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Abstract: Bearings are critical parts of rotating machines, making bearing fault diagnosis based
on signals a research hotspot through the ages. In real application scenarios, bearing signals are
normally non-linear and unstable, and thus difficult to analyze in the time or frequency domain
only. Meanwhile, fault feature vectors extracted conventionally with fixed dimensions may cause
insufficiency or redundancy of diagnostic information and result in poor diagnostic performance.
In this paper, Self-adaptive Spectrum Analysis (SSA) and a SSA-based diagnosis framework are
proposed to solve these problems. Firstly, signals are decomposed into components with better
analyzability. Then, SSA is developed to extract fault features adaptively and construct non-fixed
dimension feature vectors. Finally, Support Vector Machine (SVM) is applied to classify different
fault features. Data collected under different working conditions are selected for experiments.
Results show that the diagnosis method based on the proposed diagnostic framework has better
performance. In conclusion, combined with signal decomposition methods, the SSA method proposed
in this paper achieves higher reliability and robustness than other tested feature extraction methods.
Simultaneously, the diagnosis methods based on SSA achieve higher accuracy and stability under
different working conditions with different sample division schemes.
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1. Introduction

Bearings are critical parts in rotating machines and their health condition has a great impact
on production. However, because of non-linear factors such as frictions, clearance and stiffness,
vibration signals of bearings acquired in real application scenarios are characterized by non-linearity
and instability which make bearing fault diagnosis difficult [1].

The general fault diagnosis process involves three main steps, namely signal acquisition and
processing, fault feature extraction and fault feature classification [2]. Sensors are utilized to acquire
signals with noises, and signal processing techniques are applied subsequently to improve the
signal-to-noise ratio [3]. Particularly, ideal fault feature extraction can express the feature information
of filtered signals comprehensively and efficiently, and it is the basis to produce an accurate fault
feature classification. Therefore, a reasonable and efficient fault feature extraction plays an important
role in fault diagnosis. Current fault extraction methods mainly include time domain, frequency
domain and time-frequency domain analysis [4].

Time domain analysis is one of the earliest methods studied and applied. It calculates various
statistical parameters in the time domain, for instance peak amplitude, kurtosis and skewness [5–7] to
construct feature vectors. Frequency domain analysis transforms signals from the time domain into
the frequency domain first, mainly focusing on Fourier Transform (FT) [8], then the periodical features,
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frequency features and distribution features of signals are extracted with methods such as cepstrum
analysis and envelope spectrum analysis to construct feature vectors [9,10].

However, time domain or frequency domain analysis only extracts the information in the
corresponding domain, resulting in the loss of information in the other domain. With in-depth
study, time-frequency domain fault feature extraction methods were developed accordingly. They can
extract both time and frequency information. They also have shown superiority for analyzing nonlinear
and unstable signals.

As a typical time and frequency domain analysis method, Short Time Fourier Transform
(STFT) [11] improves the analysis capability for unstable signals by introducing a fixed-width time
window function. However, a fixed-width time window function in STFT cannot guarantee optimal
time and frequency resolution simultaneously. The Wavelet Transform (WT) [12] introduces time and
frequency scale coefficients to overcome the drawbacks of STFT. WT is based on the theory of inner
product mapping and a reasonable basis function is the key to guarantee the effectiveness of WT.
However, it is difficult to select a proper basis function. Therefore, to improve the adaptive analysis
capability to signals, Empirical Mode Decomposition (EMD) [13] and Local Mean Decomposition
(LMD) [14] methods were successively studied and applied. According to the local characters of signals
themselves, EMD and LMD adaptively decompose a signal into various components which have better
statistical characters for later analysis. Compared with each other, EMD is a mature tool for long-term
study and usage, while LMD has an improved decomposition process and better decomposition results
with physical explanations [15].

In recent years, EMD and LMD have been extensively studied and implemented.
Mejia-Barron et al. [16] developed a method based on EMD to decompose signals and extract features,
completing the fault diagnosis of winding faults. Saidi et al. [17] introduced a synthetical application
of bi-spectrum and EMD to detect bearing faults. Cheng et al. [18] combined EEMD and entropy
fusion to extract fault features for planetary gearboxes, and furthermore implemented fault diagnosis
successfully. Yi et al. [19] also utilized EEMD to pre-process signals for further fault diagnosis for
bearings. Liu and Han et al. [20] applied LMD and multi-scale entropy methods to extract fault features
and analyzed faults successfully. Yang et al. [21] proposed an ensemble local mean decomposition
method and applied it in rub-impact fault diagnosis for rotor systems. Han and Pan et al. [22]
integrated LMD, sample entropy and energy ratio to process vibration signals and realized the fault
feature extraction and fault diagnosis in rolling element bearings. Yasir and Koh et al. [23] adopted
LMD and multi-scale permutation entropy and realized bearing fault diagnosis. Guo et al. [24] studied
an improved fault diagnosis method for gearbox combining LMD and a synchrosqueezing transform.

