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Abstract

Neisseria meningitidis lipopolysaccharide (LPS) has adjuvant properties that can

be exploited to assist vaccine immunogenicity. The modified penta-acylated LPS

retains the adjuvant properties of hexa-acylated LPS but has a reduced toxicity

profile. In this study we investigated whether two modified glycoform structures

(LgtE and IcsB) of detoxified penta-acylated LPS exhibited differential adjuvant

properties when formulated as native outer membrane vesicles (nOMVs) as

compared to the previously described LgtB variant. Detoxified penta-acylated LPS

was obtained by disruption of the lpxL1 gene (LpxL1 LPS), and three different

glycoforms were obtained by disruption of the lgtB, lgtE or icsB genes respectively.

Mice (mus musculus) were immunized with a recombinant PorA P1.7-2,4 (rPorA)

protein co-administered with different nOMVs (containing a different PorA

serosubtype P1.7,16), each of which expressed one of the three penta-acylated

LPS glycoforms. All nOMVs induced IgG responses against the rPorA, but the

nOMVs containing the penta-acylated LgtB-LpxL1 LPS glycoform induced

significantly greater bactericidal activity compared to the other nOMVs or when the
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adjuvant was Alhydrogel. Compared to LgtE or IcsB LPS glycoforms, these data

support the use of nOMVs containing detoxified, modified LgtB-LpxL1 LPS as a

potential adjuvant for future meningococcal protein vaccines.

Introduction

Neisseria meningitidis is a major cause of meningitis and septicaemia globally.

Efficient polysaccharide-protein glycoconjugate vaccines are available against 4

(A, C, W and Y) of the 5 major disease-causing capsular groups, but not for

strains of capsular group B [1]. Vaccines containing outer membrane vesicles

(OMVs) have been developed, including one licensed vaccine containing OMVs

mixed with recombinant outer membrane proteins [1]. OMVs bear a number of

outer membrane antigens within a vesicular membrane and are immunogenic,

eliciting protection against homologous strains, in particular those expressing the

same variant of the immunodominant protein PorA [2]. However, OMVs are

unable to induce persisting immune responses in infants and are reactogenic

[3, 4], prompting research into improvements and molecular modifications of

OMVs [5].

Lipopolysaccharide (LPS) is a component of the meningococcal outer

membrane. It is largely responsible for stimulating the destructive inflammatory

cascade during invasive disease, and is partially removed from OMV-based

vaccines by detergent extraction whereby the relative LPS content is lowered from

20–25% to 5–7% [6], enabling safe administration in humans [7]. LPS consists of

a hydrophobic lipid A component (endotoxin) anchored within the outer

membrane and a hydrophilic oligosaccharide extension [8]. Lipid A is synthesized

through a series of acylation steps concluding with the addition of a sixth 12-

carbon acyl chain by the enzyme LpxL1 [9]. Altered forms of LPS have been

proposed as potential vaccine adjuvants [10, 11, 12, 13, 14]. Detoxifying LPS by

disruption of lpxL1 (LpxL1 LPS) results in expression of penta-acylated lipid A,

which has significantly lower toxicity than the usual hexa-acylated form, but

retains the adjuvant properties [9]. Inactivation of lpxL1 allows native OMVs

(nOMVs) containing high levels of penta-acylated LPS to be safely administered

to humans [7]. This has the additional advantage of retaining low molecular

weight antigens such as factor-H binding protein (fHbp), which contribute to

enhanced vaccine immunogenicity [7], and would otherwise be removed during

detergent-dependent detoxification processes. Introducing an lpxL1 mutation is

therefore an attractive approach that preserves the adjuvant effect of LPS whilst

minimizing its toxicity in OMVs. LPS exhibits its biological effects through the

activation of Toll-like receptor 4 (TLR-4) on dendritic cells (DC) and other cell

types. LPS glycoforms with varied oligosaccharide lengths can modulate DC

activation and down-stream signalling, thus altering T-cell behaviour [15, 16]. The

adjuvant effect of a modified glycoform of lipopolysaccharide (LPS) (LgtB-LpxL1)
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on immune responses of mice to vaccination with meningococcal protein, tetanus

toxoid, or meningococcal serogroup C capsular polysaccharide was recently

demonstrated and compared to the responses induced by the non-modified

glycoform Lpxl1 [14].

