome pair is presented in the
idiograms (Fig. 1).

The diploid A. moly (2n = 14) had two pairs of chromo-
somes (number 6 and 7) that had 35S rDNA sites in the sub-
terminal position on the short chromosome arms. Interstitial
5S rDNA sites were observed on the short arm of one chro-
mosome pair (number 2; Fig. 1(a, b)). All of the observed 35S
rDNA sites were transcriptionally active (Fig. 1(b) and
Fig. 2a) and were colocalized with the CMA3

+ bands
(Fig. 1(b) and Fig. 3a). The second analyzed species, diploid
A. fistulosum (2n = 16), had only one chromosome pair with
35S rDNA sites and one chromosome pair with 5S rDNA
sites. These two types of rDNA sites were localized in the
interstitial position on the short arm of chromosome pair num-
bers 4 (35S rDNA) and 7 (5S rDNA; Fig. 1(c, d)). Neither 35S
rDNA nor 5S rDNAwas colocalized with the CMA3

+ bands;
instead, the CMA3

+ bands were observed in the terminal po-
sition on each chromosome arm (Fig. 1(c) and Fig. 3f). In the
garlic karyotype (A. sativum; 2n = 16), two pairs of 35S rDNA
sites were observed in the pericentromeric position on the
short arm of two chromosome pairs (numbers 6 and 7;
Fig. 1(e, f)). All of the 35S rDNA sites were transcriptionally
active and were colocalized with the CMA3

+ bands (Fig. 1(f),
Fig. 2b, and Fig. 3d). Four hybridization signals of 5S rDNA
were observed on the chromosome pair 7. On each of the
chromosomes, two adjacent sites were present in the intersti-
tial position on the short arm (Fig. 1(e, f)). Double FISH indi-
cated that in the somatic cells of A. oreophilum (2n = 16), four
pairs of 35S rDNA sites were localized in the subterminal
position on the short arm of chromosome pairs 4, 5, 6, and 7
(Fig. 1(g, h)). Only half of these were transcriptionally active
(chromosome pairs 5 and 6; Fig. 1(h) and Fig. 2c). Three pairs
of the 35S rDNA sites (chromosome pairs 5, 6, and 7) were
colocalized with the CMA3

+ bands (Fig. 1(h) and Fig. 3e).
Four hybridization signals of 5S rDNA were observed on
chromosome pair 6. These were localized in the interstitial
position on the short and long arms of the chromosomes
(Fig. 1(i, h)). The next diploid species A. karataviense
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(2n = 18) had three pairs of 35S rDNA sites on the short arms
of chromosome pairs 6, 8, and 9, all of which were in the
subterminal position (Fig. 1(i, j)). Only one pair of 35S
rDNA sites (chromosome 8) was transcriptionally active
(Fig. 1(j) and Fig. 2e). All of the 35S rDNA sites colocalized
with the CMA3

+ bands. Additional CMA3
+ bands were also

observed on the long arm of chromosome pair 8 and on the
short arm of chromosome pair 9, both in the interstitial posi-
tion (Fig. 1(j) and Fig. 3b).

In the karyotype of the tetraploid A. porrum (2n = 32), it was
possible to distinguish 16 pairs of homologous chromosomes,
which could be further assembled into eight groups (four chro-
mosomes in each). Four pairs of 35S rDNA sites were observed
in this karyotype. Two of these were localized in the interstitial
position on the short arm of chromosome pairs 7 and 8. Two
others were localized in the pericentromeric position on the
short arm of chromosome pairs 15 and 16 (Fig. 1(k, l)). All of
the 35S rDNA sites were transcriptionally active and were
colocalized with the positive CMA3 bands (Fig. 1(l), Fig. 2f,
and Fig. 3g). Most of the 5S rDNA sites were localized in
chromosome pairs 13 and 14. The pair 14 had three sites of
5S rDNA that were localized interstitially on the short arm of
each chromosome. Two or three sites of 5S rDNA were ob-
served on the chromosome 13, thus indicating polymorphisms
in the number of sites between the homologous chromosomes
of the same karyotype (Fig. 1(k, l)). Additionally, in the short
arm of one chromosome from pair 8, two sites of 5S rDNA that
flanked the 35S rDNA site were observed (Fig. 1(k, l)).