Fault feature classification is implemented after fault feature extraction. Nowadays, shallow
machine learning methods are extensively utilized to solve the classification problem. Support Vector
Machine, Artificial Neural Network and Fuzzy Logical System are widely applied in condition
monitoring and fault diagnosis [25]. Particularly, SVM is based on statistics and minimum theory of
structured risk, and it has better classification performance when dealing with the practical problems
of a small amount of and non-linear samples. To solve the multi-class classification problems, based on
SVM, Cherkassky [26] proposed a one-against-all (oaa) strategy in his studies, transforming a N-class
classification problem into N binary classification problems. Also, Kressel [27] used a method to
transform a N-class classification problem into N(N − 1)/2 binary classification problems, namely the
one-against-one (oao) strategy. Wu et al. [28] adopted SVM to diagnosis via analyzing the full-spectrum
to extract fault features. Saimurugan et al. [29] improved the diagnosis performance by integrating
SVM and avdecision tree. Santos et al. [30] selected SVM for classification in wind turbine fault
diagnosis with several trails of different kernels.

Currently, researchers all over the world have carried out extensive studies on bearing fault
diagnosis. To our best knowledge, fault diagnosis methods still need further study, although various
solutions have been investigated from different aspects. The main problems to be solved in this paper
are summarized as follows:
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(1) Vibration signals acquired in real application scenarios are non-linear and unstable and their
statistical characters are time-varying. Hence, it is difficult to extract effective and comprehensive
fault features only in the time-domain or in frequency-domain.

(2) Conventional fault feature extraction methods take the overall characteristics of signals into
account via calculating statistical parameters to construct feature vectors with fixed dimensions,
however, local detailed characteristics are neglected. Therefore, fault information contained
in vectors may be insufficient or redundant in different working conditions because vectors
have a fixed dimension, consequently leading to lower reliability and robustness of fault feature
extraction. Meanwhile, data-driven classifiers are sensitive to classification features and minor
changes in classification features may result in performance reduction [31].

In order to improve the fault diagnosis performance, in this paper, SSA is proposed to adaptively
extract fault features and construct unfixed-dimension feature vectors according to local characters of
signals. Then, SSA is implemented under the designed framework. Signals are decomposed firstly to
obtain components with better analyzability, LMD and EEMD are both utilized to decompose signals
into different components from different analysis aspects. SSA is utilized to extract fault features
adaptively and feature vectors with non-fixed dimensions are constructed subsequently. Finally,
SVM is selected to classify the fault features considering its inherent advantages to small amount
train samples.

2. Methodology

2.1. Self-Adaptive Spectrum Analysis

Aiming at solving the problem that conventional feature extraction methods neglect local details
of signal and fault information may be redundant or insufficient because of fixed-dimension feature
vectors, Self-adaptive Spectrum Analysis (SSA) is proposed. With the SSA method, unfixed-dimension
feature vectors are constructed by extracting the local characteristics of signals adaptively.

At first, a number of signals corresponding to different categories of fault types are selected.
To implement SSA method efficiently, Fast Fourier Transform (FFT) is used to transform the signals
into frequency domain to get corresponding spectrums for better readability. Then an overall
frequency-window is set to all spectrums according to the fluctuation in spectrums, and local feature
information inside the frequency-window is extracted to construct feature vectors.

In order to implement the proposed SSA, some definitions are given:

Definition 1. Differential frequency fz.

fz is the minimum frequency unit in SSA. Normally, feature information is extracted at points
corresponding to n fz (n = 1, 2, 3, . . . ), where fz is calculated as follows:

Firstly, in each spectrum, the maximum amplitude and corresponding frequency value are found.
All the frequency values are denoted as f1, f2, f3, . . . , fm, where m means the sequence number of
signals. More than two fault categories must be included within the selected signals.