This study investigates the capability of two different LPS oligosaccharide

variants of penta-acylated LpxL1 LPS, as compared to the previously identified

LgtB-LpxL1, to alter bactericidal immune responses. To this end, we have

disrupted the genes encoding the glycosyltransferases LgtB, LgtE and IcsB in

different strains of N. meningitidis, each resulting in the sequential shortening of

the LPS by one monosaccharide. We investigated the adjuvant properties of these

LPS structures in mice when delivered in the form of nOMVs in combination with

the recombinant protein rPorA P1.7-2,4.

Materials and Methods

Bacterial strains and growth conditions

E. coli strains DH5a (Invitrogen) and NovaBlue (Merck) were cultured at 37 C̊ on

Luria-Bertoni (LB) media. N. meningitidis strains used in this study are

summarized in Table 1 and included H44/76 (B:15:P1.7,16:L3,7,9), mutants

derived from strain MC58 (B:15:P1.7,16b, with disrupted lgtB [17] or lgtE [17]

genes) and H44/76 (disrupted icsB gene [18]), and the disease isolates 91/40

(B:4:P7-2,4) and BZ198 (B:NT:P1.7-2,4). Meningococci were cultured at 37 C̊ in

5% CO2 (v/v) in modified liquid Frantz medium [19] or solid brain heart infusion

(BHI) media (Merck) supplemented with Levinthal’s reagent (10% v/v).

Construction of meningococcal mutants expressing truncated and

detoxified LPS

The LPS glycosyltransferase genes in N. meningitidis strain H44/76 were disrupted

by transformation with chromosomal DNA from previously constructed mutant

strains with disrupted, lgtE [17] and icsB [18]. Disruption of lgtB was described

previously [14]. Meningococcal genomic DNA was purified with a QIAamp DNA

Mini Kit (Qiagen). A 1 ml loopful of overnight plate grown N. meningitidis H44/

76 was transformed with 15–50 ng of DNA, as described previously [20].

Transformants were obtained following growth on selective media (kanamycin

100 mg/ml). Mutation was confirmed by PCR analyses using purified chromo-

somal DNA and through analysis of LPS profiles using 16.5% acrylamide Tris-

Tricine gels run at 30 mA and 4 C̊ for 18 hours [21] and silver stained (GE

Healthcare) according to the manufacturers’ instructions. Disuption of lpxL1 gene

was performed as described previously [14].

Construction, expression and purification of rPorA P1.7-2,4

Recombinant rPorA P1.7-2,4 was prepared by cloning porA P1.7-2,4 into plasmid

apET30-ekLIC and transforming into E. coli strain T7 Express (New England
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Biolabs, Hitchin, UK). Bacteria were harvested, disrupted by sonication, inclusion

bodies isolated as previously described [22] then resuspended in Tris buffer

(10 mM, pH 7.5), EDTA (1 mM) and urea (8 M). Following centrifugation at

140006g for 20 minutes to remove cell debris, the supernatant was added in a 1:1

ratio whilst stirring rapidly to a buffer comprising Tris (20 mM, pH 7.9), NaCl

(1 M) and zwittergent 3–14 (ZW 3–14) (2% w/v) before being dialyzed against

Tris (20 mM, pH 7.9), NaCl (0.5 M) and ZW3-14 (0.05% w/v) for two periods of

6–8 hours at 4 C̊. The resulting solution was passed through a 0.45 mm filter then

applied to a HISTrap HP column (GE Healthcare) in Tris (20 mM, pH 7.9), NaCl

(0.5 M), lauryldimethylamine oxide (0.1% v/v) and imidazole (10 mM). The

column was washed with the same buffer containing 40 mM imidazole. 500 mM

imidazole was used to elute rPorA, which was then dialyzed against Tris (10 mM,

pH 7.9), NaCl (150 mM) and ZW 3–14 (0.05% w/v). A circular dichroism

spectrum was run using a JASCO J-10 spectrometer with a 0.05 cm path length

quartz cell, to confirm the folded state of the rPorA preparation.