In the karyotypes of the other two analyzed species (A.
nigrum and A. sphaerocephalon), it was very difficult to iden-
tify the homologous chromosome pairs, and for these two
species, all of the chromosomes are presented in the
karyograms and idiograms (Fig. 4). Hybridization signals of
5S rDNA were observed on the short arms of two chromo-
somes (9 and 10), and two signals of 35S rDNA were ob-
served in the interstitial position on the short arms of two other
chromosomes (15 and 16) in A. nigrum (2n = 16; Fig. 4(a, b)).
Interestingly, the chromosomes with 35S rDNA sites differed
in length and morphology significantly. Moreover, the chro-
mosomes that had 5S rDNA sites differed slightly in their
morphology and in the localization of the 5S rDNA

hybridization signals (Fig. 4(a, b)). Silver staining indicated
that only one site of 35S rDNA in chromosome 15 was tran-
scriptionally active (Fig. 2d and Fig. 4(b)). Two bright positive
bands of CMA3 that colocalized with 35S rDNA sites were
observed (Figs. 3c and 4b). In addition to the bright bands, a
few quite dull CMA3

+ bands were detected in the chromo-
somes. Two of these, which were observed quite consistently
in the karyotype of A. nigrum, colocalized with the 5S rDNA
sites (Figs. 3c and 4b). This species also had four positive
DAPI bands. Two of these were colocalized with the 35S
rDNA sites, and the remaining DAPI+ bands were colocalized
with the 5S rDNA sites (Fig. 4(b) and Fig. S2c).

In the triploid A. sphaerocephalon (2n = 24), nine intersti-
tially localized signals of 35S rDNA were detected on the
short arms of nine metacentric chromosomes (chromosomes
number 16–24). Three other 35S rDNA sites were localized in
the pericentromeric position on the short arms of chromo-
somes 10, 11, and 12 (Fig. 4(c, d)). Silver staining indicated
that only five sites were transcriptionally active—one
pericentromeric site on chromosome 12 and four interstitial
sites in chromosomes 17, 18, 21, and 22 (Fig. 4(d) and
Fig. 2g). Eight positive CMA3 bands were observed in A.
sphaerocephalon. All of these were colocalized with the 35S
rDNA sites (Fig. 4(d) and Fig. 3h). Hybridization signals of
5S rDNAwere observed on three chromosomes, and each of
the chromosomes had two sites of the 5S rRNA genes that
flanked the site of 35S rDNA (Fig. 4(c, d)).

Discussion

The analyzed Allium species represent three different basic
chromosome numbers (x = 7, 8, and 9) that had previously
been described for this genus (Jones and Rees 1968). The
somatic numbers of chromosomes 2n = 14, 16, and 18 of the
analyzed diploid species are mainly in accordance with those
that are available in the index to plant chromosome number
(www.tropicos.org/Project/IPCN). In the karyograms of most
of the analyzed diploids, it was possible to distinguish pairs of
homologous chromosomes except for A. nigrum. In the
karyotype of A. nigrum, the chromosomes cannot be

Table 1 Chromosome numbers,
karyotype formula, numbers of
5S and 35S rDNA sites, NORs,
and CMA3

+ bands in the
karyotypes of analyzed Allium
species

Species 2n Karyotype formula 5S rDNA 35S rDNA NOR CMA3

Allium moly 14 2n = 14 = 12 m + 2sm 2 4 4 4

A. oreophilum 16 2n = 16 = 12 m + 2sm+ 2st 4 8 4 6

A. sativum 16 2n = 16 = 12 m + 4sm 4 4 4 4

A. fistulosum 16 2n = 16 = 14 m + 2st 2 2 2 16

A. karataviense 18 2n = 18 = 14 m + 2sm+ 2st 4 6 2 10

A. nigrum 16 2n = 16 = 12 m + 3sm+ 1st 2 2 1 4

A. sphaerocephalon 24 2n = 24 = 21 m + 3sm 6 12 5 8

A. porrum 32 2n = 32 = 24 m + 8sm 13 8 8 8

4 J Appl Genetics (2019) 60:1–11

http://www.tropicos.org/Project/IPCN


unambiguously arranged in homologous pairs. This was
especially apparent in the case of the two chromosomes that
had 35S rDNA sites and might suggest a hybrid origin of this
accession. Except diploid species, the Allium genus also
contains many polyploids, which are mostly tetraploid (such
as the analyzed A. porrum) and hexaploids (e.g., A. parodi;
Pastor 1982). Odd-ploidy polyploids were also observed (e.g.,
the analyzed A. sphaerocephalon or another triploid Allium ×