Secondly, the frequency values are arranged into different vectors according to the categories of
samples; vectors are denoted as:

vi =
[

f(i−1)m/k+1, f(i−1)m/k+2, . . . , f(i−1)m/k+m/k

]
(1)

where k means k kinds of faults, i = [1, 2, . . . k]. Here we assume that different categories have the
same amount of signals. Then, the average values of all elements in each vector are figured out and
denoted as v1, v2, . . . , vk, respectively, then a vector f = [v1, v2 . . . vk] is constructed.

Thirdly, minimum frequency value fmin and the maximum frequency value fmax are selected
in vector f . Then, two neighboring frequency values are also selected in f , between which there is
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the maximum value among the differences between every two neighboring frequencies, the lower
frequency is denoted as flow and the higher one is denoted as fhigh.

Finally, fmin, fmax, flow, fhigh are arranged in ascending order, and absolute values fdiff of
differences between every neighboring two frequencies are calculated. The minimum non-zero
fdiff value is picked to be the value of fz:

fz = min( fdiff) (2)

Definition 2. Frequency Window W = [ fl, fr].

The frequency window is a specific frequency section for extracting feature information, fl is the
left boundary while fr is the right boundary. Frequency window is determined with fixed boundaries,
and feature information is extracted inner the window. Boundaries are calculated as follows:

fl = f loor
(

fmin

fz

)
∗ fz (3)

fr = ceil
(

fmax

fz

)
∗ fz (4)

where f loor(∗) is a round down function, ceil(∗) is a round up function.

Definition 3. Tolerance µ.

Tolerance µ denotes that in a section which is centered with n fz, µ is taken as the semidiameter to
determine the searching section (n fz − µ, n fz + µ ], and the maximum amplitude value corresponding
to a frequency within this section can be regarded as the amplitude value to n fz. µ is calculated
as follows:

µ = f loor
(

fz

2

)
(5)

Definition 4. Peak value ratio coefficient h.

h denotes the degree of peak amplitude value. It is utilized to judge whether the amplitude value
is normal or not and all h construct fault feature vectors. h is calculated as follows:

Firstly, average value of all the amplitude values in frequency window [ fl, fr] is calculated,
denoted as Aave, also the maximum amplitude value in section (n fz − µ, n fz + µ ] is selected and
denoted as Amax. Finrfally, h can be calculated as follows:

h =
Amax

Aave
(6)

Figure 1 gives a description of the definitions mentioned above.
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Combined with Figure 1, SSA is implemented on each spectrum as follows:

(1) Calculating values of differential frequency fz and boundaries fl, fr, frequency window W
is determined;

(2) Calculating all the n fz values, taking µ as side intervals to determine different searching sections;
(3) Selecting the maximum amplitude in each searching section and corresponding frequency value,

calculating the absolute frequency interval d between this frequency value and section center n fz,
also, h are calculated, frequency interval vector D = [d1, d2, d3 . . . dn], Peak value ratio coefficient
vector H = [h1, h2, h3 . . . hn];

(4) Setting a threshold value ht for h, and ht could be optimized automatically by the overall accuracy.
ht is used to judge if an anomaly exists in sections. When h > ht, the corresponding section is
regarded as an abnormal one;

(5) If an anomaly is found, figuring out whether all the frequency values corresponding to abnormal
sections are on the same side of n fz (n = 1, 2, 3, . . . ) along the frequency axis simultaneously.
If they are on the same side, selecting a minimum d in D, and shifting the spectrum to the opposite
direction by d. Subsequently, repeating steps 1 to 3. While, if they are not on the same side, skip
steps 5 and 6;

(6) H is taken as the fault feature vector extracted from the spectrum.

2.2. Framework Construction of Fault Diagnosis

The overall framework construction of the proposed fault diagnosis method based on SSA in our
research is shown in Figure 2.
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Figure 2. SSA-based diagnostic framework.

The proposed fault diagnosis method includes three parts, namely data processing, fault feature
extraction and fault feature classification.

2.2.1. Data Processing

As shown in Figure 3, a signal segment containing 120,000 points is selected, then it is segmented
into 100 parts with a same length. In total, 100 samples are extracted from one signal segment.
Therewith, 100 samples are separated into a training sample set and a test sample set.

Each sample is decomposed into a set of components with better analyzability with a
time-frequency analysis method, LMD and EEMD are two commonly used ones. The very first
component in each set of components is chosen to extract fault features because they accumulate the
main part of the energy.
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Figure 3. Segmentation of samples.