Production of Outer Membrane Vesicles

Extraction of nOMVs were performed as previously described [14]. Production of

the nOMVs was performed five times for each strain, and the protein content of

the nOMVs was quantified each time using a micro Lowry assay [23] (Sigma). The

protein antigen profiles were assessed for each production lot by sodium dodecyl

sulphate – polyacrylamide gel electrophoresis (SDS-PAGE) with coomassie

brilliant blue staining. LPS profiles were assessed using 16.5% acrylamide Tris-

Tricine gels as described above. The structure of OMVs was characterized by

transmission electron microscopy using methyl tungstate negative staining [24].

The size distribution was assessed by nanoparticle tracking analysis (NTA) using a

Table 1. Genotype of strains used and constructed.

Strains Description

E. coli DH5a F- w80lacZDM15 D(lacZYA-argF)U169 recA1 endA1 hsdR17(rk-, mk+) phoA supE44 thi-1 gyrA96 relA1 tonA

E. coli NovaBlue endA1 hsdR17(rK12– mK12+) supE44 thi-1 recA1 gyrA96 relA1 lac F9 [proA+B+ lacIqZDM15::Tn10 (TcR)]

E. coli BL21(DE3) F– ompT hsdSB(rB– mB–) gal dcm (DE3)

H44/76 As wildtype; http://pubmlst.org

MC58-LgtB lgtB disrupted with a kanamycin resistance cassette in strain MC58

MC58-LgtE lgtE disrupted with a kanamycin resistance cassette in strain MC58

H44/76-IcsB icsB disrupted with a kanamycin resistance cassette in strain H44/76

BZ198 As wildtype; http://pubmlst.org

91/40 As wildtype; http://pubmlst.org

H44/76-LgtB lgtB disrupted with a kanamycin resistance cassette

H44/76-LgtE lgtE disrupted with a kanamycin resistance cassette

H44/76-LgtB-LpxL1 lgtB disrupted with a kanamycin resistance cassette, lpxL1 disrupted with a tetracycline resistance cassette

H44/76-LgtE-LpxL1 lgtE disrupted with a kanamycin resistance cassette, lpxL1 disrupted with a tetracycline resistance cassette

H44/76-IcsB-LpxL1 icsB disrupted with a kanamycin resistance cassette, lpxL1 disrupted with a tetracycline resistance cassette

doi:10.1371/journal.pone.0115713.t001
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Nanosight NS500 system (NanoSight). The Brownian motion was tracked for

each particle, allowing calculation of the size through the application of the

Stokes-Einstein equation.

Effect of of different LPS glycoforms on reactogenicity

The effect on reactogenicity induced by the modifications in the LPS of the

different variants was analyzed by standard proinflammatory cytokine production

by human whole blood stimulation assay, as described previously [25].

Quantification of IL-6 in the cell supernatant was performed by Human IL-6

ELISA kit (Invitrogen) according to the manufacturer’s instructions.

Murine immunizations

This study was carried out in strict accordance with the regulations of the UK

Animals (Scientific Procedures) Act 1986. The protocol was approved by the local

ethics committee on animal experiments at NIBSC (Home Office Project Licence

Number 80/2157). All immunizations were performed under anesthesia, and all

efforts were made to minimize suffering. Samples were obtained following

terminal general anaesthesia. Mice were housed in groups in a specific pathogen

free facility, under controlled light/dark cycle and temperature housing, with

access to food and water ad libitum and with environmental enrichment, under

the control of a named veterinary surgeon. Groups of 10 healthy inbred 6–8 week

old NIH/OlaHsd female mice (Harlan UK) weighing between 18–22 g were

immunized subcutaneously on days 0 and 28 and terminally bled on day 42. Mice

were immunized with 5.0 mg of purified rPorA P1.7-2,4 with or without 330 mg

Alhydrogel or 2.5 mg of nOMVs from the lpxL1 mutant strains (Table 2). Control

groups of mice were immunized with Alhydrogel or nOMVs alone. A power

calculation was performed using data from a group of mice immunized with

rPorA + Alum (mean test value titer 165, standard deviation 99.9). Ten animals

per group provide 99.9% statistical power at an Alpha error level of 5% to detect a

2-fold difference with a two-tail test. No adverse events were observed during the

experiments.