cornutum; Fredotovic et al. 2014). A. porrum and A.
sphaerocephalon were suggested to be autopolyploids based
on their karyotype structure and synaptic behavior (Loidl and
Jones 2004; Stack and Roelofs 1996). The chromosomal or-
ganization of the rDNA sites that were observed in these spe-
cies supports this hypothesis. Based on the chromosomal pat-
terns of the rDNA sites, it was possible to distinguish groups
of chromosomes (three groups with four chromosomes in A.

Fig. 1 Number and localization of 35S rDNA sites (green fluorescence)
and 5S rDNA sites (red fluorescence) in diploid and tetraploid Allium
species (a, c, e, g, i, k) and idiograms of analyzed Allium species with
localization of 35S rDNA, 5S rDNA, NORs, and positive CMA3 bands
indicated (b, d, f, h, j, l): A. moly (a, b); A. fistulosum (c, d); A. sativum (e,

f); A. oreophilum (g, h); A. karataviense (i, j); A. porrum (k, l). Only one
chromosome from the homologous chromosome pair is presented in
idiograms. A bracket under the chromosome in the idiograms means
that there was polymorphism in the rDNA sites chromosomal
organization. Bar 10 μm
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porrum and four groups with three chromosomes each in A.
sphaerocephalon; Fig. 1(l) and Fig. 4(d)) with very similar
rDNA site patterns, which could support their autopolyploid
origin. On the other hand, the chromosomes that had a similar
pattern of rDNA sites showed significant differences in length
at least in the A. sphaerocephalon karyotype that could sug-
gest either an allopolyploid origin or a major reorganization of
the chromosomes after polyploidization. Although earlier re-
ports showed that A. sphaerocephalon is a complex species
with diploid, triploid, and tetraploid cytotypes, the origin of
polyploid cytotypes was not studied (Johnson and Ozhatay
1996). Further research using molecular phylogenetic
methods and cytogenetic (GISH) is necessary to elucidate
the origin of the polyploids.

The present report gives the first description of the rDNA
localization for six species: A. moly, A. oreophilum, A.
karataviense, A. nigrum, A. sphaerocephalon, and A. porrum.
The number and localization of the rDNA sites that were ob-
tained for A. fistulosum consents with most of the earlier reports
(Kirov et al. 2017; Lee et al. 1999; Son et al. 2012). However,
Gernand et al. (2007) reported additional one or four minor
polymorphic sites of 35S rDNA on A. fistulosum chromo-
somes. Only two pairs of 5S rDNA sites were observed on
the short arm of one chromosome pair in A. sativum, although
earlier reports showed three pairs of sites of 5S rDNA in this
species (one on the long arm and two on the short arm of the
same chromosome pair; Lee et al. 1999; Son et al. 2012). Such
phenomenon, the intraspecific polymorphisms in the rDNA

Fig. 2 Transcriptionally active
35S rDNA sites (nucleolar
organizing region; NOR) in
Allium spp. that were detected by
silver staining: A. moly (a); A.
sativum (b); A. oreophilum (c); A.
nigrum (d); A. karataviense (e);
A. porrum (f); A.
sphaerocephalon (g). Bar 10 μm
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sites number, has also been observed in many species including
Amaranthus, Chenopodium, and Prospero (Jang et al. 2013;
Kolano et al. 2013; Kolano et al. 2015).