2.2.2. Fault Feature Extraction

FFT is utilized to transform the decomposed component into the frequency domain, and then SSA
is implemented to extract fault features. First the components of the training samples are selected to
calculate fz, and fz is utilized for both the training samples and test samples to extract fault features.

2.2.3. Fault Feature Classification

Fault feature vectors are classified into different fault patterns. Vectors extracted from the training
samples are utilized to train the classification model and parameters are tuned to optimize the model.
Here, SVM is selected because of its better performance in classification with small samples. Eventually,
categories are output with the well-trained model.

2.3. Experiment Preparation

2.3.1. Data Selection and Processing

Vibration signals acquired from bearings are utilized for validation. In this paper, selected bearing
data published by Case Western Reverse University were used [32]. Single point faults are introduced
to the test bearings on different parts (ball, inner race and outer race) to simulate different kinds of
faults. Vibration signals of different kinds of faults with different failure degrees are collected under
different loads to construct the experimental data set.

The data set consisted of vibration data collected on SKF bearings, and the sampling frequency is
12 kHz. Twelve kinds of combinations under four kinds of loads (0, 1, 2 and 3 hp) and three kinds of
failure degrees (0.007, 0.014 and 0.021 inch) form 12 different working conditions.

Under each working condition, four kinds of fault mode (normal, ball fault, inner race fault
and outer race fault) are simulated, and four time-varying signals corresponding to the faults are
collected, respectively. Each signal is processed with the proposed method given in Figure 3 to extract
100 samples, and 100 feature vectors are subsequently constructed. Eventually, 400 feature vectors are
determined under every working condition.

2.3.2. Parameter Determination

Parameters corresponding to decomposition methods, fault feature extraction process and fault
feature classification modeling process are determined as follows:

Parameters to be determined in signal decomposition methods:
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(1) In LMD, parameters are determined according to reference [33];
(2) In EEMD, parameters are determined according to reference [34];

Parameters to be determined in SSA method:

(1) fz, differential frequency value is calculated according to Equation (2);
(2) fl , left boundary value is calculated according to Equation (3);
(3) fr, right boundary value is calculated according to Equation (4);
(4) µ, tolerance value is calculated according to Equation (5);
(5) h, peak value coefficient ratio is calculated according to Equation (6);
(6) ht, the minimum value in vector H is selected as the threshold value of h;

Parameters to be determined in pattern recognition method:

(1) In SVM, cost c is a basic parameter while g is a specific one in RBF kernel. In this paper, Grid
search [35] is applied and overall accuracy is taken into consideration to tune the two parameters.

3. Experiments and Results

Experiment Results and Analysis

In this subsection, a simulated signal x(t) is utilized to evaluate the effectivity of
decomposition methods [33]. x(t) consists of two superimposed component signals: x(t) =

(1 + 0.5cos(9πt))cos(200πt + 2cos(10πt)) + 3cos
(
20πt2 + 6πt

)
t ∈ [0, 1]

The LMD and EEMD methods are used to decompose the signal. Figure 4 illustrates the results of
the decomposition.

Sensors 2018, 18, 3312 7 of 15 

 

Parameters corresponding to decomposition methods, fault feature extraction process and fault 

feature classification modeling process are determined as follows: 

Parameters to be determined in signal decomposition methods: 

(1) In LMD, parameters are determined according to reference [33]; 

(2) In EEMD, parameters are determined according to reference [34]; 

Parameters to be determined in SSA method: 

(1) 𝑓z, differential frequency value is calculated according to Equation (2); 

(2) 𝑓l, left boundary value is calculated according to Equation (3); 

(3) 𝑓r, right boundary value is calculated according to Equation (4); 

(4) 𝜇, tolerance value is calculated according to Equation (5);  

(5) ℎ, peak value coefficient ratio is calculated according to Equation (6); 

(6) ℎt, the minimum value in vector 𝐻 is selected as the threshold value of ℎ; 

Parameters to be determined in pattern recognition method: 

(1) In SVM, cost c is a basic parameter while g is a specific one in RBF kernel. In this paper, Grid 

search [35] is applied and overall accuracy is taken into consideration to tune the two 

parameters. 