Analysis of serum antibody responses by ELISA

An OMV enzyme-linked immunosorbent assay (ELISA) to quantify specific IgG

antibodies raised in mice was adapted from that of Rosenqvist et al. [26].

Maxisorb 96-well microtiter plates (Nunc) were coated overnight at 37 C̊ with

5 mg/ml of BZ198 nOMVs. Plates were washed five times with 150 mM NaCl,

0.05% (v/v) Tween-20 before serial double-dilutions of sera in PBS, 0.5% BSA,

0.05% (v/v) Tween-20 were added. After incubation for 2 hours at 37 C̊, the plates

were washed and incubated for a further 2 hours at 37 C̊ with alkaline-

phosphatase anti-mouse IgG conjugate (Sigma) diluted 1:5000. The plates were

then washed and incubated for 25 min at room temperature with the substrate 4-

Adjuvant Effects of Meningococcal LPS Glycoforms
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nitrophenyl phosphate disodium salt hexahydrate (pNpp) (Sigma) diluted in

substrate dilution buffer (Zymed Laboratories Inc) as per the manufacturer’s

instructions. The colour reaction was stopped with 5 ml of 3 M sodium hydroxide.

Optical densities were read at 405 nm with a 620 nm reference.

Anti-PorA IgG titers were quantified as as described previously [14].

An internal serum standard was prepared by pooling sera identified as high

responders. A standard curve was fit using a four-parametric model as described

by Plikaytis et al. [27]. Samples that did not show OD values within the range of

the standard curve at dilutions of 1:125 or greater were assigned an arbitrary

concentration of 0.097 Units/ml as calculated according to WHO guidelines [28].

Serum Bactericidal Assay

A serum bactericidal activity (SBA) assay was adapted from methods previously

described [29] and was used to assess bactericidal activity against N. meningitidis

strain BZ198, using pooled murine sera and baby rabbit complement (lot 11330,

Pel-Freez Biologicals, Rogers, AR) to a final concentration of 25%, as described

previously [14]. The serum bactericidal titre was measured as the reciprocal of the

last serum dilution that resulted in greater than 50% killing of the viable count

(T60). The T60 was calculated from control wells containing bacteria and heat-

inactivated sera. Other controls included bacteria alone and bacteria plus

complement.

Statistical analyses

Antibody titres against BZ198 nOMVs and rPorA P1.7-2,4 were log10 transformed

and analysed with SPSS Statistics 17.0 (SPSS Inc) and GraphPad Prism 5

(GraphPad Software, Inc). Analysis of variances (ANOVA) was used for statistical

evaluation of data.

Table 2. Immunization schedules.

Group Antigen Adjuvant Adjuvant dose

1 5 mg rPorA P1.7-2, 4

2 5 mg rPorA P1.7-2, 4 Alhydrogel 330 mg

3 5 mg rPorA P1.7-2, 4 nOMV: H44/76-LgtB-LpxL1 2.5 mg

4 5 mg rPorA P1.7-2, 4 nOMV: H44/76-IcsB-LpxL1 2.5 mg

5 5 mg rPorA P1.7-2, 4 nOMV: H44/76-LgtE-LpxL1 2.5 mg

6 nOMV: H44/76-LgtB-LpxL1 2.5 mg

7 nOMV: H44/76-IcsB-LpxL1 2.5 mg

8 nOMV: H44/76-LgtE-LpxL1 2.5 mg

9 Alhydrogel 330 mg

doi:10.1371/journal.pone.0115713.t002
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Results

Construction of H44/76 double mutant strains

To examine the effect of LPS oligosaccharide length on the adjuvant properties of

OMVs, mutants with disrupted lgtB, lgtE and icsB genes were constructed in the

prototypic N. meningitidis serogroup B strain H44/76 background. H4476 was

transformed with chromosomal DNA from the appropriate, characterised, LPS

mutants (lgtB, lgtE and icsB) of strain MC58 (Fig. 1). The expected genetic

disruption in the mutants was confirmed through growth on selective media and

PCR analysis (data not shown). The expected LPS phenotypes of the single and

double mutant strains, described in Fig. 2A, were consistently confirmed on five

independent occasions by TSDS-PAGE of cell lysates for the single mutants or

nOMVs obtained from the double mutants, as shown in Fig. 2B for the strains

subsequently used for murine immunization (Fig. 2B).