The median plant karyotype has one or two pairs of intersti-
tial 5S rDNA sites and two pairs of subterminal 35S rDNA sites
(Garcia et al. 2017; Roa and Guerra 2012; Vitales et al. 2017).
The studied Allium species most often had more than two pairs
of 5S rDNA, mostly in the interstitial and/or pericentromeric
position (present study; Vitales et al. 2017; http://www.
plantrdnadatabase.com). In Allium, the 35S rDNA sites were
observed most often in the subtelomeric position on the short
arm similar to many other angiosperms, and the number of 35S
rDNA sites ranges from one pair to four pairs in diploid species
(Roa and Guerra 2012). In polyploid species, up to 12 hybrid-
ization signals of 35S rDNAwere observed in the somatic cells
(triploidA. sphaerocephalon). However, it must be noted that to
date, the rDNA sites organization has only been analyzed in less
than 30 Allium species, and therefore, it is difficult to make any
general conclusion on the rDNA sites distribution in the entire
genus.

The chromosomal patterns of both 35S rDNA and 5S
rDNA site distribution appear to be quite variable in the
Allium genus (these data and earlier reports; http://www.
plantrdnadatabase.com/). This phenomenon has been
reported in many different plant genera including Brassica
and Paphiopedilum (Hasterok et al. 2006; Lan and Albert
2011). Similar to many other species, the FISH patterns of
the 35S rDNA sites in the Allium species were more polymor-
phic than those of the 5S rDNA (Chiarini et al. 2017; Garcia
et al. 2017; Jang et al. 2016). In addition, an intraspecific
polymorphism was observed in the 5S rDNA sites number
in A. porrum where differences in site distributions were ob-
served between the homologous chromosomes of one
karyogram. A numerical variation in the rDNA sites has been
observed in several plant species, both cultivated (e.g.,
Brassica rapa, Amaranthus caudatus; Hasterok et al. 2006;
Kolano et al. 2013) and wild species (e.g., Prospero
autumnale; Jang et al. 2013). However, the strong conserva-
tion of rDNA site number has been described in many plant
species or even in entire genera, e.g., Glycine and Daucus

Fig. 3 CMA3 fluorescent-stained
chromosome complements of
Allium species: A. moly (a); A.
karataviense (b); A. nigrum (c);
A. sativum (d); A. oreophilum (e);
A. fistulosum (f); A. porrum (g);
A. sphaerocephalon (h). The ar-
rowheads indicate the CMA3

+

bands that colocalized with the
35S rDNA sites. The arrows in-
dicate the positive CMA3 bands
that did not colocalize with 35S
rDNA or 5S rDNA. The stars in-
dicate the CMA3

+ bands that
colocalized with 5S rDNA. Bar
10 μm
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(Iovene et al. 2008; Singh et al. 2001). The interspecies and
intraspecific variation in the number and localization of rDNA
sites has been attributed to various mechanisms such as
transposon-mediated transposition events, a homologous
and/or non-homologous unequal crossing over, and gene con-
version and chromosomal rearrangements, such as locus
duplication/deletion (Raskina et al. 2008; Altinkut et al.
2006; Datson and Murray 2006; Thomas et al. 1996), but
the current data do not permit more detailed inferences of
these mechanisms in Allium.

Double fluorescent staining with chromomycin A3

(CMA3) and DAPI was used to localize the chromosome re-
gions that are rich in GC and AT base pairs, respectively
(Schweizer 1976). In most of the analyzed Allium species,
the regions that were occupied by the 35S rRNA genes were
the only large GC-rich blocks of chromatin as was shown
earlier for many plants (Guerra 2000). In two species (A.
oreophilum and A. sphaerocephalon), the number of CMA3

+

bands was smaller than the number of 35S rDNA sites.
Whereas, three other species A. karataviense, A. nigrum, and
A. fistulosum had more CMA3 bands than the number of 35S
rDNA sites. In A. nigrum, two additional CMA3

+ bands
corresponded to the 5S rDNA sites were observed. There is
little data on the occurrence of CG-rich heterochromatin with
5S rRNA genes (Cabral et al. 2006; Hamon et al. 2009;
Kolano et al. 2013). Such an observation could reflect both
the composition of the 5S rDNA sequences and the nature of
the adjacent heterochromatin. A. karataviense had only two
additional CMA3+ bands (that did not colocalize with 35S
rDNA or 5S rDNA), while the patterns of the CMA3 bands
that were observed in A. fistulosum diverged from the most
frequently reported patterns. The distribution of the CMA3