3. Experiments and Results 

Experiment Results and Analysis 

In this subsection, a simulated signal 𝑥(𝑡) is utilized to evaluate the effectivity of decomposition 

methods [33]. 𝑥(𝑡) consists of two superimposed component signals: 

𝑥(𝑡) = (1 + 0.5 𝑐𝑜𝑠(9𝜋𝑡)) 𝑐𝑜𝑠(200𝜋𝑡 + 2 𝑐𝑜𝑠(10𝜋𝑡)) + 3 𝑐𝑜𝑠(20𝜋𝑡2 + 6𝜋𝑡)  𝑡 ∈ [0,1] 

The LMD and EEMD methods are used to decompose the signal. Figure 4 illustrates the results 

of the decomposition. 

 

Figure 4. Results of decomposition for simulated signal. 

Figure 4a shows the oscillograph of the simulated signal. In Figure 4b,c, the oscillographs in red 

are two original components of the raw simulated signal, and the ones in blue are the Product 

Function (PF) components extracted with the LMD method. Obviously, the original components and 

extracted PF components have a high similarity except for several end points on the right. In Figure 

Figure 4. Results of decomposition for simulated signal.

Figure 4a shows the oscillograph of the simulated signal. In Figure 4b,c, the oscillographs in red
are two original components of the raw simulated signal, and the ones in blue are the Product Function
(PF) components extracted with the LMD method. Obviously, the original components and extracted
PF components have a high similarity except for several end points on the right. In Figure 4d,e,
the oscillographs in blue are the first two Intrinsic Mode Function (IMF) components extracted with
the EEMD method; both of them have less similarity with the original ones. These results prove that
LMD adopted in the research can effectively decompose the raw signal into PF components which
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have physical significance, and EEMD can decompose the raw signal into IMF components by another
mechanism [18].

Four experimental sets are designed combining two different signal decomposition methods: two
different feature extraction methods and a fault feature classification method. The four experimental
sets are arranged as shown in Table 1. LMD and EEMD are utilized to decompose the signals. The fault
feature extraction methods include the proposed SSA and the combination of Sample Entropy (SE)
and Energy Ratio (ER) [36], and the LIBSVM [37] software package is selected to implement the
pattern classification.

Table 1. Arrangement of experiments.

Experiment Set Signal Decomposition Fault Feature Extraction Fault Feature Classification

Set 1 LMD SSA SVM
Set 2 LMD SE&ER SVM
Set 3 EEMD SSA SVM
Set 4 EEMD SE&ER SVM

In each experiment set, 12 kinds of working conditions (a working condition is denoted as a
load-fault five kinds of sample division scheme are tested (a sample division scheme is denoted as:
number of training samples in 100 samples to every fault/number of test samples in 100 samples
to every fault, for example 5/95, 10/90, 20/80, 40/60, 60/40), with each scheme, 10 independent
experiments are repeated. Ultimately, 2400 experiments are carried out in total within the four
experiment sets. Table 2 shows the fz values and dimensions of feature vectors under 12 working
conditions with sample division schemes of 5/95 and 60/40, respectively, in experimental set 1.

Table 2. Values of differential frequency and dimensions of character vectors.

Division
Scheme

Working
Condition 0–0.007 0–0.014 0–0.021 1–0.007 1–0.014 1–0.021

5/95
fz (Hz) 94 234 369 533 217 486

Dimension 37 15 9 7 16 7

60/40
fz (Hz) 229 334 375 451 176 504

Dimension 16 11 9 8 20 7

Division
Scheme

Working
Condition 2–0.007 2–0.014 2–0.021 3–0.007 3–0.014 3–0.021

5/95
fz (Hz) 563 234 656 586 580 574

Dimension 7 15 6 6 6 6

60/40
fz (Hz) 463 240 598 580 440 568

Dimension 8 15 6 6 8 6

The results illustrate that when the working condition or division scheme changes, the differential
frequency fz value and dimension value of the feature vectors change accordingly.

Without considering sample division schemes, the overall diagnostic capability of proposed model
is evaluated. The average values and variance of accuracy values to all independent experiments
(50 times) under each working condition are listed in Tables 3 and 4.
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Table 3. Average diagnostic accuracy of all independent experiments corresponding to 12 different
working conditions respectively in 1st–4th experiment sets.