Production and characterisation of nOMVs

nOMVs were extracted from strains H44/76-LgtB-LpxL1, H44/76-LgtE-LpxL1

and H44/76-IcsB-LpxL1 on five occasions, and the resulting nOMVs were

characterized by SDS-PAGE, TSDS-PAGE and electron microscopy. The results

from the production subsequently used for murine immunization are represen-

tative of the 5 production rounds and are shown below. TSDS-PAGE

demonstrated differences in molecular weight of the LPS between the nOMVs that

corresponded with the predicted alterations to each LPS glycoform, although a

Fig. 1. Schematic representation of the construction strategy showing PCR products and plasmid
construction. Separate amplification of the 59 and 39 ends of the MC58 lpxL1 gene, introduction of a novel
XmaI restriction enzyme site by fusion PCR, and introduction of the tetR resistance gene to disrupt lpxL1 with
cloning of the resulting DlpxL1 into pCR2 plasmid, which was then used for N. meningitidis strain
transformation. The numbers indicate the size of the fragments in Kbp.

doi:10.1371/journal.pone.0115713.g001
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Fig. 2. LPS structure of meningococcal strain H44/76. (A) The genes disrupted in this study are indicated and this resulted in truncated glycoforms of
different lengths. Disruption of lpxL1 prevented the addition of the final acyl chain which is indicated by the dotted line. Key: Gal – galactose, GlcNAc – N-
acetyl glucosamine, Glc – glucose, Hep – heptose, PEtn – phosphoethanolamine, NeuNAc – N-acetyl neuraminic acid, KDO – 2-keto-3-deoxyoctulosonic
acid. (B) LPS profiles of H44/76 mutants obtained by electrophoresis using 16.5% acrylamide Tris-Tricine gels and silver staining. LPS from cell lysates from
strains (1) H44/76-IcsB, (3) H44/76-LgtE and (5) H44/76-LgtB migrate slightly slower than LPS from OMVs of strains (2) H44/76-IcsB-LpxL1, (4) H44/76-
LgtE-LpxL1 (6) H44/76-LgtB-LpxL1, as the latter each lack an acyl chain. LPS from strain H44/76 (7) was run for comparison.

doi:10.1371/journal.pone.0115713.g002

Fig. 3. Characterization of nOMVs. (A) The protein content was analysed by SDS PAGE of OMVs obtained from 1: H44/76-Lpxl1, 2: H44/76-IcsB-Lpxl1, 3:
H44/76-LgtB-Lpxl1, 4: H44/76-LgtE-Lpxl1 strains. M: molecular weight marker, with sizes indicated on the left in kDa (B) Electron micrograph illustrating
H44/76-LgtB-LpxL1 nOMVs (arrow). OMVs obtained from other strains had equivalent phenotypes (not shown). (C) Effect of nOMVs on IL-6 production by
human blood. The average results of in vitro whole-blood stimulation assay comparing the responses to nOMVs prepared from the strains expressing LPSs
with different structures as indicated in the legend are represented (geometric means of two measurements, except for the positive control H44/76, with error
bars representing the 95% confidence intervals).

doi:10.1371/journal.pone.0115713.g003
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reduction, interpreted to be minor, in molecular weight of LPS was observed for

each lpxL1 mutant when compared to the respective parent strain (Fig. 2B). SDS-

PAGE confirmed that each of the three oligosaccharide-modified nOMV

preparations had similar protein contents compared to those from a lpxL1 single

mutant (Fig. 3A). The nOMVs visualized by electron microscopy, and the particle

size distribution (performed by NTA) confirmed that samples contained mostly

intact vesicles with some cell debris, with a range in size from 30 nm to 150 nm

(Fig. 3B). Their appearance was similar to those previously obtained by us and

others [30].

