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Electrocorticogram (ECoG) is a well-known recording method for the less invasive brain machine interface (BMI). Our previous
studies have succeeded in predicting muscle activities and arm trajectories from ECoG signals. Despite such successful studies,
there still remain solving works for the purpose of realizing an ECoG-based prosthesis. We suggest a neuromuscular interface to
control robot using decoded muscle activities and joint angles. We used sparse linear regression to find the best fit between band-
passed ECoGs and electromyograms (EMG) or joint angles. *e best coefficient of determination for 100 s continuous prediction
was 0.6333± 0.0033 (muscle activations) and 0.6359± 0.0929 (joint angles), respectively. We also controlled a 4 degree of freedom
(DOF) robot arm using only decoded 4 DOF angles from the ECoGs in this study. Consequently, this study shows the possibility of
contributing to future advancements in neuroprosthesis and neurorehabilitation technology.

1. Introduction

Brain machine interface (BMI) is a communication tool for
quadriplegia between the brain and external devices such as
a robot [1]. Since electroencephalography (EEG) has high
temporal resolution, prominent EEG-based studies have
been used in various paradigms, such as a computer cursor
control [2], direction intention of hand movements [3, 4],
a P 300 speller device [5], and neurofeedback systems for
rehabilitation [6–9]. *ese noninvasive methods are useful
for classification of movement direction or intention. *e
prediction of time-varying trajectories, however, is very
difficult because of insufficient spatial resolution and low
signal-to-noise ratio.

After the first electrocorticogram- (ECoG-) based BMI
succeeded in one-dimensional cursor control in humans
[10], it has come into the spotlight as an alternative re-
cording approach for less invasive BMIs because ECoG
signals could offer higher spatial resolutions than the clas-
sical scalp EEG signals. ECoG signals have also shown direct
potential as a stable in long-term recording method
[1, 11–14]. Many studies using ECoG have already succeeded

in the classification of movement direction [15, 16], grasp
type [17], and the prediction of hand trajectory [11–13, 18].
Our previous studies based on the brain rhythmic bands
with SLiR algorithm also have been reported to predict
muscle activities and arm trajectories from ECoG signals
[13, 14, 19–22].

Despite these successes, however, there still remain
works for the realization of ECoG-based BMIs. *e brain
and CNS system allows skillful manipulation of the body to
interact with the external environment. *is sophisticated
and flexible operation involves intrinsic (kinetic) in-
formation such as force and stiffness, and as well as extrinsic
(kinematic) information such as desired angle or velocity.
*e neuromuscular system naturally modulates mechanical
stiffness and viscosity in order to obtain proper interaction
force to the environments. Since stiffness, viscosity, and
force change with our muscle activation in order to interact
with environments, decoding muscle activities, as well as
joint angles, are important components for realizing neu-
roprosthesis capable of controlling interaction force or
stiffness. Although many studies have achieved to decode
arm trajectory, a few studies have demonstrated that muscle
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activity could be decoded from spike signals [23–25], EEG
[26, 27], and ECoG [19, 22].

*e purpose of this study is to propose a basis concept
for a neuromuscular BMI system. *e schematic outline of
this concept is shown in Figure 1. A well-trained Japanese
monkey performed a series of reaching, grasping, pulling,
and releasing movements. We simultaneously recorded 16
ECoG signals of the primary motor cortex (Ml) and 12
electromyography (EMG) signals in the right arm. We also
measured and calculated joints angle using a 3D marker
tracking system. We decoded three joint angles for the
shoulder, elbow joint angle, and muscle activities from
ECoG signals using sparse linear regression (SPR). Our
results indicate that ECoG signals from primary motor
cortex involves both intrinsic (kinetic) and extrinsic (ki-
nematic) information. We could also predict multiple
muscle activities (intrinsic) and joint angles (extrinsic) from
ECoG signals simultaneously. In addition, we controlled a 4
degree of freedom (DOF) robot arm using decoded joint
angles and muscle activation in offline simulation.

2. Material and Methods

2.1. Behavioral Task. All experimental procedures were
performed in accordance with the Guidelines for Proper
Conduct of Animal Experiments of the Science Council of
Japan and approved by the Committee for Animal Exper-
iment at the National Institutes of Natural Sciences (Ap-
proval No. 11A157). *e animal welfare and steps taken to
ameliorate suffering were in accordance with the recom-
mendations of theWeatherall report, “*e use of nonhuman
primates in research.”