Working Condition Set 1 Set 2 Set 3 Set 4

0–0.007 98.14 94.15 97.65 98.12
0–0.014 98.75 81.83 94.41 74.59
0–0.021 96.48 88.61 99.36 65.52
1–0.007 97.91 96.85 99.80 97.51
1–0.014 99.02 84.93 98.75 63.61
1–0.021 95.07 97.69 99.53 71.55
2–0.007 99.03 96.90 99.97 98.42
2–0.014 97.89 85.03 97.36 67.33
2–0.021 97.18 97.70 99.54 74.77
3–0.007 97.62 97.74 99.42 99.46
3–0.014 94.67 87.44 94.20 74.16
3–0.021 97.26 97.71 99.26 79.23

Average 97.42 92.21 98.27 80.36

Table 4. Variances of diagnostic accuracy of all independent experiments corresponding to 12 different
working conditions respectively in 1st–4th experiment sets.

Working Condition Set 1 Set 2 Set 3 Set 4

0–0.007 1.94 25.00 4.85 1.93
0–0.014 1.50 19.08 9.39 49.01
0–0.021 13.75 42.70 0.63 8.15
1–0.007 3.90 9.32 0.13 3.32
1–0.014 1.36 40.30 1.27 58.80
1–0.021 6.32 10.01 0.10 19.94
2–0.007 0.49 8.23 0.01 1.74
2–0.014 2.82 32.84 6.12 43.05
2–0.021 4.77 6.04 1.55 13.25
3–0.007 6.55 2.12 0.61 0.71
3–0.014 15.34 20.66 12.60 35.93
3–0.021 10.95 1.16 0.82 10.36

Average 5.81 18.12 3.17 20.52

Figure 5a,b transforms Tables 3 and 4 in graphic ways, respectively.
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Table 3 and Figure 5a show that Set 3 achieves the best average accuracies under six kinds of
working conditions and Set 1 achieves the best under five kinds of working conditions, while Set 4
only ranks the first place under one kind of working conditions. Overall, the average accuracies of
Set 1 and Set 3 are 97.42% and 98.27%, maintaining a higher level, yet the average accuracies of Set 2
and Set 4 are only 92.21% and 80.36%, being especially worse in severe failure situations. Meanwhile,
the variance of average accuracies under different working conditions of Set 1 is 1.99, and the numbers
of Set 2, Set 3 and Set 4 are 37.84, 4.08 and 195.72, respectively. Obviously, the statistics of Set 1 and
Set 3 indicate better performances than Set 2 and Set 4.

Table 4 and Figure 5b show that Set 3 obtains the smallest variances under nine working conditions
and Set 1 is the least under to kinds of working conditions, while Set 4 only performs best under one
working condition. Clearly, the average value of variance values under 12 different working conditions
for Set 1, Set 2, Set 3 and Set 4 are 5.81, 18.12, 3.17 and 20.52, respectively. Set 1 and Set 3 outperform
Set 2 and Set 4. Meanwhile the values of the variances of Set 2 and Set 4 show obvious fluctuation
under severe failure conditions.

As a matter of fact, to simulate a situation that labeled data are rare in real application scenarios,
a small amount of samples division scheme is tested. Average values and variances of the accuracy
values of all independent experiments (10 times) under each working condition with a (5/95) sample
division scheme are shown in Tables 5 and 6.

Table 5. Average diagnostic accuracy to all independent experiments corresponding to 12 different
working conditions respectively with the scheme (5/95) in 1st–4th experiment sets.

Working Condition Set 1 Set 2 Set 3 Set 4

0–0.007 97.26 86.82 96.84 97.37
0–0.014 97.74 77.68 93.53 64.89
0–0.021 93.92 79.13 98.84 64.50
1–0.007 96.39 93.16 99.68 95.68
1–0.014 97.95 75.68 98.00 52.34
1–0.021 93.45 95.03 99.61 68.68
2–0.007 98.97 93.26 99.97 97.45
2–0.014 96.32 75.47 95.53 59.37
2–0.021 96.03 94.32 99.74 72.00
3–0.007 96.39 96.18 99.45 99.34
3–0.014 92.05 83.37 91.13 66.00
3–0.021 94.82 96.50 98.79 76.16

Average 95.94 87.22 97.59 76.15

Table 6. Variances of diagnostic accuracy to all independent experiments corresponding to 12 different
working conditions respectively with the scheme of (5/95) in 1st–4th experiment sets.