+

bands that were observed in A. fistulosum resembles the one
that was reported in A. cepa (Kim et al. 2002). The CMA3

+

bands could also correspond to the heterochromatin bands,
which are mainly composed of satellite repeats (Chiarini

Fig. 4 Number and localization of 35S rDNA sites (green fluorescence)
and 5S rDNA sites (red fluorescence) and idiograms of A. nigrum (a, b)
and the triploid A. sphaerocephalon (c, d) with the localization of 35S

rDNA, 5S rDNA,NORs, positive CMA3 bands, and positive DAPI bands
indicated. All of the chromosomes from the karyotype are presented in the
idiograms. Bar 10 μm
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et al. 2014; da Costa Silva et al. 2014; Do et al. 2001). The
CMA3

+ bands, observed in the terminal position of each chro-
mosome arm of A. cepa and A. fistulosum, appeared to colo-
calize with the terminal heterochromatin that has been ob-
served in these closely related species (Do et al. 2001;
Fesenko et al. 2002; Kirov et al. 2017). Positive DAPI bands
were only observed in A. nigrum, thus suggesting the presence
of heterochromatin blocks containing AT-rich repetitive se-
quences. These bands appeared to be colocalized with positive
CMA3 and 35S or 5S rDNA sites. DAPI+/CMA+ bands have
rarely been described in plants; however, they were reported
for Cestrum (Fernandes et al. 2009). It is also possible that the
CMA+ and DAPI+ bands actually did not colocalize but are
localized very close on the chromosomes. The relatively low
resolution of observation using highly condensed mitotic
chromosomes did not allow these two different chromatin
bands to be distinguished.

The number of rRNA genes is largely redundant in relation
to what is required to sustain a ribosome assemblage; hence,
only a small fraction of the rDNA units is transcribed, and
significant portions of 35S rDNA sites are heterochromatinized
in most eukaryotes (Volkov et al. 2004). In the diploid Allium,
only one or two pairs of 35S rDNA sites were transcriptionally
active depending on the species, while in the tetraploid A.
porrum, all four pairs of 35S rDNA sites were transcriptionally
active. Interestingly, A. nigrum (2n = 16) had only one chromo-
some with NOR in its diploid chromosome complement. The
second site of 35S rDNA appeared to be transcriptionally inac-
tive. Moreover, in the karyotype of the triploid A.
sphaerocephalon, only one third of the 35S rDNA sites were
transcriptionally active. This species has four groups of chro-
mosomes with 35S rDNA sites (each group consists of three
chromosomes), and only one chromosome in each group had
NOR. The silencing of rDNA sites has been described in many
hybrids and allopolyploids (nucleolar dominance), but it has
also been observed in diploids with more than one pair of sites
(Pikaard 2000; Tucker et al. 2010; Kolano et al. 2012). This
rRNA gene silencing process involves changes in DNA meth-
ylation and histone modifications. Consequently, the epigenetic
regulation of NOR sites following hybridization and/or
polyploidization may vary between the parental subgenomes
of hybrids or allopolyploids with a tendency toward a nucleolar
dominance by one parental homolog (Borowska-Zuchowska
and Hasterok 2017; Tucker et al. 2010).

In conclusion, cytogenetic studies are very helpful in phy-
logenetic analyses and contribute to the knowledge of the
structure and evolution of genomes, which is essential in mod-
ern breeding programs. The present report shows that rDNA
sequences are very good chromosome markers in Allium. The
high variability of chromosomal patterns of rDNA sites that
was observed indicates that FISHwith rDNA sequences could
be a very good tool for comparative analyses of Allium kar-
yotypes. The very rich patterns of hybridization signals and

various bands could also be very useful in studies on the origin
and evolution of hybrid and polyploid species/cytotypes. This
report describes the results of comparative analyses of rDNA
chromosomal organization in important vegetable crops (A.
sativum, A. fistulosum, and A. porrum) and five ornamental
Allium species; however, in order to gain a full understanding
of rDNA site organization and evolution in this large genus, a
wider sampling (especially of wild species that could be used
as wild genetic resources) is necessary.
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