We note that we reused our database reported in our
previous work [19] for verifying the possibility of realizing
neuromuscular BMI device. We explain briefly experimental
setup in this paper as follows. A Japanese macaque (female,
at 4.7 kg) was trained to perform reaching and grasping tasks
with the right hand as shown in Figure 2. First, the monkey
placed her hand on a home button located in front of the
chair. Second, the monkey tried to reach for the knob after
a “go” cue was given in a beep sound. *ird, the monkey
then had to pull the knob and release. When the monkey
successfully pushed the home button and pulled the knob to
the required displacement (6 cm), it received a juice reward.
We extracted continuous data (total length; 500 s) from our
database to control the robot arm.*ese data involved a total
number of 248 trials. Each trial duration averages and
standard deviations (STD) were 1.16 ± 0.29s.

2.2. Data Recording. A platinum ECoG array (Unique
Medical Corporation, Tokyo, Japan), which had 16 (4 × 4
grid) channel electrodes was implanted over the left primary
motor cortex (M1) as shown in Figures 2 and 3.

EMG signals of the right forelimbmuscles were recorded
from chronically implanted pairs of multistranded stainless
steel wires (Cooner Wire, Chatsworth, CA, USA). *ey were
subcutaneously tunneled to the following target muscles:
adductor pollicis (AP), abductor pollicis longus (APL),

flexor digitorum profundus (FDP), and extensor digitorum
communis (EDC) for hand muscles; flexor carpi ulnaris
(FCU), and extensor carpi radialis (ECR) for wrist muscles;
brachioradialis (BRA) and triceps lateral head (TRA) for
elbow muscles; biceps long head (BIL) and triceps long head
(TRO) for shoulder-elbow double joint muscles; and pec-
toralis major clavicular head (PECM) and deltoid clavicular
part (DELP) for shoulder muscles. ECoG and EMG signals
were sampled at 4 kHz.

*e 3-D positions were recorded using the optical
motion capture system (Eagle digital system; Motion
Analysis Corporation, Santa Rosa, CA). *e system used
twelve infrared cameras operating at 200 frames/s to track
the positions of multiple reflective markers (4mm-diameter
spheroids). A total of fourteen markers were attached to the
right arm of the monkey from the shoulder to the fingers.
*e motion data were down-sampled to 100 samples per
second.

2.3. Preprocessing of ECoG and EMG Data. ECoG signals
were preprocessed with our previously proposed method
[19]. First, the signal data were re-referenced with a common
average reference. Second, each ECoG signal was divided
into nine frequency bands (δ: 1.5–4Hz; θ: 4–8Hz; α: 8–
14Hz; β1: 14–20Hz; β2: 20–30Hz; c1: 30–50Hz; c2: 50–
90Hz; c3: 90–120Hz; and c4: 120–150Hz) using fourth-
order bandpass Butterworth filters. Second, the bandpass
filters split 16-channel ECoG signals into nine band-passed
signals to produce M channels of bandpass filtered signals
􏽢xi(t). *ird, these band-passed signals were digitally rectified
and smoothed with a Gaussian filter (width: 0.1 s, σ: 0.04 s).
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Figure 1: Schematic outline of a proposed neuroprosthesis.
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Figure 2: Behavioral task. Monkeys performed sequential right
arm and hand movements, in a 3D workspace. During the task,
ECoG, EMG signals, and marker positions were recorded
simultaneously.
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Fourth, the obtained signals at time t were normalized to the
standard z-score as follows:

xi(t) �
􏽢xi(t)− 􏽢μi

􏽢σi

, (i � 1, 2, 3, . . . , M), (1)

where 􏽢μi and 􏽢σi are the mean and the standard deviation of
􏽢xi, over a 2 s interval before the time t. Finally, the signals
were down-sampled to 100Hz to match the motion data.

EMG signals were rectified and passed through a fourth-
order lowpass filter with a cutoff frequency of 4Hz and
further down-sampled to 100Hz, resulting in muscle acti-
vation [28, 29].