Working Condition Set 1 Set 2 Set 3 Set 4

0–0.007 2.80 14.43 2.74 4.45
0–0.014 3.43 20.42 15.94 47.56
0–0.021 17.47 59.47 1.40 10.03
1–0.007 8.50 20.01 0.21 5.60
1–0.014 2.67 40.65 1.28 42.14
1–0.021 12.41 25.03 0.07 14.24
2–0.007 0.16 13.75 0.01 2.22
2–0.014 5.08 12.28 8.14 18.92
2–0.021 8.26 12.88 0.15 10.14
3–0.007 3.40 6.16 0.90 0.87
3–0.014 41.64 18.63 15.50 11.85
3–0.021 22.03 2.46 1.68 6.45

Average 10.65 20.51 4.00 14.54
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Figure 6a,b also illustrates the results of Tables 5 and 6 in graphic ways, respectively.Sensors 2018, 18, 3312 11 of 15 
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Table 5 and Figure 6a show that Set 3 achieves the best average accuracies under eight kinds of
working conditions and Set 1 achieves the best under two kinds of working conditions, while Set 4
only ranks the first place under two kinds of working conditions. Overall, the average accuracies of
Set 1 and Set 3 are 95.94% and 97.59%, still maintaining a high level with slight decreases compared
to the overall average accuracies, yet the average accuracies of Set 2 and Set 4 are only 87.22% and
76.15%, being especially worse in severe failure situations, and showing sharp decreases compared to
overall average accuracies. Meanwhile, the variance of average accuracies under different working
conditions of Set 1 and Set 3 are 10.65 and 4.00, and the numbers for Set 2 and Set 4 are 20.51 and 15.4,
respectively. Obviously, the results in Set 1 and Set 3 are better than the results in Set 2 and Set 4.

Table 6 and Figure 6b show that the variance values of 50 independent experiments in Set 3
under each working condition maintain a steady low level and the mean value of 12 values is 4.00.
While in Set 1, variance values appear obvious fluctuation under 3–0.014 only, and the mean value is
10.65; values in Set 2 and Set 4 fluctuate wildly and the mean values are 20.51 and 14.54, respectively.

The convergence performance with the increase of the amount of training samples is also a key
indicator to evaluate a model. Experiments are conducted under different working conditions with
different sample division schemes, also, mean value and variance of accuracy values of all independent
experiments (10 times) are calculated and listed in Table 7. Figure 7 transforms Table 7 into diagrams.

In Table 7, 60 comparisons are conducted under different working conditions with different
sample division schemes, and the results show that Set 1 and Set 3 have better performance in average
accuracy with 56 comparisons out of 60, while Set 2 or Set 4 only get higher accuracies under the
working condition of 0–0.007 with four kinds of schemes. As shown in Figure 7, with the increase of
the number of training samples, the average accuracies of Set 1 and Set 3 obviously converge toward
the highest value faster than Set 2 and Set 4.
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Table 7. Average diagnostic accuracy to all independent experiments corresponding to 12 different
working conditions respectively with different schemes in 1st–4th experiment sets.

0–0.007 0–0.014

5/95 10/90 20/80 40/60 60/40 5/95 10/90 20/80 40/60 60/40

Set 1 97.26 97.31 98.28 98.96 98.88 97.74 98.33 99 99.13 99.56
Set 2 86.82 92.36 96.25 97.08 98.25 77.68 79.22 82.41 84.71 85.13
Set 3 96.84 95.92 97.22 98.79 99.5 93.53 93.72 95.34 94.63 94.81
Set 4 97.37 97.83 97.97 98.79 98.63 64.89 71.78 76.19 78.71 81.38

0–0.021 1–0.007

5/95 10/90 20/80 40/60 60/40 5/95 10/90 20/80 40/60 60/40

Set 1 93.92 94.97 97.06 98.79 97.69 96.39 98.03 98.19 98.5 98.44
Set 2 79.13 87.81 90.78 92.83 92.5 93.16 96.39 97.16 98.63 98.94
Set 3 98.84 99.64 99.66 99.33 99.31 99.68 99.81 99.84 99.92 99.75
Set 4 64.5 64.36 65.28 66.63 66.81 95.68 97.19 97.63 98.38 98.69

1–0.014 1–0.021

5/95 10/90 20/80 40/60 60/40 5/95 10/90 20/80 40/60 60/40

Set 1 97.95 99.17 98.91 99.58 99.5 93.45 94.81 96 95.17 95.94
Set 2 75.68 82.83 86.91 89.88 89.38 95.03 96.81 98.41 98.92 99.31
Set 3 98 98.08 98.94 99.17 99.56 99.61 99.53 99.44 99.38 99.69
Set 4 52.34 60.03 66.44 68.75 70.5 68.68 68.86 69.34 74.88 76