Since reactogenicity and adjuvant capacity are related, we experimentally

analyzed the effect on reactogenicity induced by the modifications in the LPS of

the different nOMVs. IL-6 was quantified in supernatant of blood samples

cultured with the different nOMVs (Fig. 3D). The pentacylated LPS obtained by

Lpxl1 mutation decreases IL-6 production as compared to hexaacylated LPS in

H44/76 nOMVs, as expected, (2) Lpxl1 and Lpxl1-LgtE nOMVs induced similar

IL-6 production, and (3) Lpxl1-IcsB and Lpxl1-LgtB nOMVs induced lower IL-6

production as compared to the 2 other Lpxl1 variants.

Characterisation of purified recombinant rPorA P1.7-2,4

The modified nOMVs express PorA P1.7,16 (strain H44/76). Heterologous

recombinant rPorA P1.7-2,4 was expressed in E. coli and purified to greater than

90% (Fig. 4A). Circular dichroism spectrometry confirmed that rPorA P1.7-2,4

was correctly folded (Fig. 4B). The spectrum was similar to that reported

previously for PorA purified from OMVs [31]. The expression and purification of

recombinant PorA was carried out on at least six separate occasions, with similar

results obtained for all runs.

The three nOMVs elicit antibody responses to rPorA P1.7-2,4

The mouse experiment was performed once, with 10 animals per group, but

power calculation indicated that this number of animals would provide 99.9%

statistical power at an Alpha error level of 5% to detect a 2-fold difference with a

two-tail test. Sera from immunized mice were tested in an ELISA designed to

detect the concentration of anti-rPorA P1.7-2,4 antibodies. As expected,

immunization with rPorA alone elicited a modest anti-PorA response, which was

significantly increased by addition of Alhydrogel adjuvant (Fig. 5A, lanes 1 and 2).

All three nOMVs elicited serum IgG responses (Fig. 5A, lanes 3–5), and there were

no significant differences in antibody titres between Alhydrogel and nOMVs from

strains H44/76-LgtB-LpxL1 or H44/76-IcsB-LpxL1. Only the H44/76-LgtE-LpxL1

nOMVs induced lower antibodies when compared to Alhydrogel (p,0.05, Fig. 5A

lanes 2 and 4). The concentration of IgG antibodies specific to rPorA P1.7-2,4 was

low or undetectable in mice immunized with the nOMVs alone (nOMVs contain

PorA P1.7, 16, Fig. 5, lanes 6–8). This is in agreement with previous reports

Adjuvant Effects of Meningococcal LPS Glycoforms
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Fig. 4. Characterization of recombinant rPorA protein. (A) rPorA protein was purified on a metal chelate affinity column, the SDS-PAGE patterns of
elution fractions 1 to 7 are shown. M indicates the molecular weight marker. (B) Circular dichroism spectrum indicating correctly folded rPorA P1.7-2,4.

doi:10.1371/journal.pone.0115713.g004

Fig. 5. ELISA against (A) rPorA P1.7-2,4 and (B) BZ198 OMVs. Mouse groups 1-5 received 5 mg rPorA
P1.7-2,4 adjuvanted with the following: 1) no adjuvant, 2) Alhydrogel, 3) H44/76-LgtB-LpxL1 nOMV, 4) H44/
76-LgtE-LpxL1 nOMV, 5) H44/76-IcsB-LpxL1 nOMV. Groups 6-9 did not contain any rPorA and were
immunized with the following nOMVs: 6) H44/76-LgtB-LpxL1, 7) H44/76-LgtE-LpxL1, 8) H44/76-IcsB-LpxL1.
Group 9 received Alhydrogel alone. Mice were immunized twice at 4 and 8 weeks and serum samples were
taken 2 weeks after the last injection. Each symbol represents an individual animal; the horizontal bar
represents the mean of the group. Statistical differences observed between groups containing rPorA are
noted on the graphs (*: p,0.05). Statistical differences between rPorA-immunized groups of mice and control
groups (nOMVs only or no antigen) are not shown.

doi:10.1371/journal.pone.0115713.g005
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suggesting that the PorA-specific responses elicited by OMVs essentially target the

hyper-variable regions VR1 and VR2 [32, 33].