2.4. Prediction of Muscle Activation and Joint Angles from
ECoG Signals. We used the Variational Bayesian Sparse
Regression toolbox [30] to decode muscle activation and
joint angles. *e decoded muscle activation pEMGk(t) and
joint angles pYh(t) at time t, are described as

pEMGk
(t) � 􏽘

M

i�1
􏽘

N−1

j�0
ωk

ijxi(t− jΔt) + ωk
0,

pYh
(t) � 􏽘

M

i�1
􏽘

L−1

j�0
ωh

ijxi(t− jΔt) + ωh
0 ,

(2)

where ωk
ij and ωh

ij are the weight coefficient of the k-th
muscle and h-th joint angle for the i-th signal source at
a delay time jΔt, ωk

0 and ωh
0 are the bias terms, xi(t) is the

i-th ECoG source at time t, and Δt is a discrete-time step-size
of 20ms.*emuscle activity at time t was predicted using 10
time points (N� 10) starting 200ms before the target time t.
*e joint angles at time t were predicted using 25 time points
(L� 25) starting 500ms before the target time t.

2.5. Analysis. Accuracy of the predictions was evaluated using
a 5-fold cross validation. *e entire 500 s of experiment data
were divided into two parts, 400 s of training data and 100 s of
test data. We calculated the coefficients of determination (R2)
to evaluate the similarity between actual and predicted muscle
activities. Accuracy was also evaluated using normalized root-
mean-square error (nRMSE) between actual and predicted.

2.6. RobotArm. We specially designed a life-sized robot arm
for monkey to reproduce the movements of arm as shown in

Figure 3. For the purposes of this study, the robot arm is
modeled as a four DOF kinematic linkage, consisting of two
links i.e., upper arm and forearm along with the hand and
two joints i.e., shoulder joint and elbow joint, with a fixed
wrist joint. *e shoulder joint has 3 DOFs (S1:
abduction/adduction; S2: flexion/extension; S3: rotation),
and the elbow is simplified as a revolute joint with 1 DOF
(E1: flexion/extension). *e upper arm and forearm are
driven by the brushless DC servo motors with 512 ppr
encoder (Faulhaber Motors: 2342S024CR). *e PID con-
troller is implemented on the base, and basic trajectory
tracking tasks were executed in joint space.

We also made an offline simulator. We made ECoG
database at a 100Hz sampling time for the simulator. *e
simulator reads 10 time points of ECoG data per cycle. We
used first-in-first-out (FIFO) method with 2 s data length.
*e simulator calculates the desired joint angles and sends
them to the control computer using TCP/IP protocol. *en,
the control computer can calculate and update θref in the
PID controller on the robot arm with at a 200Hz sampling
rate (Figure 3):

θref � K θdes − θpre􏼐 􏼑, (3)

where θdes and θpre are the desired angle and the present
angle and θref is input value for robot arm. K gain should be
controlled by the intrinsic information i.e., stiffness. We
used an index of muscle cocontraction around the joint
(IMCJ) instead of stiffness. Osu et al. reported the linear
relationship between IMCJ and joint stiffness measured by
the perturbation [29, 31]. We defined shoulder gain Ks(t)

and elbow gain Ke(t) as follows:

Ks(t) � 􏽘
k

βs
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌pEMGk
(t), (k � 1, 2, 3, 5),

Ke(t) � 􏽘
k

βe
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌pEMGk
(t), (k � 3, 4, 5, 6),

(4)

where βs and βe are constant gain and adjusted manually for
stable movements.