2–0.007 2–0.014

5/95 10/90 20/80 40/60 60/40 5/95 10/90 20/80 40/60 60/40

Set 1 98.97 99.25 98.47 99.46 99 96.32 97.42 98.34 98.79 98.56
Set 2 93.26 96.78 96.63 98.58 99.25 75.47 84.67 87.06 89 88.94
Set 3 99.97 99.97 99.97 99.96 100 95.53 96.72 97.25 98.88 98.44
Set 4 97.45 97.36 98.91 99.08 99.31 59.37 60.86 71.88 71.33 73.19

2–0.021 3–0.007

5/95 10/90 20/80 40/60 60/40 5/95 10/90 20/80 40/60 60/40

Set 1 96.03 96.86 97.25 97.13 98.63 96.39 95.5 98.41 98.79 99
Set 2 94.32 98.03 98.22 98.33 99.63 96.18 97.89 98.13 98.46 98.06
Set 3 99.74 98.53 99.66 99.96 99.81 99.45 99.31 98.97 99.54 99.81
Set 4 72 72.86 74.41 76.83 77.75 99.34 99.08 99.22 99.71 99.94

3–0.014 3–0.021

5/95 10/90 20/80 40/60 60/40 5/95 10/90 20/80 40/60 60/40

Set 1 92.05 93.44 94.75 96.71 96.38 94.82 96.03 97.53 99.17 98.75
Set 2 83.37 83.92 88.59 90.96 90.38 96.5 97.97 97.91 98 98.19
Set 3 91.13 93.14 95.06 94.79 96.88 98.79 99.25 98.94 99.63 99.69
Set 4 66 72.78 74.28 77.67 80.06 76.16 76.72 79.78 81.42 82.06

Considering all the results comprehensively, further analysis is carried out. LMD and EEMD can
decompose nonlinear and unstable signals into a set of components in the time domain, and these
components have better analyzability. The proposed SSA method can adaptively extract feature
information according to local characteristics, and construct unfixed-dimension fault feature vectors,
and it is proved to have better efficiency and robustness. SSA-based fault diagnosis methods can
obtain higher accuracies under different working conditions with different sample division schemes
in most comparisons (56/60), and the accuracies show less fluctuation between different conditions.
With the increasing number of samples, the accuracies achieved with the SSA-based method converge
towards the highest values faster. Especially with a small sample division scheme (5/95), the results
have shown that methods based on SSA still maintain high accuracy and stability and they are proved
specially suitable for practical application in scenarios with small amounts of training samples.
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Figure 7. Average diagnostic accuracy to all independent experiments corresponding to 12 different
working conditions, respectively, with different schemes in the 1st–4th experimental sets.

4. Conclusions

To improve the fault extraction performance, SSA is proposed in this paper. Combined with signal
decomposition methods, SSA extracts fault features from non-linear and unstable signals effectively,
then fault features are classified with SVM. Bearing data under 12 different working conditions obtained
from CWRU are utilized to evaluate the diagnosis methods. The conclusions may be summarized as
follows:

1. SSA extracts fault features and constructs unfixed-dimension vectors adaptively, it has reduced
the side effects caused by information insufficiency and redundancy. Moreover, SSA has higher
efficiency and robustness in fault extraction.

2. Fault diagnosis methods based on SSA can achieve higher accuracies and stability than other
methods under the same proposed framework and with an increased number of training samples,
the accuracies achieved with the SSA-based method converge to the highest value faster.

3. Especially, with a small amount training samples, the SSA-based method still provides high
accuracy with more obvious superiority in accuracy and stability, therefore they have the potential
to be implemented in real application scenarios.

5. Future Lines of Work

In recent years, deep learning has been adopted gradually in fault diagnosis. It can extract fault
features automatically because of its multi-layer structure, this characteristic can improve the feature
extraction further. At the same time, transfer learning [38] has achieved great success in many fields.



Sensors 2018, 18, 3312 14 of 15

Its generalization capability can be also utilized in fault diagnosis to promote the diagnostic theories
to applications. Therefore, our future work will be focused on the study of implementation of the
combination of deep learning and transfer learning in fault diagnosis.
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