The three glycoform nOMVs variants induce antibody responses

to BZ198 nOMV expressing PorA P1.7-2,4

Strain BZ198 expresses the same PorA type (P1.7-2,4) as the rPorA used in the

murine immunizations. As predicted, sera from mice immunized with the

recombinant rPorA protein recognized native PorA P1.7-2,4 within the BZ198

nOMVs. Sera from all the mice immunized with H44/76 nOMVs and rPorA

recognized BZ198 nOMVs to varying degrees (Fig. 5B, lanes 3–5). Differences

were observed in the adjuvant activity of the three H44/76-derived nOMVs with

respect to BZ198 nOMVs: nOMVs from H44/76-LgtB-LpxL1 raised significantly

greater concentrations of antibodies than nOMVs from H44/76-LgtE-LpxL1

(p,0.05), H44/76-IcsB-LpxL1 (p,0.05), and Alhydrogel (p,0.05) (Fig. 5B, lanes

2–5). In contrast, H44/76-IcsB-LpxL1nOMVs and H44/76-LgtE-lpxL1 nOMVs

each showed no differences in adjuvant effects compared to Alhydrogel. Of note,

control groups of mice immunized with H44/76 nOMVs alone (containing PorA

P1.7,16) and in the absence of rPorA P1.7-2,4 (lanes 6–9) elicited low IgG

responses against BZ198 nOMVs. A possible explanation for these findings is that

cross-reactive antibodies targeting PorA are elicited or antigens other than PorA,

that are conserved between strains H44/76 and BZ198, raise cross-reacting

antibodies.

The truncated glycoforms present in H44/76-LgtB-Lpxl1 and H44/

76-LgtE-Lpxl1 nOMVs induce bactericidal activity against BZ198

strain

SBA activity was not detected in mice immunized with rPorA alone (titres ,1:4,

Table 3). The use of Alhydrogel or nOMVs from H44/76-IcsB-LpxL1 in the

formulation did not result in significant levels of bactericidal activity (titres ,1:4

and ,1:8 respectively). However, sera from mice immunized with rPorA mixed

with nOMVs from strains H44/76-LgtB-LpxL1 and H44/76-LgtE-LpxL1 elicited

SBA titres of 1:128 and 1:64 respectively (a mean of two determinations with

pooled sera, Table 3).

Discussion

Our study demonstrates that each of the LPS structures investigated (H44/76-

LgtB-LpxL1, H44/76-LgtE-LpxL1 and H44/76-IcsB-LpxL1), when delivered in

nOMVs, increased the immunogenicity of purified rPorA P1.7-2,4 as measured by

serum IgG concentrations in mice. In contrast to other formulations, H44/76-

LgtB-LpxL1 and to a lower extent H44/76-LgtE-LpxL1 resulted in antibodies with

bactericidal activity. Thus this study provides in vivo confirmation of the

proposed adjuvant properties of LgtB-LpxL1 LPS [14, 16, 34]. However, SBA titers
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measured with baby rabbit complement are higher than observed with human

complement due to the species-specificity of the meningococcal factor H binding

protein. Therefore it is not known whether this adjuvant effect would be observed

in humans. In addition, not all adjuvant properties can be attributed to LPS given

nOMVs contain a multitude of other components. Other antigens, such as PorB

are known to possess adjuvant properties [35, 36, 37]}. However, all other antigens

present on H44/76 nOMVs should be equivalent as each of the nOMVs used in

the experiment was derived from a set of isogenic strains.