3. Results

3.1. Prediction of Muscle Activation. We applied the
decoding model to continuous test data. One typical ex-
ample of continuous prediction is shown in Figure 4., where
the prediction was stable even for repetitive trials over 100 s.
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Figure 3: Algorithm flowchart of control of a robot arm using decoded joint angles and muscle activation from ECoG signals.
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Figure 4: Example of typical muscle prediction.We show the result over 50 s of test data using 16 ECoG electrodes.R2 values and nRMSE for
the comparison between predicted (red solid) and observed (blue dotted) muscle activation are also shown.
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We note that the results showed the similar pattern in the
agonistic muscles and also even the antagonistic muscles such
as TRO, ECR, and EDC. *e arrows shown in Figure 4 in-
dicated local difference between measured and estimated
EMGs. *ese differences have appeared occasionally in this
work.*ismeasuring noisemight be a result from the crosstalk
among the EMG electrodes or the wobbling electrode during
the monkey’s motion. Although the results involved some
failures, these results clearly show that the proposed method
could realize neuromuscular BMI system in an online fashion.
In the results of the 5-cross validation, means and stan-
dard deviation of R2 and nRMSE for each muscle ranged
from 0.0199 ± 0.0062 (ECR) to 0.6333 ± 0.0033 (FDP) and
0.1303 ± 0.0053 (APL) to 0.1825 ± 0.0098 (FCU) as shown
in Table 1. *e median and standard error of R2 and nRMSE
were 0.3765 ± 0.0164 and 0.1527 ± 0.0028, respectively. In the
case of TRO,R2 value was worse but nRMSE was good among
muscle prediction. It might be the reason that the hardly used
muscle such as TRO had small range of activation. *e bold
numbers in Table 1 show the best value among the test data.

3.2. Prediction of Joint Angle and Robot Control. We also
predicted joint angles from the ECoG signals with the SPR
model. *e desired angles calculated from offline simulation
showed good correlation with the actual angles of movements
as shown in Figure 5. In the results of the 5-cross validation,
means and standard deviations of R2 and nRMSE of angle
prediction between themeasured angles and the predicted ones
were from −0.0333 ± 0.3547 (S3) to 0.6359 ± 0.0929 (S2) and
from 0.1261 ± 0.0111 to 0.1596 ± 0.0286, respectively (Table 2).
*emedian and standard error of R2 and nRMSE were 0.6171
± 0.1415 and 0.1373 ± 0.0083, respectively. *e bold numbers
in Table 2 also show the best value among the test data. *ese
results suggest that the arm movement can be estimated from
ECoG signals. *e accuracy values of S1 (shoulder
abduction/adduction), S2 (shoulder flexion/extension), and
E1 (elbow flexion/extension) were higher than those of S3
(rotation). It could not affect the robot control because the
range of shoulder rotation had small. (see also video S1 about
the robot arm).

4. Discussion

Since ECoG signal is the origin of EEG signals, we tried to
divide ECoG signals into specific brain rhythmic bands
based on the traditional EEG studies. In addition, Chen
et al. [13] also reported that the brain rhythmic based
method produced the same or better results than the
nonphysiological fractionized frequency method. *e
delta and gamma bands were superior to the other bands in
this study. Our previous studies [15–17, 19, 20, 27] also
reported that delta and gamma bands have plentiful in-
formation to estimate the trajectories and force. However,
the weights of all frequency bands disappeared after ap-
plying the SPR algorithm. *is phenomenon stood out in
intrinsic (kinetic) prediction. *is might indicate that all
sensorimotor rhythms of ECoG are needed to predict
EMG signals and angles.

Current rehabilitation robots can perform sophisticated
operations including stiffness control [32, 33]. *e human
musculoskeletal system has stiffness and viscosity properties
essential to interaction with our surroundings. *e per-
turbation method has been used to measure stiffness of the
human arm with a manipulator. Since the results are the
averages of many experimental trials, stiffness could not be
measured in time series. *ere are some trials that estimate
stiffness using EMG signals because stiffness changes with
muscle activation. Osu and Gomi tried to rebuild joint
stiffness from EMG signals using conversion factors to
match the EMG to the measured stiffness using PFM [34].
Osu et al. [31] consequently proposed IMCJ that was defined
as the summation of absolute values of muscle quasitension.
*ese earlier models used parameters or “gains” with no
physiological basis, thus compromising constructional val-
idity. Our previous studies suggested the myokinetic
(Mykin) model which can estimate the angle, torque, and
stiffness of joints from muscle activities [25, 29, 33]. In this
study, we used IMCJ instead of Mykin model, because
Mykin model should need the parameter calibration from
the relationship between joint torque and muscle activation.
Nonetheless, we could control the robot arm using both
angles (extrinsic) and IMCJ (intrinsic). *erefore, decoding
muscle activity and joint angles is an important component
for realizing BMI systems capable of controlling interaction.

5. Conclusion

*is study describes the prediction muscle activities and
joint angles from ECoG signals. We displayed a novel at-
tempt to control the 4 DOF robot arm using the decoded

Table 1: *e cross-validation results of the muscle prediction.

Muscle R2 Mean Std.
PECM 0.3814 0.3687 0.4381 0.4450 0.4676 0.4202 0.0428
DELP 0.0794 0.0967 0.0837 0.0824 0.1325 0.0949 0.0220
TRO 0.0664 0.0630 0.0668 0.0673 0.0659 0.0659 0.0017
TRA 0.1615 0.1693 0.1783 0.2187 0.2410 0.1938 0.0344
BIL 0.3381 0.3960 0.3893 0.3966 0.4527 0.3945 0.0406
BRA 0.3512 0.3612 0.3526 0.3616 0.3658 0.3585 0.0063
ECR 0.0221 0.0213 0.0148 0.0129 0.0284 0.0199 0.0062
EDC 0.5429 0.5433 0.5419 0.5493 0.5506 0.5456 0.0040
FDP 0.6360 0.6278 0.6350 0.6329 0.6347 0.6333 0.0033
FCU 0.2638 0.2725 0.2751 0.2739 0.3010 0.2772 0.0140
APL 0.4419 0.4796 0.5038 0.5189 0.5533 0.4995 0.0418
AP 0.5450 0.5426 0.5567 0.5556 0.6058 0.5611 0.0257
Muscle nRMSE Mean Std.
PECM 0.1482 0.1494 0.1424 0.1413 0.1416 0.1446 0.0039
DELP 0.1474 0.1463 0.1476 0.1471 0.1445 0.1466 0.0013
TRO 0.1398 0.1375 0.1387 0.1383 0.1410 0.1391 0.0014
TRA 0.1637 0.1641 0.1622 0.1628 0.1614 0.1628 0.0011
BIL 0.1745 0.1679 0.1692 0.1682 0.1618 0.1683 0.0045
BRA 0.1843 0.1832 0.1827 0.1823 0.1812 0.1827 0.0011
ECR 0.1896 0.1901 0.1903 0.1915 0.1903 0.1904 0.0007
EDC 0.1545 0.1538 0.1547 0.1533 0.1534 0.1539 0.0007
FDP 0.1515 0.1508 0.1511 0.1512 0.1525 0.1514 0.0007
FCU 0.1857 0.1867 0.1877 0.1875 0.1650 0.1825 0.0098
APL 0.1372 0.1335 0.1295 0.1277 0.1234 0.1303 0.0053
AP 0.1340 0.1342 0.1359 0.1359 0.1288 0.1338 0.0029
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joint angles and muscle activation for neuromuscular BMI
system. *is approach offers important insight regarding
the presence of ample information in ECoG signals to
control a neuro-muscular prosthesis that behaves like
a human arm. *e results clearly demonstrated that muscle
activities and joint angles could be predicted in time series
from ECoG signals simultaneously, whereas previous
ECoG-based studies have reported the classification of

movement direction or intention. We could also show the
concept of impedance control for a robot arm and control
the robot arm using the decoded joint angles. Finally, this
creates remarkable benefits, which would contribute to the
realization of ECoG-based prosthetic limbs.
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Figure 5: Example of typical joint angle prediction for test data using 16 ECoG electrodes. R2 values and nRMSE for the comparison
between predicted (red solid) and observed (blue dotted).

Table 2: *e cross-validation results of the joint angle prediction.

Joint angle R2 Mean Std.
S1
(abd./add.)

0.7085 0.6598 0.6499 0.5474
0.5868 0.6305 0.0635

S2
(Flex./Ext.)

0.7086 0.6937 0.6030 0.4869
0.6872 0.6359 0.0929

S3 (rot.) 0.2504 −0.3530 0.1134 −0.4715
0.2940 −0.0333 0.3547

E1 0.6657 0.6176 0.6455 0.5049
0.5852 0.6038 0.0630

Joint angle nRMSE Mean Std.
S1
(abd./add.)

0.1153 0.1249 0.1361 0.1465
0.1263 0.1298 0.0119

S2
(flex./ext.)

0.1284 0.1390 0.1529 0.1621
0.1412 0.1447 0.0130

S3 (rot.) 0.1289 0.1997 0.1601 0.1729
0.1364 0.1596 0.0286

E1 0.1135 0.1196 0.1288 0.1429
0.1257 0.1261 0.0111
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