Since LgtB-Lpxl1 nOMVs induce lower IL-6 production than IcSB-Lpxl1 and

LgtE-Lpxl1 in a human blood assay, it seems likely that the higher SBA titers

induced by this mutant as compared to the other two nOMVs is not related to

higher reactogenicity of the former glycoform. The adjuvant properties observed

in the nOMVs may be explained through the interaction of LPS with the LpxL1

phenotype (LpxL1 LPS) with murine TLR4, probably inducing release of

inflammatory cytokines such as TNF, IL-6 and IL-1, and maturation of DCs

[38, 39]. Murine studies have shown that LpxL1 LPS can restore the adjuvant

properties of LPS-deficient outer membrane complexes as measured by ELISA and

SBA [9]. The mediation of these effects through TLR4 has also been confirmed in

vivo with TLR4-deficient mice [40, 41]. Disrupting the lpxL1 gene allows safe

administration of relatively large doses of LPS in humans [7]. As nOMVs from

lpxL1 mutants contain five times as much LPS than deoxycholate-extracted OMVs

(dOMVs) [6], greater quantities of the oligosaccharide core of LPS can be exposed

to the immune system whilst maintaining safety [42].

Studies in vitro have shown that LPS oligosaccharide moieties bind effectively

with dendritic-cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) lectin

receptors present on human immature DCs. Activation of DC-SIGN results in

ligand internalization and downstream signalling that serves to skew T-cell

responses toward T helper type 1 activity [15, 16]. DCs have been shown to be

more easily activated by meningococcal strain H44/76 expressing truncated LPS

with the LgtB phenotype (LgtB LPS) in comparison to fully extended LPS [15, 16].

Table 3. Bactericidal titres of pooled murine sera obtained after immunisation with rPorA P1.7-2,4 adjuvated with Alhydrogel or various nOMVs.

Group Antigen Adjuvant Adjuvant dose (mg) Bactericidal titer

1 rPorA - ,1:4

2 rPorA Alhydrogel 33 ,1:4

3 rPorA nOMV: H44/76-LgtB-LpxL1 2.5 1:128

4 rPorA nOMV: H44/76-IcsB-LpxL1 2.5 ,1:8

5 rPorA nOMV: H44/76-LgtE-LpxL1 2.5 1:64

6 nOMV: H44/76-LgtB-LpxL1 2.5 ,1:4

7 nOMV: H44/76-IcsB-LpxL1 2.5 ,1:4

8 nOMV: H44/76-LgtE-LpxL1 2.5 ,1:4

9 Alhydrogel 330 ,1:4

Titres are expressed as the reciprocal of the last dilution at which $50% killing was achieved.

doi:10.1371/journal.pone.0115713.t003
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A limitation to understanding the details of the mechanism underlying our results

is that no receptor identical to DC-SIGN has yet been identified on murine DCs.

The functional ortholog of DC-SIGN in mice has been labelled mDC-SIGN.

mDC-SIGN differs appreciably in its ligand-binding profile and only shares 57%

peptide sequence homology with DC-SIGN [43, 44]. However, our results do

suggest that there exists a murine receptor that is capable of discriminating

between specific LPS oligosaccharide structures, as demonstrated by differences in

the antibody titres and bactericidal activities obtained.

TLR4 and DC-SIGN homologues interact in both mice and humans. In

humans, the DC-SIGN signalling cascade converges with TLR4 signalling at the

level of NFkB to modulate the cytokines released by DCs [45, 46]. These cytokines

influence the maturation of naïve T helper cells towards a Th1 or Th2 response

[47]. In mice, it has been shown that mSIGN-R1, another murine ortholog of DC-

SIGN, recognizes the oligosaccharide core of LPS, in particular GlcNAc-Glc-Gal in

Salmonella species [48, 49, 50]. Activation of mSIGN-R1 modulates downstream

signal transduction and subsequent pro-inflammatory cytokine production

through association with the TLR4-MD2 complex [50]. In our study, we observed

different adjuvant properties between the various oligosaccharide structures, but

the adjuvant action of nOMVs expressing various LPS penta-acylated glycoforms

cannot be easily dissected.

There must inevitably be caution exerted in the extrapolation of results derived

from a murine model to humans. It has been observed that human TLR4 does not

respond to LpxL1 LPS as potently as murine TLR4 [34, 51]. Although this suggests

that penta-acylated LPS would be even less endotoxic in humans, the adjuvant

benefits of using penta-acylated LPS may also be diminished. On the other hand,

the trisaccharide GlcNAc-Gal-Glc resembles the outer core of LgtB LPS, making it

an excellent ligand for human DC-SIGN, one know to play an important role in

modulating immune responses.
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